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Kinematic Calibration of a Six‑Legged 
Walking Machine Tool
Jimu Liu  , Zhijun Chen and Feng Gao* 

Abstract 

This paper presents the kinematic calibration of a novel six-legged walking machine tool comprising a six-legged 
mobile robot integrated with a parallel manipulator on the body. Each leg of the robot is a 2-universal-prismatic-
spherical (UPS) and UP parallel mechanism, and the manipulator is a 6-PSU parallel mechanism. The error models of 
both subsystems are derived according to their inverse kinematics. The objective function for each kinematic limb is 
formulated as the inverse kinematic residual, i.e., the deviation between the actual and computed joint coordinates. 
The hip center of each leg is first identified via sphere fitting, and the other kinematic parameters are identified by 
solving the objective function for each limb individually using the least-squares method. Thus, the kinematic param-
eters are partially decoupled, and the complexities of the error models are reduced. A calibration method is proposed 
for the legged robot to overcome the lack of a fixed base on the ground. A calibration experiment is conducted to 
validate the proposed method, where a laser tracker is used as the measurement equipment. The kinematic param-
eters of the entire robot are identified, and the motion accuracy of each leg and that of the manipulator are signifi-
cantly improved after calibration. Validation experiments are performed to evaluate the positioning and trajectory 
errors of the six-legged walking machine tool. The results indicate that the kinematic calibration of the legs and 
manipulator improves not only the motion accuracy of each individual subsystem but also the cooperative motion 
accuracy among the subsystems.
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1  Introduction
There is a growing demand for large and accurate parts in 
several sectors, e.g., railroads, aeronautics, shipping, and 
power plants [1]. Maintenance and repair of these parts 
are generally performed in  situ and cannot be achieved 
using conventional machine tools. Thus, various mobile 
robotic machine tools have been developed for manufac-
turing and post-production processes for large parts. A 
mobile parallel robot called the intersector welding robot 
(IWR) was developed to conduct welding and machin-
ing processes inside the International Thermonuclear 
Experimental Reactor vacuum vessel (VV) [2]. The IWR 
consists of a Stewart platform-based parallel mechanism 

and a carriage for moving along rails mounted on the 
inner surface of the VV sector. In another study, a small 
six-axis, track-based, portable robot was developed and 
implemented to perform in  situ interventions, such as 
gouging, welding, grinding, and post-weld heat treat-
ments in hydroelectric turbines [3]. Barnfather inves-
tigated the positional capability of a Fanuc F200iB 
hexapod-format robotic machine [4] and conducted 
machining trials to evaluate its achievable tolerances 
[5]. Parallel mechanisms have been widely applied in the 
development of mobile machine tools, owing to their 
high stiffness/weight ratios relative to those of serial 
robots [6].

Although legged robots are mainly designed for 
tasks in outdoor environments [7], several studies have 
focused on the use of legged robots in manufactur-
ing applications, owing to their high mobility [8, 9]. In 
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our laboratory, a novel six-legged walking machine tool 
comprising a six-degree-of-freedom (6-DOF) portable 
parallel kinematic machine tool and a six-parallel-legged 
robot was developed for mobile machining tasks [10]. In 
contrast to conventional articulated legs, a 3-DOF paral-
lel mechanism was used for the leg design [11], providing 
the robot with a high stiffness and large payload. As men-
tioned in Ref. [12], motion accuracy is one of the primary 
issues for mobile robots performing machining tasks. 
Owing to the manufacturing and assembling errors of 
the mechanical components, the actual kinematic param-
eters of the robot can deviate from the nominal values, 
leading to pose errors in the end effector. Therefore, a 
calibration process that can identify the actual kinematic 
parameters is needed to improve the motion accuracy of 
the robot.

Robot calibration has been studied for several decades. 
Various methods for robot calibration have been pro-
posed, and they can be classified into three categories: 
open-loop, closed-loop, and screw axis measurement 
methods. Hollerbach unified these categories by consid-
ering an end-point measurement system for forming a 
joint and closing the kinematic loop and introduced the 
concept of a calibration index [13]. Many measurement 
devices, such as laser trackers [14], portable photogram-
metry systems [15], telescoping ballbars [16], and touch 
probes [17], have been used for the kinematic calibration 
of robots. Among these, laser trackers are the most com-
monly used.

