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Dynamic Characteristics of High‑speed 
Water‑Lubricated Spiral Groove Thrust Bearing 
Based on Turbulent Cavitating Flow Lubrication 
Model
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Abstract 

The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the 
distribution of cavitation bubbles and the interface effect between the two phases have not been included in previ-
ous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavita-
tion bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings 
(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of 
bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the 
perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulat-
ing and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow 
when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results 
also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients 
and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics 
of SGTB is much stronger than the cavitating effect
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1  Introduction
Water-lubricated bearing has been widely applied due 
to its low viscosity, low temperature rise, no pollution 
and etc. Spiral groove thrust bearing (SGTB) has advan-
tages in hydrodynamic effect and stability. Nowadays, the 
water-lubricated spiral groove thrust bearing has been 
used in high-speed spindle. However, since inception 
cavitation number of water is larger than that of oil, cavi-
tation phenomenon in water-lubricated bearings is more 
serious than the oil-lubricated bearing at high speed, and 
the water-lubricated bearing tends to fall into turbulent 

fluid condition when rotary speed exceeds a certain 
value.Hence,both cavitating effect and turbulent effect 
should be considered to model the high-speed water-
lubricated bearing.

The cavitating and turbulent effects of water or oil bear-
ings with different configurations have been investigated 
in previous studies. In the early studies on bearing cavi-
tation, the different boundary conditions for lubrication 
equation including the Swift-Stiebe condition [1], the JFO 
condition [2], the Elrod condition [3] have been adopted 
to describe the cavitation effect of the lubricating film. 
With those conditions, solution of a two-phase flow in 
cavitated region can be avoided. However, the cavitating 
flow is not involved in those models. To overcome this 
problem,the cavitation lubricant is treated as two-phase 
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mixed fluid. The two-phase mixed fluid models have 
been developed, those models can be divided into three 
types based on calculation approaches of gas phase vol-
ume fraction: (1) the model based on the R-P equation 
[4, 5] (2) the model based on gas solubility and surface 
tension of bubble [4, 6‒9] (3) the model based on trans-
port equation of the gas phase volume fraction [10–15]. 
In addition, with the rapid development of computational 
fluid dynamics (CFD) technology,some researchers have 
proposed performance analysis of bearings with the cavi-
tation using the CFD software [7, 11, 16‒19]. However, 
the interfacial effect (the momentum and energy transfer 
effect between phases at the interface of two phases) of 
the two-phase flow is not included in the above lubrica-
tion models of cavitating flow. Actually, the momentum 
and energy exchange between the two phases produces 
at the interface, so the interface effect is a very impor-
tant feature for two-phase flow,which can not be ignored 
when modeling the high-speed water-lubricated bearing. 
In addition, the size distribution of the bubbles cannot be 
obtained using the present mixed fluid model or the CFD 
model. In our previous study, lubrication models con-
sidering the interface effect of two-phase flow have been 
proposed [20–23]. However, those models are established 
under heat isolation, and the bubble population equilib-
rium equation is solved directly. Since the bubble size 
probability density function is an unknown quantity, so 
it is difficult to determine the bubble size probability den-
sity function at the initial moment and at the interface. 
Furthermore, this kind of algorithm tends to unstable.

This study aims to establish a lubrication model for the 
water-lubricated spiral groove thrust bearings including both 
two-phase interfacial and fluid turbulent and bearing heat 
conduction effects. A generalized Reynolds equation consid-
ering the cavitation interface and turbulence, and an energy 
equation considering bearing heat conduction are derived. A 
population balance equation considering the breakage and 
coalescence of bubbles is introduced to describe the evolu-
tion of the size distribution of bubbles. A discrete interval 
method is employed to solve the bubble population balance 
equation. The influence of cavitation and turbulence on the 
dynamic characteristics of the SGTB is analyzed using the 
established model. The size distribution of cavitation bubbles 
and stiffness coefficient of water film are measured using a 
self-developed experimental device. A comparison of the 
simulating results with experimental ones is given to verify 
the proposed model.

2 � Theoretical Model
2.1 � Generalized Reynolds Equation Based 

on the Two‑Phase Flow Theory
This paper studies the water-lubricated SGTB with the 
turbulent cavitating flow film (Figure  1). The classical 

Reynolds equation is not suitable for describing the bear-
ing lubrication state, a Reynolds equation which contains 
turbulent and two-phase interfacial effects is needed, 
so the following basic assumptions are made for the 
modeling.

(1)	 The bubbles in the cavitation flow be regarded as 
spheres.

(2)	 The flow field is a small perturbation of the turbu-
lent Couette flow [24].

(3)	 The turbulent shear stress is defined by the law of 
wall, Reichardt [25] empirical formula is used to 
define the eddy viscosity coefficient.

(4)	 The average viscosity along the film thickness is 
adopted in generalized turbulent Reynolds equa-
tion.

The spiral area is an irregular area in the polar coor-
dinate system, a spiral coordinates system (η, ζ ) are 
adopted to improve numerical calculation accuracy. The 
polar coordinates (θ , r) are converted into the spiral coor-
dinates system (η, ζ ) as follows:

The spiral patterns before and after the coordinates 
conversion are shown in Figure 2.

A generalized turbulent Reynolds equation with cavita-
tion interface effects and inertial effects in the (η, ζ ) coor-
dinates is derived based on two-phase flow theory [26]:
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Figure 1  Structure schematic of inward-pumping SGTB
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where

The following expression can be given for the logarith-
mic spirals:

