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Automatic Bone Surface Restoration 
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Surgery
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Abstract 

An automatic markerless knee tracking and registration algorithm has been proposed in the literature to avoid the 
marker insertion required by conventional computer-assisted knee surgery, resulting in a shorter and less invasive 
surgical workflow. However, such an algorithm considers intact femur geometry only. The bone surface modifica-
tion is inevitable due to intra-operative intervention. The mismatched correspondences will degrade the reliability of 
registered target pose. To solve this problem, this work proposed a supervised deep neural network to automatically 
restore the surface of processed bone. The network was trained on a synthetic dataset that consists of real depth 
captures of a model leg and simulated realistic femur cutting. According to the evaluation on both synthetic data and 
real-time captures, the registration quality can be effectively improved by surface reconstruction. The improvement 
in tracking accuracy is only evident over test data, indicating the need for future enhancement of the dataset and 
network.
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1  Introduction
Osteochondral defect (OCD) represents a common joint 
disease that causes great pain and discomfort in patients. 
62% of the patients requiring arthroscopic intervention 
for knee pain report the OCD problem [1]. For severe 
defects that cannot be treated conservatively, synthetic 
implant replacement is an effective option. The potential 
of computer assistance in improving surgical outcome 
has been well recognised. Following the pre-operative 
plan displayed by the navigation system, the implant can 
be placed in high congruency with the surrounding anat-
omy [2]. It is vital to dynamically localise the target knee 
in a spatial coordinate, so that the computer-generated 
model initially registered onto the patient can be updated 
accordingly for surgeons’ reference. Conventionally, opti-
cal markers are rigidly inserted into the target bones to 

infer the target movement from the marker tracking. 
Albeit the high tracking precision, the marker prepara-
tion and insertion lead to extra human-induced errors 
[3], longer surgical workflow [4, 5] and most importantly, 
higher invasiveness that may cause infection, nerve 
injury, and bone fracture to patients [6, 7].

Research effort has been recently allocated to auto-
matic femur tracking for markerless knee surgery 
navigation [8–10]. These methods use a pre-trained con-
volutional neural network to segment the femur points 
from the RGBD captures by a commercial depth camera, 
and then register the segmented points to a 3D reference 
model created from pre-operative scanning to obtain 
the real-time spatial pose. However, these works only 
consider the intact target geometry: given the inevitable 
surgical interventions such as the bone drilling for lesion 
removal, the segmented surface points deviate from the 
pre-scanned intact surface. The increased spatial mis-
match will degrade the registration quality (i.e., fitness 
and inlier matching error) and accuracy (i.e., registered 
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spatial pose compared to the ground-truth pose), making 
the overall markerless tracking less reliable.

To compensate the spatial inconsistency caused by 
femur processing, we proposed a supervised surface 
restoration network based on the PointNet backbone. 
The network aims to improve the geometric consistency 
between the segmented surface and the intact model, 
while retaining the spatial pose of the input point cloud. 
Since modifying a large number of bone surfaces and 
capturing the pairwise images with the same target-in-
camera pose is highly costly and tedious, we developed 
a synthetic dataset with simulated realistic surface defor-
mation applied over the collected camera captures. The 
performance of our trained network was evaluated on 
both the test dataset and a model knee physically sam-
pled by a depth camera in real-time.

2 � Related Works
2.1 � Femoral Surface Processing in OCD Treatment
With the degradation of articular cartilage caused by the 
overload or cyclical episodes on the knee joint, the sub-
chondral bone may collapse, causing a lesion to form in 
the smooth joint surface [11]. OCD mainly affects the 
femoral condyle and/or patellofemoral articulation of 
the knee [12]. During OCD treatment, the affected area 
needs to be removed and processed in a regular shape 
(e.g., ellipse) to be compatible with an optimal implant 
chosen from the library built through the statistical mod-
elling of real OCD dataset [2].

2.2 � Learning‑Based Surface Reconstruction
With the fast development of deep learning and the 
availability of large 3D datasets, many generative mod-
els have been proposed to reconstruct geometries with 
the implicitly learned structural features [13]. Most of 
the proposed networks are based on a vanilla architec-
ture [14]: an encoder extract the latent features of the 
input data first. Then, the encoded features are depicted 
by a decoder to generate desired outputs [15–17]. The 
encoder usually consists of fully convolutional layers, 
followed by optional pooling, activation and/or fully 
connected layers. The decoder either contains deconvo-
lutional layers or fully connected layers for upsampling.