The Stewart–Gough platform and 6-PUS manipula-
tor are most widely used 6-DOF parallel mechanisms. 
In addition, kinematic calibration of these mechanisms 
has been widely studied. Wang and Masory developed 
an accurate kinematic model for a Stewart platform 
using the Denavit–Hartenberg method to model each 
kinematic limb, and they presented an effective algo-
rithm for parameter identification [18, 19]. Zhuang 
proposed a calibration method for Stewart platforms 
and other parallel manipulators that minimizes the 
residuals of the inverse kinematics [20]. This method 
avoided the need to solve the forward kinematic prob-
lem; thus, the efficiency of the identification algorithm 
was improved. Ota proposed a calibration method 
based on forward kinematics using a double ball bar 
(DDB) system as the measurement device, and the 
method was validated using a 6-PUS parallel kinematic 
milling machine called “HexaM” through simulations 
and experiments [21]. Besnard and Khalil proposed 
a numerical method for determining the identifiable 
parameters of a Stewart–Gough parallel robot via QR 
decomposition of the observation matrix [22]. Guo 
selected calibration configurations for a 6-PUS paral-
lel manipulator based on an orthogonal design [23]. 

Hu proposed an identifiable parameter separation (IPS) 
method for dividing the kinematic parameters of a 
6-PUS parallel kinematic manipulator into two groups 
[24]. The unit direction vectors of the prismatic joints 
were first identified independently. Then, the remain-
ing 42 kinematic parameters were identified using 
a kinematic error model. Thus, the error model was 
simplified.

The error modeling for lower-mobility parallel mech-
anisms is more complex than that for 6-DOF paral-
lel mechanisms. Liu proposed a general approach for 
the geometric error modeling of lower-mobility parallel 
manipulators [25], using the Sprint Z3 [6], Tricept [26], 
and Delta [27] robots as examples. Huang presented a 
DDB-based method for the kinematic calibration of the 
3-DOF parallel mechanism of the TriVariant robot [28]. 
An error model with 14 independent geometric errors 
was proposed for the 2-UPS & UP parallel mechanism. 
Chen proposed a two-step parameter identification 
method for the kinematic calibration of a 3-prismatic-
revolute-spherical (PRS) parallel manipulator [29]. First, 
the planes where the PRS limbs are located are identi-
fied, and then the remaining kinematic parameters of 
each limb are identified using a gradient-based searching 
algorithm.

However, to the best of the authors’ knowledge, there is 
a paucity of research on the kinematic calibration of leg-
ged robots. In contrast to most calibration objects, leg-
ged robots have no fixed bases on the ground. The body 
of a legged robot is supported by the legs to maintain 
stability; however, the legs must move during the cali-
bration process. This problem has not been considered 
in previous calibration solutions for traditional robots. 
To solve the problem, a calibration method for the novel 
six-legged walking machine tool is proposed herein, in 
which a laser tracker is used as the measurement device. 
The six-legged walking machine tool consists of two par-
allel mechanisms. A general method based on minimiz-
ing the inverse kinematic residual of each limb is applied 
for the error modeling of both the 3-DOF parallel leg and 
the 6-DOF parallel manipulator. The kinematic errors are 
grouped by limbs and are identified separately, reducing 
the complexity of the error models. The effectiveness of 
the proposed method was verified through a calibration 
experiment using a Leica AT960 laser tracker to meas-
ure the foot-tip positions of each leg and the end-effector 
poses of the parallel manipulator. The remainder of this 
paper is organized as follows. In Section 2, the architec-
ture of the system is presented, and the inverse kinematic 
solutions of the parallel leg and the parallel manipulator 
are derived. The error models of both subsystems are 
described in Section 3. The procedure and results of the 
calibration experiment are presented in Section  4. The 
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validation of the calibration results through additional 
experiments is presented in Section 5. Finally, the conclu-
sions are presented in Section 6.

2 � Architectural Description and Inverse Kinematics
The mobile robotic machining system to be calibrated is 
a six-legged mobile robot with a 6-DOF parallel manipu-
lator on its body, as shown in Figure  1. Each leg of the 
robot is a 3-DOF parallel mechanism comprising a UP 
limb and two UPS limbs, where the letters U, P, and S 
represent the universal, prismatic, and spherical joints, 
respectively. The leg base plate is fixed to the robot body. 
Three electric cylinders—working as active prismatic 
joints—are connected to the leg base plate by universal 
joints. An ankle connector is rigidly connected to the 
piston-rod end of one electric cylinder. The piston rods 
of the other electric cylinders are connected to the ankle 
connector by spherical joints. Hence, the leg architecture 
is a 2-UPS & UP parallel mechanism. A six-dimensional 
force/torque (F/T) sensor is mounted at the bottom of 
the ankle connector, and a passive ball joint connecting 
the foot plate is mounted on the other side of the sensor.