The circumferential velocity distribution of the water 
film is written as

where
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(9)Cw = 1− Cg ,

where feq(η, ς) is the equilibrium distribution func-
tion of the cavitation bubble diameter; feq(η, ς)dς rep-
resents the number of bubbles with diameter between 
(ς , ς + dς) per unit volume of water at spatial coordi-
nate η under the equilibrium state. The first term on the 
right-hand side of Eq. (2) is the hydrodynamic effect, the 
second term on the right side of Eq. (2) is the interface 
hydrodynamic effect, the third and fourth terms on the 
right side of Eq. (2) is the inertia hydrodynamic effect. 
The interface momentum transfer function includes the 
following three parts:

where M1(η) is the interface momentum transfer term 
due to mass transfer, M2(η) is the interface momentum 
transfer term due to viscous drag, M3(η) is the inter-
face momentum transfer term due to surface tension. 
Because the film thickness is thin, the liquid velocity in 
M1(η),M2(η) are approximated by the average velocity. 
M1(η),M2(η) and M3(η) are written as:

where CDs=
24
Re

.
Assume that the range of bubble diameter is divided 

into M smaller intervals, the diameter distribution of the 
bubbles is uniform in a smaller interval. So the equilib-
rium distribution function of bubble diameter in the kth 
smaller diameter interval (ςk , ςk+1) can be expressed as:
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Figure 2  Coordinates transformation of spiral patterns
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where nkeq(η) is the number of bubbles in the kth diam-
eter interval (ςk , ςk+1) . And the integral in Eq. (12) can be 
approximated as:

The boundary conditions of Eq. (2) are as follows:

The pressure at the groove-ridge boundary can be 
solved by using continuous condition of flow at the 
groove-ridge boundary. The finite volume at the groove-
ridge boundary is shown in Figure 3.

In a finite volume at the groove-ridge boundary, the 
continuous condition of the flow can be written as

where
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2.2 � Turbulent Cavitating Flow Energy Equation
The temperature field of the cavitating flow water film 
can be obtained by solving the two-phase flow energy 
equation under high-speed conditions, and the following 
assumptions are adopted to simplify the energy equation.

(1)	 The circumferential convection term is only consid-
ered in the energy equation, because the circumfer-
ential velocity is much larger than the radial veloc-
ity.

(2)	 Turbulent pulsation heat conduction term is 
ignored.

(3)	 The viscous dissipation term along the film thick-
ness is only considered in the energy equation.

According to the above assumption, the energy equa-
tion in the (η, ζ ) coordinates in the spiral coordinate sys-
tem can be simplified to

where

The interface term Eint in the energy equation is 
expressed as

The following boundary conditions are adopted for the 
energy Eq. (21).
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Figure 3  Finite volume separated by groove-ridge boundary



Page 5 of 21Lin et al. Chinese Journal of Mechanical Engineering           (2022) 35:13 	

(1)	 At the inlet of the spiral groove

(2)	 On the interface of the water film and the thrust 
disk

(3)	 On the interface of the water film and the stationary 
ring

The viscosity temperature relationship is written as

The water film temperature field can be obtained 
solved by simultaneously solving the energy Eq. (21), the 
heat conduction equation of the stationary ring and the 
heat conduction equation of the thrust disk.The surface 
temperature Ts(δs) of the stationary ring and surface tem-
perature Td(η, 0) of the thrust plate are set as the bound-
ary condition of the energy Eq. (21).

2.3 � Heat Conduction Equation in Stationary Ring
The circumferential and radial heat conduction of the 
stationary ring are ignored, the heat conduction equation 
is simplified as follows:

The boundary conditions of Eq. (29) are given as 
follows.

(1)	 At the surface between the stationary ring and the 
fluid (zs = δs):

(2)	 At the surface between the stationary ring and the 
ambient (zs = 0):

The expression of the temperature at the surface of the 
stationary ring can be obtained from Eq. (29) and bound-
ary conditions (30), (31). The temperature at the surface 
of the stationary ring is written as
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(26)T (η, h) = Td(η, 0).

(27)T (η, 0) = Ts(δs).

(28)µw = µw0e
(−b(T−T0)).

(29)
∂2Ts

∂z2s
= 0(0 ≤ zs ≤ δs).

(30)
−ks

∂Ts
∂zs

∣

∣

∣

zs=δs
= αw(Ts|zs=δs − Tm),

Tm = 1
h

h
∫

0

Tdz.

(31)ks
∂Ts

∂zs

∣

∣

∣

∣

zs=0

= αa(Ts|zs=0 − T0).

2.4 � Heat Conduction Equation in Thrust Disk
For the rotary thrust disk, the heat transfer effects in cir-
cumferential and radial directions are also ignored, the 
heat conduction equation is simplified as follows:

The boundary conditions of Eq. (33) are given as 
follows:

(1)	 At the surface between the thrust disk and the fluid 
(zd = 0):

(2)	 At the surface between the thrust disk and the 
ambient (zd = δd):

2.5 � Force Balance Equation of Bubble
The force balance equation of bubbles is expressed as

where
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The bubble velocity ub in the cavitating flow is calcu-
lated by the force balance Eq. (36). Substitute FB , FG , FD 
into Eq. (36), the bubble velocity ub can be expressed as 
[27]

2.6 � Population Balance Equation of Bubbles
Interface effect is an important phenomenon for cavitat-
ing flow, the momentum, mass and energy transfer occur 
through the interface between the gas-liquid. The inter-
facial area per unit volume liquid is positively correlated 
with the size distribution of the bubble, the bubble size 
distribution can be described by defining a probabil-
ity density function f (r, ς , t) , and the internal coordi-
nates ς are taken as bubble diameter in the model, and 
the f (r, ς , t)dς represents the number of bubbles with 
between (ς , ς + dς) at per volume liquid. Thus, integra-
tion of f  over bubble diameter results in the total number 
of bubbles per volume liquid.The breakage, coalescence 
are two main factors affecting bubble size distribution in 
the cavitating flow, and bubble size distribution is pre-
dicted by the model of the breakage and coalescence pro-
cesses of bubbles, this leads to the so-called population 
balance equation (PBE).

The PBE is a transport equation, the evolution of func-
tion f  can be described by the PBE in the spiral coordi-
nates (η, ζ ) , the PBE is written as follows:

where, the first term on the right-hand side of Eq. (44) 
represents breakup sink term of bubbles with diameter ς 
per unit time, the second term on the right-hand side of 
Eq. (44) represents breakup source term of bubbles with 
diameter ς per unit time, the third term on the right-
hand side of Eq. (44) represents coalescence sink term 
of bubbles with diameter ς per unit time,the fourth term 
on the right-hand side of Eq. (44) represents coalescence 
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source term of bubbles with diameter ς per unit time, the 
fifth term on the right-hand side of Eq. (44) represents 
bubbles with diameter ς source term.