The 3D geometry can be recorded in volumetric vox-
els, surface meshes, point cloud or multi-views. Among 
them, the point cloud-based learning offers high flexibil-
ity and efficiency in computation and memory. PointNet, 
based on the same encoder-decoder design, is regarded 
as the most popular backbone for point cloud-based 
learning [18]. It adopts three unique designs: a sym-
metry function to deal with unstructured input, a local 
and global information aggregation layer and a joint 
alignment network. Inspired by PointNet, many new 

extensions and variants exist. An example is PointNetLK, 
a network trained for the point cloud registration [19]. By 
integrating a modified Lucas&Kanade (LK) algorithm in 
the PointNet framework, the spatial transformation can 
be depicted by a differentiable learning framework.

3 � Materials and Methods
3.1 � Synthetic Dataset with Simulated Bone Cutting
We collected a dataset D containing depth captures of a 
cadaver leg with an intact femur surface. A commercial 
depth camera, Realsense D415, was used to be consistent 
with the original work [8]. The camera can acquire depth 
data with less than 2% error at up to 90 frames per sec-
ond, which is competent for real-time applications [20] 
The dataset includes 9334 depth captures of lab scenes. 
Each depth image is represented by a 160× 160× 4 
matrix. The first three channels in the last dimension 
are (x, y, z) coordinates of a sampled pixel, and the last 
channel is the binary label that denotes whether the point 
belongs to the femur surface.

Sawbones were used to generate realistic femur cut-
ting patterns. Figure  1 shows the overall workflow. The 
original femur surface fo was first captured and manually 
segmented from the depth frame. After cutting the femur 
around the condal following a conventional procedure for 
OCD removal, the modified femur surface fm was again 
captured. Due to the possible change in spatial pose, fo 
was registered to fm , and the depth value z̃ of points fall 
in an annotated cutting A area was interpolated. z̃ was 
subtracted by the depth value of fm in the cutting area 
(i.e., �zA = z − z̃ ) and normalised. To ensure the smooth 
connection between modified and unmodified surface, 
zeros were padded around the edge of �zA . The padded 
3D variation was fitted by Clough Tocher 2D interpo-
lation for a cutting pattern f. The same procedure was 
repeated 20 times to generate enough patterns with dif-
ferent cutting shapes and depth variations.

The intact femur points p were segmented from D 
according to their binary labels. K ( = 1 -3 in our trial) 
rectangular area were selected on the femur surface with 
the arbitrary size and location, to which the collected 
deformation patterns f were mapped and scaled by the 
arbitrary maximum intrusion depth (i.e., 0–15 mm). The 
original and deformed point clouds were separately res-
ampled in a N × 3 point cloud and concatenated into a 
N × 6 array. Since the time of later reconstruction is pro-
portional to the number of points N, we chose N = 2500 
as a compromise between speed and surface representa-
tion quality.

3.2 � Network Architecture
The surface reconstruction network is shown in Figure 2. 
The encoder borrows the PointNet design of sequential 
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multilayer perceptrons (MLPs) and a max pooling layer 
to ensure the same loss expression regardless the order of 
input points. Note that for our need, no transformation 
(based on T-Net) is included for input and features, since 
it is designed to increase classification accuracy [19], and 
we want to keep the spatial consistency between input 
and output. After encoding the deformed points p′ , the 
most critical point among N points is selected for every 
latent dimension. The obtained latent feature vector is 
then passed to the decoder that consists of three fully 
convolutional layers to recover the N × 3 points p̂ . The 
reconstruction loss is defined as the chamfer distance 
(CD) between the output p̂ and the ground truth (GT) 
intact points p:

(1)R = CD(p̂, p) =
1

|p̂|

∑

x∈p̂

min
y∈p

||x − y||22 +
1

|p|

∑

y∈p

min
x∈p̂

||x − y||22.

To ensure the spatial consistency, the reconstructed p̂ 
and GT p are fed to a pretrained PointNetLK to obtain 
a relative transformation T. We define a spatial regulari-
sation loss S as the mean-squared error (MSE) between 
T and an identity matrix. The overall cost function is 
defined as (where � is a weight factor):

 

4 � Network Training and Evaluation
The networks were trained within the PyTorch frame-
work. The full synthetic dataset M was randomly divided 
into training, validation and testing groups with a ratio 

(2)C = R+ � S .

Figure 1  Workflow of applying a collected realistic cutting pattern to original dataset D to generate synthetic modified dataset M

Figure 2  The architecture of point cloud reconstruction network with an encoder-decoder architecture
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of 6:2:2. The Adam optimiser with a descending learn-
ing rate starting from 0.0005 was used. The reconstruc-
tion network was first trained for 300 epochs to minimise 
reconstruction loss only. Then, the network was further 
trained with the regularisation by a PointNetLK registra-
tion network well-trained on ModelNet40 dataset. The 
trained registration network could achieve comparable 
performance with traditional iterative closest point (ICP) 
over our dataset (for registration between p and p̂ , the 
mean square difference between network output and ICP 
output is 0.0008 in average). The weight � was chosen 
as 0.001. The training took 17 hours on an Nvidia Tesla 
P100-PCIe Graphic Processing Unit (GPU) before valida-
tion error further decreases.