The parallel manipulator mounted on the robot body 
is a 6-PSU mechanism. The robot body contains a hex-
agonal frame functioning as the fixed base of the paral-
lel manipulator. The moving platform is connected to the 
hexagonal frame by six PSU limbs. Each limb consists of 
a linear actuator, spherical joint, fixed-length linkage, and 
universal joint. The linear actuators are placed parallel to 
each other inside the hexagonal frame. Each linkage is 
connected to the slider of a linear actuator with a spheri-
cal joint on one end and connected to the moving plat-
form with a universal joint on the other end. The moving 

platform has six DOFs and provides a mechanical inter-
face for mounting a motor spindle or other end effectors.

2.1 � Inverse Kinematics of Parallel Leg Mechanism
The leg mechanism is illustrated in Figure 2(a). The legs 
numbered from 1 to 6 are symmetrically arranged around 
the body in the shape of a hexagon. All the legs have the 
same kinematic architecture; thus, in the figure, the legs 
are simplified as dashed lines, except for leg 5, whose 
complete mechanism is presented as an example. The 
centers of the universal and spherical joints are denoted 
as Uij and Sij , respectively, where the first subscript i is 
the limb index ( i = 1 for the UP limb and i = 2, 3 for the 
UPS limbs), and the second subscript j is the leg index 
( j = 1, 2, ..., 6 ). U1j is referred to as the hip center of leg j . 
The center of the passive ball joint on the foot is denoted 
as Sfj and is taken as the reference point of the end effec-
tor for each leg. It is referred to as the foot-tip in this 
study and is used for foot trajectory planning.

The body frame {B} is assigned at the midpoint 
of U12 and U15 , with its x-axis pointing from U12 
to U15 and its y-axis perpendicular to the hexagon 
U11U12U13U16U15U14 . In the jth leg, the hip frame {Hj} is 
fixed to the leg base plate, whereas its origin OHj is coin-
cident with U1j . Its x-axis is perpendicular to the plane 
U1jU3jU2j , whereas its z-axis is parallel to the line U3jU2j . 
A moving frame {Aj} , i.e., the ankle frame, is attached 
to the piston rod of the UP limb. Its x-axis is coincident 
with the prismatic joint axis of the UP limb, which passes 
through U1j , and its yz-plane passes through the point 
S2j . Thus, the origin OAj can be derived. Its z-axis is paral-
lel to the line S3jS2j.

The motion planning of the six-legged robot determines 
the foot-tip trajectories of each leg with respect to the body 
frame. The position of Sfj with respect to the body frame 
{B} is denoted as Bpfj , and the same position with respect 
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to the hip frame {Hj} is denoted as Hpfj . The orientation of 
{Hj} with respect to {B} can be described in the form of a 
rotation matrix BHjR or the Euler angles �j =

[
ϕi θi ψi

]T , 
as follows:

where RX (θ) , RY (θi) , and RZ(θi) represent the rotation 
matrix about the x-, y-, and z-axes, respectively. They can 
be expressed as follows:

According to the principle of coordinate transformation, 
Bpfj may be written as:

where u1j represents the coordinates of U1j with respect 
to the body frame {B} , Bpfj is given by motion planning, 
and u1j and BHjR are constants determined by the mount-
ing pose of the leg base plate. As BHjR

−1 = B
HjR

T , we have 
the following:

The vector loops of the 2-UPS & UP parallel leg mecha-
nism are presented in Figure 2(b). Because both UPS limbs 
have the same kinematic structure, only one of them is 
shown. In the UP limb, the direction vector of the pris-
matic joint with respect to the ankle frame {Aj} is denoted 
as e1 . According to the definition of frame {Aj} , we have

Considering the vector loop U1jOAjSfj yields

where sfj represents the foot-tip position with respect 
to the ankle frame {Aj} , which is determined by the 
mechanical structure of the leg. R1j is a rotation matrix 
representing the orientation of the ankle frame {Aj} with 
respect to the hip frame {Hj} . R1j is determined by two 
rotation angles of the universal joint, i.e., the α1j rota-
tion about the global y-axis and the β1j rotation about the 
rotated local z-axis, as follows:

(1)B
HjR = RZ(ϕi)RX (θi)RZ(ψi),

RX (θ) =



1 0 0
0 cos θ − sin θ
0 sin θ cos θ


,

RY (θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


,

RZ(θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


.