The initial condition for Eq. (44) is given

The breakage frequency b(ς) is given as [28]:

The daughter bubble size redistribution function 
hb(ξ , ς) is given as [28]

The coalescence closure is given as [28]:

The value of parameter βc is taken as 2.48. The expres-
sion of source term Sc(ς) is

where

The redistribution function of bubble diameter ς is 
given as

The diameter distribution density function of the gas 
nucleus is given by experimental data [29]:
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where the value of parameter α is taken as − 10/3.

3 � Calculation of Dynamic Characteristics 
of the SGTB

As shown in Figure 4, the origin of Cartesian coordinate 
is located at the center of the stationary ring. The pos-
sible independent motions of the thrust disk are axial 
movement along z axis and angular movements around 
x and y axes. The perturbed displacements and veloci-
ties of the thrust disk with respect to the steady equi-
librium position are defined as (�z,�ϕx,�ϕy) and 
(�ż,�ϕ̇x,�ϕ̇y) . The assume initial position of the thrust 
disk is (h0,ϕx0,ϕy0) , the film thickness in quasi-equilib-
rium can be expressed as

The perturbations will have influence on the pressure 
distribution in the water film through Reynolds equation. 
The high order terms are ignored, the transient pressure 
of water film can be expressed as

Substituting Eqs. (56) and (57) into Eq. (2), the zeroth 
and first-order perturbation generalized Reynolds equa-
tions in the (η, ζ ) coordinates system are obtained for the 
SGTB respectively,

(56)h = h0 +�z + rcosθ�ϕy − rsinθ�ϕx.

(57)
p =p0 + pz�z + pϕx�ϕx + pϕy�ϕy

+ pż�ż + pϕ̇x�ϕ̇x + pϕ̇y�ϕ̇y.

where the operator Rey() is defined as

and qj
(

j = z,ϕx,ϕy, ż, ϕ̇x, ϕ̇y
)

 can be found in Appendix.
The stiffness and damping coefficients in the (η, ζ ) coor-

dinates system can be found by the following integrals

where

4 � Numerical Calculation Method of Theoretical 
Model

The generalized Reynolds Eq. (2), energy Eq. (21), and 
PBE Eq. (44) are the main three governing equations 
for the bearing. The pressure field, temperature field, 
and bubble diameter distribution are obtained by solv-
ing these three equations respectively, and pressure field; 
temperature field and bubble diameter distribution are 
coupled to each other, and an iterative algorithm needs to 
be employed to solve these distributions. Eq. (2) and Eq. 
(21) are discretized using finite difference, the pressure 
field is obtained by solving discretization equations of Eq. 
(2) with the SOR iterative method, the temperature field 
is obtained by solving discretization equations of Eq. (21) 
with the stepping method.

(58)Rey()


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
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
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


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
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
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
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
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


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



















qz
qϕx
qϕy
qż
qϕ̇x
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























,

Rey() = ∂
∂η

(

h3
0

µwζ

(

ζ 2f
′ 2
(ζ )

kr
+

1

kθ

)

∂
∂η

)

+
∂
∂ζ

(

ζh3
0

µwkr
∂
∂ζ

)

− ∂
∂ζ

(

h3
0

µwkr
ζ f

′
(ζ ) ∂

∂η

)

− ∂
∂η

(

h3
0

µwkr
ζ f

′
(ζ ) ∂

∂ζ

)

,

(59)


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
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=
2π
�
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�
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



−1

G1(η, ζ )

−G2(η, ζ )



{pzpϕxpϕy} ζdζdη,

(60)





Czz Czϕx Czϕy
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Cϕyz Cϕyϕx Cϕyϕy





=
2π
�

0

rout
�

rin





−1

G1(η, ζ )

−G2(η, ζ )



{pżpϕ̇xpϕ̇y} ζdζdη,

(61)
G1(η, ζ ) = ζ sin(η + f (ζ )),
G2(η, ζ ) = ζcos(η + f (ζ )).

Figure 4  Motion of a SGTB
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4.1 � Calculation of Parameter h∗c
The shear stress parameter h∗c of the Couette flow is 
included in turbulent velocity distribution Eq. (2), The 
governing equation for parameter h∗c is written as [24]

Eq. (62) is a nonlinear equation with respect to h∗c , the 
parameter h∗c can be solved using the Newton iteration 
method. The Newton iteration formula is expressed as h∗c

where

4.2 � Numerical Solution of Bubble PBE
A discrete interval method [30] is employed to solve the 
bubble population balance Eq. (44). The procedure of the 
discrete interval method is as follows.

(1)	 Assume that the entire bubble diameter range is 
divided into M smaller intervals. The bubble diam-
eter is approximated uniform distribution at the 
kth representative diameter range (ςk , ςk+1) , then 
the f (η, ς) can be expressed by the bubble num-
ber density nk(η) at the kth representative diamete 
range (ςk , ςk+1) . Thus,

(62)(h∗c )
2

1
∫

0

dz∗

fc(z∗, h∗c )
− R∗

c h
∗ = 0.

(63)(h∗c )
(k+1) = (h∗c )

(k) −
F
(

h∗c
(k)

)

F
′
(

h∗c
(k)

) ,

(64)F
(

h∗c
)

=
(

h∗c
)2

1
∫

0

dz∗

fc
(

z∗, h∗c
) − R∗

c h
∗
.

(65)f (η, ς , t) ≈ nk(η, t)δ(ς − xk),

	 where

(2)	 The integrating the continuous Eq. (44) over a 
smaller range (ςk , ςk+1) . Thus,

(3)	 Since coalescence or breakage of bubbles of these 
diameters results in the formation of new bubbles 
whose diameters do not match with any of the node 
diameters, the new bubble diameter will be assigned 
to the adjoining node by introducing weight fac-
tor γ , the weight factor γ can be determined by the 
total mass conservation of the bubble and the num-
ber of bubbles conservation. The expression is writ-
ten as

Substituting Eq. (65) into Eq. (67), and the integral term 
at the right end of Eq. (67) is reconstructed using the 
mean value theorem on breakage frequency and coales-
cence frequency, so Eq. (67) can be closed, a closed set of 
equations with regard to nk(η, t) can be written as

(66)nk(η, t) =
ςk+1
∫

ςk

f (η, ς , t)dς .