5 � Evaluation
5.1 � Registration Test on Dataset
The performance of the proposed network was evaluated 
on the test dataset first. The points of reference geom-
etry were scanned by a highly precise commercial scan-
ner (HDI 3D scanner, LMI Technologies Inc.). After the 
RANSAC global alignment [21], the femur pose Tdef  was 
computed by the standard ICP registration (Open3D 
library [22]) between reference points and the deformed 
points with or without reconstruction. The threshold 
corresponding distance was set to 5 mm. We evaluated 
the registration reliability in terms of fitness (i.e., the 
number of inlier correspondences divided by the total 
number of target points) and the root-mean-squared 
error (RMSE) between the registered inlier correspond-
ences. The spatial tracking error induced by geometric 
changes was defined as the difference between registered 
poses Tdef  and the GT poses Tundef  obtained between the 
undeformed frames and reference. As shown in Figure 3, 
by reconstruction, the registration fitness is improved 

from 76.29±6.50% to 87.55±5.06%, and the RMSE is 
reduced from 2.26±0.17 mm to 1.96±0.11 mm. Both the 
3D positional and rotational accuracy are significantly 
(p-values<0.05 by a Kruskal-Wallis one-way analysis of 
variance test).

We additionally ran a spatial consistency check by reg-
istering the reconstructed point clouds from multiple 
single-view captures to the same pre-scanned reference. 
As shown in Figure 4, the merged frames are consistent 
with the model, indicating that the 3D geometric features 
of the input were learned by the network and used for the 
surface restoration.

5.2 � Test on Real‑Time Captures
The combined markerless segmentation, reconstruction 
and registration workflow were then tested on a model 
knee (i.e., a drilled femur sawbones held by a metal leg). 
An optical marker was pinned into the leg and tracked 
by an optical tracker (Fusiontrack 500, Atracsys LLC) to 
provide the GT pose Tgt for evaluation. The difference 
between the markerless femur pose (T) registered from 
the restored surface and the Tgt obtained by marker-
based tracking was defined as the tracking error:

The pose registered from the raw segmented points with-
out reconstruction was also evaluated as a reference.

The Python inference takes 0.05  s per frame for the 
real-time reconstruction. As shown in Figure  5, the 
reconstruction improves the registration fitness from 
75.56±6.36% to 81.69±10.97%, and reduces the registra-
tion RMSE from 2.40±0.10 mm to 2.07±0.30 mm. How-
ever, the improvement in 3D spatial pose is not obvious: 
the Kruskal-Wallis test shows no significant difference 

(3)Terr = T (Tgt)
−1.

Figure 3  Comparison of registration quality and 3D spatial error obtained with default and reconstructed frames
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between results obtained with and without reconstruc-
tion (p-value=0.83 for translational error and 0.28 for 
rotational error).

6 � Discussion
While the camera can only provide maximum 2.5D par-
tial views, the geometry modification should be consist-
ent across viewpoints to match a common 3D geometry. 
Learning 3D features is essential for such depth frame-
based modification. The network implicitly learns the 
structural features of the femur from a modified point 
cloud, and selects the ones relevant to the original frames 
through supervision.

The performance degradation from the test dataset 
to the actual capture is noticeable. We suspect that this 
may be due to the domain gap between the synthetic 
surface and the physically modified surface captured by 
a depth camera. In practice, the image sampling qual-
ity will be affected by the geometry variation, captur-
ing angles and working distance. The effect of a shape 
modification on the actual capture cannot be directly 

superimposed. For example, a hole around a flat surface 
will look different from the same hole around the edge 
in the actual capture. Besides, the training dataset only 
contains one model geometry, which is slightly differ-
ent from the shape of the actually tested sawbones. The 
decoder is prone to overfitting and not be fully general-
ised to a new geometry.

7 � Conclusions
In this work, we explore the possibility of adopting a deep 
neural network for automatic femur surface restoration 
to improve the reliability of markerless tracking after 
surgical intervention. We train the network on a collect 
dataset with simulated realistic surface modification. 
While the registration quality is effectively increased, the 
improvement in tracking accuracy is obvious over test 
data but not under the physical setup. In the future, we 
will further improve the realism of synthetic deformation, 
involve more femur geometries (e.g., given by data-driven 

Figure 4  Comparison between a reconstructed model fused from 20 frames (yellow) and the pre-scanned femur surface (blue)

Figure 5  Comparison of real-time femur tracking quality and errors for manipulated femur surface with (reconstructed) and without reconstruction 
(default)
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statistical shape models), and tune the network architec-
ture for better performance.
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