(2)Bpfj =
B
HjR · Hpfj + u1j ,

(3)Hpfj =
B
HjR

TBpfj −
B
HjR

Tu1j .

(4)e1 =
[
1 0 0

]T
.

(5)R1j

(
l1je1 + sfj

)
= Hpfj ,

Hpfj can be expressed as follows:

By substituting Eq. (6) into Eq. (5) and solving the vec-
tor function, the generalized coordinates of the UP limb 
are calculated as follows:

where sβ1j is short for sin β1j , and cβ1j is short for cosβ1j.
Considering the vector loop U1jOAjS2jU2j , the length of 

the UPS limb can be calculated as follows:

where u2j represents the coordinates of U2j with respect 
to the hip frame {Hj} , and s2j represents the coordinates 
of S2j with respect to the ankle frame {Aj} . Similarly, 
considering the vector loop U1jOAjS3jU3j , we have the 
following:

By substituting Eqs. (8–10) into Eqs. (11) and (12), l2j 
and l3j can be calculated.

The joint coordinates of the parallel leg mechanism are 
the lengths of three limbs, as follows:

2.2 � Inverse Kinematics of Parallel Manipulator
A schematic of the parallel manipulator is shown in Fig-
ure 3(a). Here, Ai and Bi represent the rotation centers of 
the universal joint and spherical joint in the ith kinematic 
limb, respectively; Ci represents the initial position of Bi 
when the actuators are in their home positions; and ei rep-
resents the unit direction vector of the ith prismatic joint. 
Therefore, the input variables are the distances between 

(6)R1j = RY

(
α1j

)
RZ

(
β1j

)
.

(7)Hpfj =
[
xj yj zj

]T
.

(8)l1j =
√

x2j + y2j + z2j − s2fjy − s2fjz − sfjx,

(9)

β1j = arcsin


 yj��

l1j + sfjx
�2

+ s2fjy




− arcsin


 sfjx��

l1j + sfjx
�2

+ s2fjy


,

(10)

α1j = arctan

(
sfjxxj −

[(
l1j + sfjx

)
cβ1j − sfjycβ1j

]
zj[(

l1j + sfjx
)
cβ1j − sfjysβ1j

]
xj + sfjzzj

)
,

(11)l2j =
∥∥R1j

(
l1je1 + s2j

)
− u2j

∥∥,

(12)l3j =
∥∥R1j

(
l1je1 + sfj

)
− u3j

∥∥.

(13)qj =
[
l1j l2j l3j

]T
.
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Bi and Ci . A moving frame {P} is attached to the moving 
platform. The origin of {P} is located at the center of the 
hexagon A1A2A3A4A5A6A1 . Its z-axis is perpendicular to 
the hexagonal plane, whereas its x-axis is parallel to A2A1 . 
Its y-axis is derived using the right-hand rule. The reference 
frame {M} is fixed to the hexagonal base frame of the paral-
lel manipulator and is also fixed to the robot body. Its z-axis 
is the center axis of the hexagonal prism, and its xy-plane is 
coincident with the front face of the base frame.

For the ith kinematic limb, as shown in Figure  3(b), 
according to the vector loop method, the following equa-
tion can be derived:

where p represents the origin position of frame {P} with 
respect to frame {M} , R is a rotation matrix describing 
the orientation of frame {P} with respect to frame {M} , 
ai represents the location of the ith universal joint center 
with respect to frame {P} , ci represents the initial location 
of the spherical joint with respect to the machine frame 
{M} , li =

−−→
BiAi , and qi represents the displacement of the 

slider from its initial position.
For brevity, we define

Substituting Eq. (15) into Eq. (14) yields

By defining Li = �li� and squaring both sides of Eq. (16), 
we obtain

There are two solutions for a quadratic equation, but only 
one satisfies the continuity condition considering the initial 
position of the slider. The final solution is

(14)p + Rai = ci + qiei + li,

(15)hi = p + Rai − ci.

(16)li = hi − qiei.

(17)L2i = hTi hi − 2qih
T
i ei + q2i .

(18)qi = hTi ei −

√(
hTi ei

)2
− hTi hi + L2i .