(67)

∂
∂t

ςk+1
∫

ςk

f (η, ς , t)dς + ub
∂

ζ∂η

(

ςk+1
∫

ςk

f (η, ς , t)dς

)

= −
ςk+1
∫

ςk

b(η, ς)f (η, ς , t)dς

+
ςk+1
∫

ςk

dς
ςmax
∫

ς

hb(ξ , ς)b(η, ξ)f (η, ξ , t)dξ

−
ςk+1
∫

ςk

f (η, ς , t)dς
ςmax
∫

0

c(ς , ξ)f (η, ξ , t)dξ

+ 1
2

ςk+1
∫

ςk

ς2dς
ς
∫

0

c
(

(

ς3−ξ3
)1/3

,ξ
)

(ς3−ξ3)
2/3 f (η,

(

ς3 − ξ3
)1/3

, t)f (η, ξ , t)dξ

+Cρ

√
(pv − p)

ςk+1
∫

ςk

χ(ς)dς .

(68)γkx
3
k + γk+1x

3
k+1 = ς3,

γk + γk+1 = 1.

(69)

∂nk (η,t)
∂t + ub

∂
ζ∂η

(nk(η, t)) = −b(η, xk)nk(η, t)

+
M
∑

i=k

αk ,ib(η, xi)ni(η, t)− nk(η)
M
∑

i=1

c(η, xk , xi)ni(η, t)

+
j≥i
∑

j,i xk−1≤
(

x3j +x3i

)1/3
≤xk+1

(

1− 1
2δj,i

)

γ k
j,ic

(

η, xj , xi
)

nj(η, t)ni(η, t)

+Cρ

√
(pv − p)

ςk+1
∫

ςk

χ(ς)dς ,
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where

Coefficient αk ,i is given as

Eq. (69) is a set of first-order differential equations. 
Suppose that at a fixed time t, a set of nonlinear equa-
tions with regard to ntk ,l can be obtained by discretizing 
the second term on the left side of Eq. (69). The discrete 
equation at node l is written as follows:

where the operator Q̃(nk ,l) are defined as

Eq. (74) can be solved using the Newton-SOR iterative 
method.In addition, since hb(xk , ς) is a given function, 
the coefficient αk ,i can be calculated using the Gauss-
ian integration method, and the value of the coefficient 
αk ,i is stored in a matrix,  it will be called directly in the 

(70)

γ k
j,i =






















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�
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3+x3i

�

�
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�

xj
3 + x3i

�

≤ x3k+1,

�

xj
3+x3i

�

−x3k
�

x3k+1−x3k

� , x3k−1 ≤
�

xj
3 + x3i

�

≤ x3k ,

0, else,

k = 1, 2, ...,M − 2, ς3 = ς3
j + ς3

k ,

(71)

γM−1
j,i =















�

xj
3+x3i

�

x3M−1

, x3k−1 ≤ (xj
3 + x3i ) ≤ ς3

M ,
�

xj
3+x3i

�

−x3M−2
�

x3M−1−x3M−2

� , x3M−2 ≤ (xj
3 + x3i ) ≤ x3M−1,

0, else,

(72)δj,i =
{

1, j = i,
0, j �= i.

(73)

αk ,i =
xk
∫

xk−1

(

ς3 − x3k−1

)

(

x3k − x3k−1

) hb(xi, ς)dς

+
xk+1
∫

xk

(

x3k+1
− ς3

)

(

x3k+1
− x3k

) hb(xi, ς)dς .

(74)Q̃(ntk ,l) = 0,

(75)

Q̃(ntk ,l) =
ub
ζm

ntk ,l−ntk ,l−1

�η
+ b(ηl , xk)n

t
k ,l

−
∑M

i=k αk ,ib(ηl , xi)n
t
i,l + ntk ,l

M
∑

i=1

c(ηl , xk , xi)n
t
i,l

−
j≥i
∑

j, i
xk−1 ≤ xj + xi ≤ xk+1

(

1− 1
2δj,i

)

γ k
j,ic

(

ηl , xj , xi
)

ntj,ln
t
i,l

−Cρ
√
pv − p

ςk+1
∫

ςk

χ(ς)dς .

iterative calculation process, and the calculation time can 
be greatly saved by using the iterative process.

The term of the time derivativein the transient Eq. 
(69) is specially processed with finite  difference,and a 
weighted averaging method is adopted for the time-dif-
ferencing. It can be written as [31]

where, nt+1
k ,l = nk ,l(t +�t) , weight factor 0 ≤ ωt ≤ 1.

Aset of nonlinear equations with regard to nt+1
k ,l  can be 

rewritten as

The nonlinear Eq. (77) is also solved using the Newton-
SOR iterative method. And downhill condition is adopted 
in numerical iterative procedure to improve convergence. 
The downhill condition is expressed as

where m is iteration number. The overall algorithm flow 
diagram is given by Figure 5.

5 � Results and Discussion
5.1 � Experimental Verification of Theoretical Models
Table 1 list the related parameters of the water-lubricated 
SGTB for the numerical calculation.In order to verify 
this theoretical model, the simulating results of bubble 
distribution and axial stiffness coefficient are compared 
with experimental ones from our previous test study in 
Refs. [22, 23]. The experimental rotational speed are 
specified as 15000 r/min and 18000 r/min respectively, 
and the corresponding Reynolds numbers (1256 and 
1507) are greater than the critical Reynolds number 
Re(Re = 1000) [32] of the bearing. And the cavitation 
number (σ = 0.14 to 0.2) of the water-lubricated bearing 
is smaller than the cavitation inception number (σi ≈ 0.7) 
[33] of water under the above specified experimental 
rotational speed and standard atmospheric pressure, and 
it shows that cavitation occurs in experimental water-
lubricated bearings.

5.1.1 � Bubble Distribution
Figure  6 shows the photographs of bubble distributions 
taken during the experiments under the rotational speeds 
of 15000 r/min and 18000 r/min.