By applying Eq. (18) to all six PSU limbs, the joint coordi-
nates of the parallel manipulator are calculated as follows:

3 � Error Modeling
Generally, a robot calibration process consists of four steps: 
error modeling, data acquisition (DAQ), parameter iden-
tification, and validation. Error modeling is a key step in 
calibration. An error model is established to describe the 
relationship between the kinematic-parameter errors and 
the joint coordinate errors or end-effector pose errors. In 
this study, only geometric errors are considered in the error 
modeling. Thus, the non-geometric errors arising from 
backlash, gear transmission, thermal distortion, and com-
pliance are ignored. We assume that all the universal joints 
and spherical joints in the mechanism are perfect joints; 
i.e., the rotation axes of a composite joint intersect at one 
point. Therefore, the kinematic errors comprise the posi-
tional deviations of the passive joints and the length errors 
of the linkages.

3.1 � General Error Modeling Method Based on Inverse 
Kinematics

An objective function for the error model can be derived 
according to either inverse kinematics or forward kinemat-
ics. The closed-form forward kinematic solution of a par-
allel mechanism is difficult to derive. Hence, we formulate 
the objective function by comparing the actual joint coor-
dinates with the values computed by the inverse kinematic 
model.

For brevity, we assume that the inverse kinematic solu-
tion of a parallel mechanism is represented as follows:

where ρ is a vector including all the geometric parameters 
related to the kinematic model, χ is a vector representing 
the pose of the end effector, and q is a vector representing 
the joint coordinates.

For the kth calibration pose, the joint coordinate residu-
als of a parallel mechanism are formulated as follows:

where ρ represents the nominal kinematic parameters 
of the parallel mechanism, and �ρ represents the kin-
ematic-parameter errors to be identified. χmk repre-
sents the actual pose of the end effector, which can be 
determined using an external measurement device. qk 
represents the command joint coordinates, which are 
calculated by substituting the nominal kinematic param-
eters ρ and target calibration poses χtk into the inverse 

(19)q =
[
q1 q2 . . . q6

]T
.

(20)q = I(ρ,χ),

(21)�qk = qk − I
(
ρ+�ρ,χmk

)
,
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Figure 3  6-PSU parallel manipulator mechanism
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kinematic solution. The subscript k denotes the calibra-
tion configuration number.

Ignoring the servo error of each actuator, qk is used as 
the actual joint coordinates. The mapping between the 
kinematic errors and the joint coordinate residuals is per-
formed for each calibration configuration.

Typically, the dimension of �ρ is larger than the dimen-
sion of the end-effector pose. Thus, additional configu-
rations are needed to construct sufficient equations for 
parameter identification. Considering all the calibration 
configurations, the overall joint coordinate residuals are 
expressed as a system of nonlinear equations for the kin-
ematic errors �ρ as follows:

where n represents the number of calibration 
configurations.

The kinematic-parameter identification process 
involves finding a set of geometric parameters that mini-
mizes the inverse kinematic residuals given the actual 
end-effector poses. This is a nonlinear least-squares 
problem, which is expressed as follows:

Eq. (20) is linearized as

where J e,k is referred to as the error Jacobian mapping of 
the kinematic errors to the joint coordinate errors.

Applying Eq. (25) to all the calibration configurations 
yields

Here, J e is referred to as the identification Jacobian 
matrix. Eq. (24) can be solved using the Levenberg–Mar-
quardt algorithm, in which the identification Jacobian 
matrix is used to perform iterative calculations [30, 31].

3.2 � Error Model of Parallel Leg Mechanism
The inverse kinematic solution of the parallel leg mecha-
nism is determined using Eqs. (3, 5, 11 and 12). The 

(22)qk = I
(
ρ,χtk

)
.

(23)f (�ρ) =




�q1
�q2
...

�qn


,

(24)�ρ = arg min
�ρ

∥∥f (�ρ)
∥∥2
2
.

(25)�qk = J e,k�ρ,

(26)




�q1
�q2
...

�qn


 =




J e,1
J e,2
...

J e,n


�ρ = J e�ρ.

kinematic parameters involved in these equations are u1j , 
�j , u2j , u3j , sfj , s2j , and s3j.

Inspired by the IPS method proposed by Hu [24] and the 
two-step calibration method proposed by Chen [29], we 
divide these kinematic errors into three groups that can be 
identified sequentially.