(76)

nt+1
k ,l − ntk ,l

�t
+

(

(1− ωt)Q̃
(

ntk ,l
)

+ ωQ̃
(

nt+1
k ,l

))

= 0,

(77)
Fq

(
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k ,l

)

= nt+1
k ,l +�tωt Q̃

(

nt+1
k ,l

)

+�t(1− ωt)Q̃
(

ntk ,l

)

− ntk ,l = 0.

(q = 1, ...,Nq)

(78)�Fq
(

n
t+1(m+1)
k ,l

)

� ≤ �Fq
(

n
t+1(m)

k ,l

)

�,
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Figure 5  Flow diagram of overall algorithm
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The experimental data of bubble diameter distribution 
can be obtained through the photo 6 using the experi-
mental processing method provided in Ref. [22]. In order 
to improve the reliability of the experimental data of the 
small bubble diameter distribution, the multiple bubble 
photos are taken under a specified experimental rotation 
speed condition.The experimental data of bubble diam-
eter can be obtained from multiple bubble photos using 
the image processing method of Ref. [22]. The average 
experimental value of the bubble diameter is calculated 
by statistically averaging the experimental data of the 
bubble diameter. A comparison of the theoretical results 
of the bubble size distribution with the experimental sta-
tistics results is shown in Figure 7. It can be seen that, for 
a specified rotational speed of 15000 r/min, the results 
predicted by the model are in good agreement with the 
experimental statistics results over the entire bubble size 
range; while, for a specified rotational speed of 18000 
r/min, the results predicted by the model are in good 
agreement with the experimental statistics results in the 
large size bubble range, but the deviation between the 

Table 1  Parameters of the water-lubricated SGTB

Item Value

Inner radius rin(mm) 7.5

Outer radius rout(mm) 20

Basecircle radius rb(mm) 12

Water viscosity µ(Pa · s) 0.001 (20°)

Groove number N 12

Groove depth hg(µm) 40

Spiral angles β(◦) 20

Pressure of supply water pin(MPa) 0.1

Specific heat at constant volume of water cv (J/kg ·◦ C) 4200

Density of water ρw (kg/m3) 1000

Surface tension of bubble σ(N/m) 0.3

Groove-to-land ratio �b 0.5

Groove-to-dam ratio �l 0.6

(a) 15000r/min

(b) 15000r/min
Figure 6  Photographs of bubble distributions under both rotational 
speeds

Figure 7  Comparison of the theoretical probability density 
distributions with the experimental ones ( β=20◦ , hs = 15µm , 
hg = 40µm)
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theoretical calculation and the experimental statistics 
results is large in the small size bubble range, and the 
experimental statistical values are all larger than the the-
oretical ones in the small size bubble range. Due to the 
limitation of the resolution of the experimental photos, it 
is not easy to identify the edge of the small bubble outline 
in the experimental photos. This deviation can be attrib-
uted to the statistical error of the experimental data of 
the small bubble diameter due to the above reasons.

5.1.2 � Axial Stiffness Coefficient
A comparison of the predicting axial stiffness coefficients 
with the experimental ones is shown in Figure  8. It can 
be seen that the predicting stiffness coefficients with axial 
load are generally in agreement with the experimental 
ones, but the experimental values are larger than the pre-
dicting ones in the entire range of applied load. This may 
be explained by the fact that the actual water flowrate of 
the bearing is less than the theoretical one, because the 
water is tended to be prevented from entering the clear-
ance of inward-pumping SGTB due to the centrifugal 
effect.

5.2 � Influence of Cavitation Effect on Dynamic 
Characteristics

5.2.1 � Stiffness Coefficient
Figure  9 shows the influence of cavitation effect on the 
stiffness coefficients of the SGTB with different spiral 
angles. The results show the K ∗

zz ,K
∗
ϕxϕx

,K ∗
ϕyϕy

 predicted by 
the cavitation flow model are larger than that of the non-
cavitation flow model when the spiral angle is less than 
50°. This may be explained by the fact that the bubbles 
cause the interfacial hydrodynamic effect for the the cavi-
tating flow. In addition, the relative deviation between 
the two models decreases with the increasing of spiral 

angle, so the interface hydrodynamic effect of the bubbles 
decreases with the spiral angle.It means that the influ-
ence of the cavitation effect on the water film stiffness is 
weakened with the increasing of spiral angle. The 

Figure 8  Comparison of the theoretical stiffness coefficients with 
the experimental ones at 15000 r/min

Figure 9  Influence of cavitation effect on the stiffness coefficient for 
different spiral angles ( ω = 18000 r/min , hs = 15µm , hg = 40µm)
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K ∗
ϕxϕy

,K ∗
ϕyϕx

 are of opposite sign, and K ∗
ϕxϕy

 and K ∗
ϕyϕx

 of 
cavitating flow model with the angle generally coincide 
with those of non-cavitating flow model. It shows that the 
influence of cavitation effect on K ∗

ϕxϕy
,K ∗

ϕyϕx
 are negligi-

ble. In addition, the K ∗
ϕxz

,K ∗
zϕx

,K ∗
ϕyz

,K ∗
zϕy

 with different 
spiral angle sare approximately equal to zero for the cavi-
tating flow or the non-cavitating flow.

Figures 10 and 11 show the influence of cavitation effect 
on the water film stiffness coefficients for different groove 
depths and rotating speeds. The result also show the 
K ∗
zz , K

∗
ϕxϕx

,K ∗
ϕyϕy

 predicted by the cavitation flow model 
are larger than that of the non-cavitation flow model at a 
specific groove depth and rotating speed. However, the 
deviation of K ∗

zz ,K
∗
ϕxϕx

,K ∗
ϕyϕy

 between the two models 
increase first and then decrease with the groove depth. 
Therefore, the interface hydrodynamic effect changes with 
the groove depth. A possible explanation is that the inter-
face hydrodynamic effect is weakened and the cavitation 
effect is increased when the groove depth is increased in a 
certain range (20‒35 μm), and the interface hydrodynamic 
effect is increased and the cavitation effect is weakened 
when the groove depth exceeds a given value. And the 
deviation of K ∗

zz ,K
∗
ϕxϕx

,K ∗
ϕyϕy

 between the two models 
gradually increase as the rotating speed increases, This 
also can be explained by the fact that the interface hydro-
dynamic effect enhances and the cavitation effect is 
increased as the rotational speed increases.

In addition, the variation of the K ∗
ϕxϕy

,K ∗
ϕyϕx

 with the 
groove depth is identical with that with the spiral angle. 
Similarly, it also shows that the influence of cavitation 
effect on K ∗

ϕxϕy
,K ∗

ϕyϕx
 are negligible for different groove 

depths and rotating speeds. The K ∗
ϕxz

, K ∗
zϕx

, K ∗
ϕyz

, K ∗
zϕy

 pre-
dicted by the two models are approximately equal to zero 
for different groove depths and rotating speeds.

5.2.2 � Damping Coefficient
Figures 12 and 13 show the influence of cavitation effect 
on the water film damping coefficients for different spiral 
angles and groove depths. It can be seen that the cavita-
tion effect on damping coefficients is very weak. Because 
the damping coefficient is determined by the perturbed 
pressure, and the perturbed pressure with cavitating flow 
is only affected by the fraction Cg of bubble volume, and 
the variation of bubble volume fraction is very small for 
the cavitating flow. In addition, the C∗

zz ,C
∗
ϕxϕx

,C∗
ϕyϕy

 
decreases with the increasing of the spiral angle and 
groove depth, and the C∗

zϕx
,C∗

ϕxz
,C∗

zϕy
,C∗

ϕyz
,C∗

ϕxϕy
,C∗

ϕyϕx
 

predicted by the two models are also approximately equal 
to zero for different spiral angles and groove depth.

5.3 � Influence of Turbulence Effect on Dynamic 
Characteristics

5.3.1 � Stiffness Coefficient
Figure 14 shows the influence of turbulence effect on the 
water film stiffness coefficients for different spiral angles. 
It can be seen that the K ∗

zz,K ∗
ϕxϕx

, K ∗
ϕyϕy

, K ∗
ϕxϕy

, K ∗
ϕyϕx

 calcu-

Figure 10  Influence of cavitation effect on stiffness coefficients for 
different groove depth ( ω = 18000 r/min , β = 20

◦ , hs = 15µm)
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lated by the turbulent cavitating flow model are larger 
than those of the laminar cavitating flow model at a spec-
ified spiral angle. This may be explained by the fact that 
additional Reynolds shear stress generates due to 

pulsating velocity in the turbulent flow, and equivalent 
viscosity of the turbulent water film increases, and the 
force of the turbulent water film needed to produce unit 
displacement increases, so the stiffness of the water film 
increases. In addition, it can be seen that the deviation of 
stiffness coefficient between turbulence model and lami-
nar model gradually decreases with the increase of the 
spiral angle. This is due to the fact that the outward 
pumping hydrodynamic effect increases first and then 
decreases with the increase of the spiral angle. Therefore, 
when the spiral angle exceeds a certain value, the out-
ward pumping hydrodynamic effect becomes weak and 
the additional Reynolds shear stress of the turbulent flow 
reduces. This indicates that the influence of turbulence 

Figure 11  Influence of cavitationeffect on stiffness coefficients for 
different rotating speed ( β = 20

◦ , hs = 15µm , hg = 40µm)

Figure 12  Influence of cavitation effect on the damping coefficients 
for different spiral angles ( ω = 18000 r/min , hs = 15µm , hg = 40µm

)
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effect on the water film stiffness coefficients is weakened 
when the spiral angle exceeds a certain value. And the 
K ∗
zϕx

,K ∗
ϕxz

,K ∗
zϕy

,K ∗
ϕyz

 calculated by the two models are 
approximately equal to zero for different spiral angles.

Figures  15 and 16 show the influence of turbulence 
effect on the water film stiffness coefficients for different 
groove depths and rotating speeds. It can also be seen 
that the K ∗

zz ,K
∗
ϕxϕx

,K ∗
ϕyϕy

,K ∗
ϕxϕy

,K ∗
ϕyϕx

 calculated by the 
turbulent flow model are also larger than that of the lami-
nar flow model for different groove depths and rotating 
speeds. And the deviation of the calculation results of the 

Figure 13  Influence of cavitation effect on damping coefficients for 
different groove depth (ω = 18000 r/min , β=20◦ , hs = 15µm)

Figure 14  Influence of turbulence effect on the water film stiffness 
coefficient for different spiral angles (ω = 18000 r/min , hs = 15µm , 
hg = 40µm)
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Figure 15  Influence of turbulence effect on the stiffness coefficient 
for different groove depths (ω = 18000 r/min , β=20◦ , hs = 15µm) 

Figure 16  Influence of turbulence effect on the stiffness coefficient 
for different rotating speed (β = 20

◦ , hs = 15µm , hg = 40µm) 
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two models decreases with the increase of groove depth, 
and the deviation of the calculation results of the two 
models increase with the increase of rotating speed, and 
the K ∗

zϕx
,K ∗

ϕxz
,K ∗

zϕy
,K ∗

ϕyz
 calculated by the two models are 

also approximately equal to zero for different groove 
depths and rotating speeds.

5.3.2 � Damping Coefficient
Figures 17 and 18 show the influence of turbulence effect 
on the water film damping coefficients for different spiral 
angles and groove depths.It can also be seen that the 

C∗
zz ,C

∗
ϕxϕx

,C∗
ϕyϕy

 calculated by the turbulent flow model 
are also larger than that of the laminar flow model for dif-
ferent spiral angles and groove depths. And the deviation 
between C∗

zz ,C
∗
ϕxϕx

,C∗
ϕyϕy

 calculated by the two models is 
gradually decreased with the increase of spiral angle. This 
indicates that the turbulence effect is gradually weakened 
when the spiral angle increases. And the deviation 

Figure 17  Influence of turbulence effect on the damping 
coefficients for different spiral angles (ω = 18000 r/min , hs = 15µm , 
hg = 40µm)

Figure 18  Influence of turbulence effect on the damping 
coefficients for different groove depths (ω = 18000 r/min , β=20◦ , 
hs = 15µm) 
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between C∗
zz ,C

∗
ϕxϕx

,C∗
ϕyϕy

 calculated by the two modes 
hardly changes with the increase of groove depth, and 
this indicates that the turbulence effect is not sensitive to 
changes in groove depth. In addition, the 
C∗
zϕx

,C∗
ϕxz

,C∗
zϕy

,C∗
ϕyz

,C∗
ϕxϕy

,C∗
ϕyϕx

 calculated by the two 
models are also approximately equal to zero for different 
spiral angles and groove depth.

Figure  19 shows the influence of turbulence effect on 
the water film damping coefficients for different rotating 
speed. It can be seen that the C∗

zz ,C
∗
ϕxϕx

,C∗
ϕyϕy

 calculated 

by the two models increases gently with the increase of 
rotating speed, it means that C∗

zz ,C
∗
ϕxϕx

,C∗
ϕyϕy

 is insensi-
tive when rotating speed is increased. And the deviation 
between C∗

zz ,C
∗
ϕxϕx

,C∗
ϕyϕy

 calculated by the two modes 
increase alse with the increase of rotating speed. The 
C∗
zϕx

,C∗
ϕxz

,C∗
zϕy

,C∗
ϕyz

,C∗
ϕxϕy

,C∗
ϕyϕx

 calculated by the two 
models are also approximately equal to zero for different 
rotating speeds.

5.3.3 � Bubble Density
Figure 20 shows the influence of turbulence effect on the 
bubble number for different radius. It can be seen that 
the bubbles mainly locate at the groove-ridge edges and 
the outer rim of bearing. This may be explained by the 
fact that the bubbles are formed due to the pressure drop 

(a)

(b)

(c)

Figure 19  Influence of turbulence effect on the damping 
coefficients for different rotating speed (β = 20

◦ , hs = 15µm , 
hg = 40µm) 

(a)

(b)

Figure 20  Influence of turbulence effect on bubbles number 
for different radius: (a) ζ=0.2 , (b) ζ=0.5  ( ω = 18000 r/min , β=20◦ , 
hs = 15µm , hg = 40µm)
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near the groove-ridge edges. The result also show that 
the bubbles are approximately evenly distributed in dam 
region of bearing. In addition, the number of bubbles 
with laminar flow is more than the number of bubbles 
with turbulent flow at a specified circumferential posi-
tion. Because the Reynolds shear stress due to the turbu-
lent flow causes the equivalent viscosity of the turbulent 
liquid to increase, consequently, the turbulent flow effect 
on dynamic pressure is enhanced, which contributes to 
the generation of the bubbles.

6 � Conclusions
In this paper, a theoretical model of water lubrication based 
on two-phase flow considering both turbulence and cavita-
tion bubble effect is established. In the turbulent state, the 
evolution of the size distribution of the bubbles is described 
by the bubble transport equation considering the mecha-
nism of breakage and coalescence. The interval discretiza-
tion method is used to solve the bubble transport equation.
The size and spatial equilibrium distribution of the bubbles 
under turbulent flow are predicted by solving the general-
ized Reynolds equation and the bubble transport equation 

simultaneously. The dynamic characteristics of water-lubri-
cated SGTB under turbulent cavitating flow is analyzed. 
Based on discussion, the following conclusion can be drawn:

(1)	 The bubbles are mainly concentrated near the spi-
ral-groove edges of the SGTB.

(2)	 The small-sized bubbles is much more than the 
large-sized bubbles for the water-lubricated SGTB 
under the cavitation flow condition.

(3)	 The cavitation has a significant effect on the direct 
stiffness coefficients, and the cavitation hardly 
affect the cross-coupled stiffness coefficients and 
the damping coefficients of SGTB.

(4)	 Compared to the cavitation, the turbulence has a 
much greater effect on the dynamic characteristics 
of the high-speed water-lubricated SGTB.

Appendix
Derivation of Perturbation Generalized Reynolds 
Equations
The generalized Reynolds equation in (r, θ) coordinate 
system,

Ignoring the infinitesimal value of higher order, the 
expression of h3 is as follows:

Bring Eq. (A2) and Eq. (57) into the right side of Eq. 
(A1),

Convert the coordinate system of Eq. (A3) to the (η, ζ ) 
coordinate system, and compare similar terms,

(A1)

∂
∂r

(

h3r
µ̄wkr

(

∂Cwp
∂r

))

+ ∂
∂θ

(

h3

µ̄wkθ r

(

∂Cwp
∂θ

))

= ∂
∂θ

(

hUCw
2 + h3

µ̄wkθ
M(θ)

)

+ ∂
∂r

(

h3ρwu
2Cw

µ̄wkr

)

+ Cwr
∂h
∂t .

(A2)h3 ≈ h30 + 3h20
(

�z + rcosθ�ϕy − rsinθ�ϕx
)

.

(A3)

∂
∂θ

(

hUCw
2 + h3

µwkθ
M(θ)

)

+ ∂
∂r

(

h3ρwu
2Cw

µwkr

)

+ Cwr
∂h
∂t

= ∂
∂θ
(CwUh0)+ ∂

∂θ

(

h30
µwkθ

)

+ ∂
∂r

(

h30ρwu
2Cw

µwkr
h30

)

+
[

∂
∂θ
(CwU)+ ∂

∂θ

(

M(θ)
µwkθ

3h20

)

+ ∂
∂r

(

h3ρwu
2Cw

µwkr
3h20

)]

�z

+
[

∂
∂θ
(CwUrcosθ)+ ∂

∂θ

(

M(θ)
µwkθ

3h20rcosθ
)

+ ∂
∂r

(

h3ρwu
2Cw

µwkr
3h20rcosθ

)]

�ϕy

−
[

∂
∂θ
(CwUrsinθ)+ ∂

∂θ

(

M(θ)
µwkθ

3h20rsinθ
)

+ ∂
∂r

(

h3ρwu
2Cw

µwkr
3h20rsinθ

)]

�ϕx

+Cwr�ż + Cwr
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where

Abbreviations
b: Temperature viscosity coefficient (1/K); 
Cij(i = z,ϕx,ϕy; j = z,ϕx,ϕy): Nine damping coef-
ficients ( N · s/m,N · s/rad,N · s, N ·ms/rad); 
C∗
ij(i = z,ϕx,ϕy; j = z,ϕx,ϕy): Nine dimensionless damping 

coefficients (dimensionless); Cw: Water volume fraction (dimensionless); 
CDs: Drag coefficient(dimensionless); Cg : Bubble volume fraction (dimen-
sionless); cv: Specific heat capacity of water ( J/kg · K); cd: Specific heat 
capacity of thrust disk ( J/kg · K); c1, c2: Experimental constant (dimen-
sionless); fc: Function of z∗ containing the parameter h∗c (dimensionless); 
feq(η, ς): Equilibrium distribution function of bubble diameter at (ζ , η) 

coordinates system ( 1/m6); f (η, ς): Distribution function of bubble 
diameter at (ζ , η) coordinates system ( 1/m6); g : Gravity acceleration 
( m/s2); gc: Function of z∗ containing the parameter h∗c (dimensionless); 
h: Film thickness ( m); hg : Groove depth ( m); h0: Static film thickness ( m
); hs: Film thickness of the ridge ( m); hi: Initial film thickness of bubble ( m
); hf : Critical rupture film thickness of bubble ( m); h∗c : Shear stress param-
eter of the Couette flow (dimensionless); ks: Heat transfer coefficient of 
the stationary ring ( W/m · K); kd: Heat transfer coefficient of the thrust 
disk ( W/m · K); kw: Heat transfer coefficient of water ( W/m · K); kr
: Turbulence correction coefficient of radial direction (dimensionless); kθ
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(A7)qż = Cwζ ,

(A8)qϕ̇x = −CwζG1(η, ζ ),

(A9)qϕ̇y = CwζG2(η, ζ ),

(A10)
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.

: Turbulence correction coefficient of circumferential direction (dimension-
less); Kij(i = z,ϕx,ϕy; j = z,ϕx,ϕy): Nine stiffness coefficients 
( N/m,N/rad,N,N ·m/rad); K ∗

ij (i = z,ϕx,ϕy; j = z,ϕx,ϕy)
: Nine dimensionless stiffness coefficients (dimensionless); l : Circumfer-
ential discrete node (dimensionless); M(η): Interface item at (ζ , η) 
coordinates system ( N/m3); N : Number of spiral groove (dimension-
less); Ni: Number density of nuclei ( 1/m3); nkeq(η): Number of bub-
bles in the kth diameter range (ςk , ςk+1) at equilibrium (dimension-
less); nk(η): Number of bubbles in the kth diameter range (ςk , ςk+1) 
(dimensionless); p: Water film pressure ( N/m2); p0: Static pressure 
( N/m2); pz , pϕx , pϕy , pż , pϕ̇x , pϕ̇y: Perturbed pressure components 
( N/m3,N/m2,N · s/m3,N · s/m2); pv: Vaporization pressure of 
water ( N/m2); pin: Pressure at inter radius ( N/m2); Q

η
i ,Q

ζ
j : Volume flow 

( m3/s); r: Radial coordinate in polar coordinates ( m); rb: Basecircle radius 
of spiral line ( m); rin: Thrust disk inner radius ( m); rout: Thrust disk outer 
radius ( m); < Rb >: Statistical average radius of bubbles ( m); Re: Reynolds 
number (dimensionless); Sc: Source terms ( 1/m6 s); t: Time ( s); T : Water film 
temperature ( K); Tm: Average temperature of water film ( K); Ts: Tempera-
ture of stationary ring ( K); Td: Temperature of thrust plate ( K); T0: Ambient 
temperature ( K); U : Max circumferential velocity of thrust disk ( m/s); u
: Circumferential average velocity of water ( m/s); u: Circumferential velocity 
of water at (ζ , η) coordinates system ( m/s); ub: Bubble velocity ( m/s
); xk: Diameter of bubbles ( m); z: Coordinate of the film thickness ( m); z∗
: Coordinate of the dimensionless film thickness ( z∗ = z

h); zs: Coordinate of 
thickness of the stationary ring ( m); zd: Coordinate of thickness of the thrust 
disk ( m).

Greek Letters
α: Experimental constant (dimensionless); αa: Air convection heat transfer 
coefficient ( W/m2 · K); αw: Forced convective heat transfer coefficient 
of water ( W/m2 · K); β: Helix angle of bearing (°); βc: Parameter in 
coalescence kernel (dimensionless); δs: Thickness of the stationary ring ( m
); δd: Thickness of thrust plate ( m); ζ: Spiral coordinates ( m); ζb: Basecircle 
radius of spiral line at (ζ , η) coordinates system ( m); ζin: Radius of the 
oil inlet at (ζ , η) coordinates system ( m); ζout: Radius of the oil outlet at 
(ζ , η) coordinates system ( m); ε: Turbulent kinetic energy dissipation rate 
per unit mass ( m2/s3); η: Spiral coordinates (°); ηmax: Maximum value of 
spiral coordinates (°); κ1, κ2: Adjustable parameters (dimensionless); �b
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: Groove-to-land ratio (dimensionless); �l: Groove-to-dam ratio (dimension-
less); µ∗

w: Dimensional dynamic viscosity of water (dimensionless); µw: 
Average dynamic viscosity of water ( N · s/m2); µw: Dynamic viscosity of 
water ( N · s/m2); µw0: Dynamic viscosity of water at T0 ( N · s/m2); ρg
: Density of bubble ( kg/m3); ρw: Density of water ( kg/m3); ρd: Density 
of thrust disk ( kg/m3); σ: Surface tension of bubble ( N/m); ξ: Diameter of 
bubbles ( m); ςc: Diameter of gas nucleus ( m); ςcmax: Maximum diameter of 
gas nucleus ( m); ω: Angular velocity of bearing rotation ( rad/s); ς: Diameter 
of bubbles ( m); ςmax: Maximum diameter of bubbles ( m); �t: Time step ( s); 
�z,�ϕx,�ϕy: Perturbations quantity ( m).
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