3.2.1 � Group 1: Pose Errors of the Hip Frame with Respect 
to the Body Frame

The kinematic parameters in Eq. (3) correspond to the 
position and orientation of the hip frame {Hj} with respect 
to the body frame {B} , i.e., u1j and �j . The foot-tip is con-
fined to a spherical surface, with its center coincident with 
U1j when the actuator in the UP limb is locked. Hence, the 
actual value of u1j , which is denoted as ũ1j , can be directly 
identified via spherical fitting. A symbol with a tilde on top 
denotes the actual or identified value of this variable. This 
notation is used hereinafter. Thus, the position errors of the 
hip frame can be easily acquired as follows:

There are two methods for modeling the orientation 
error ��j according to different definitions of the actual 
hip frame {H̃j} , as shown in Figure 4. In the figure, the sym-
bol with a tilde represents the actual value, whereas the 
symbol without a tilde represents the nominal value.

Method 1: The orientation error ��j is considered, 
implying that the orientation of {H̃j} is determined by the 
actual positions of U2j and U3j , according to the definition 
of {Hj} in Section 2.1. Thus, the position errors of Ũ2j and 
Ũ3j with respect to the {H̃j} frame must satisfy the following 
constraints:

Accordingly, �u2j and �u3j have three total independ-
ent variables in the error model.

(27)�u1j = ũ1j − u1j .

(28)
�u2jx = 0,
�u3jx = 0,
�u2jz = �u3jz .

Nominal position Actual position

(a) (b)

1 jU

2 jU
3 jU

2 jU

1 jU

3 jU
{ }jH

{ }jH { }jH 1 jU

3 jU

2 jU

{ }jH

2 jU
3 jU

1 jU

Figure 4  Two different ways to define the actual hip frame: a 
considering the orientation errors, b ignoring the orientation errors



Page 7 of 17Liu et al. Chinese Journal of Mechanical Engineering           (2022) 35:34 	

Method 2: The orientation error ��j is ignored, imply-
ing that the orientation of {H̃j} is identical to the nominal 
value:

Thus, frame {H̃j} is acquired by translating {Hj} from 
U1j to Ũ1j without rotation. As such, Ũ2j and Ũ3j may not 
be located in the yz-plane of the frame {H̃j} , and the con-
straints in Eq. (28) are invalid. Hence, there are six inde-
pendent variables among u2j and u3j.

In both methods, there are a total of nine independent 
variables among �u1j , ��j , �u2j , and �u3j . The defini-
tion of frame {H̃j} affects the values of α1j and β1j in Eqs. 
(9) and (10) but does not affect the final solution of the 
joint coordinates. Method 2 is used to define the actual 
hip frame {H̃j} , because it is easier to solve a least-squares 
problem without constraint equations. Thus, three inde-
pendent variables, i.e., the actual coordinates of the hip 
center ũ1j , are identified in this step.

3.2.2 � Group 2: Remaining Kinematic Errors of the UP Limb
After ũ1j is identified in the last step, ũ1j and the meas-
ured foot-tip position Bp̃fj are substituted into Eq. (3) to 
update H p̃fj . Then, H p̃fj(x̃j , ỹj , z̃j) is substituted into Eq. 
(8), and the objective function of the UP limb is estab-
lished by comparing the actual limb length l1j and com-
puted limb length, as follows:

Thus, there are three kinematic errors to be identified 
in Group 2: �sfjx , �sfjy , and �sfjz.

Squaring both sides of Eq. (5) yields

Differentiating both sides of Eq. (31) and ignoring the 
measurement error of Hpfj yields

where �sfj =
[
�sfjx �sfjy �sfjz

]T.
By expanding Eq. (32), the relationship between �l1j 

and �sfj is derived as follows:

The coefficient matrix in Eq. (33) is referred to as the 
error Jacobian of the UP limb.

(29)��j = 0, and �̃j = �j .

(30)

�l1j = l1j +
(
sfjx +�sfjx

)

−

√
x̃2j + ỹ2j + z̃2j −

(
sfjy +�sfjy

)2
−

(
sfjz +�sfjz

)2
.

(31)
(
l1je1 + sfj

)T(
l1je1 + sfj

)
= HpTfj

Hpfj .

(32)
(
l1je1 + sfj

)T(
�l1je1 +�sfj

)
= 0,

(33)�l1j = −

[
1

Sfjy
l1j+Sfjx

Sfjz
l1j+Sfjx

]
�sfj .

3.2.3 � Group 3: Kinematic Errors of the UPS Limbs
In the last step, the actual coordinates of sfj are identified. 
By substituting s̃fj into Eqs. (9) and (10), the actual value 
of R1j is calculated. The calibration index of the UPS limb 
is defined as the joint coordinate error, as follows:

Hence, there are six kinematic errors to be identified in 
Group 3, i.e., the coordinates of �s2j and �u2j . Squaring 
both sides of Eq. (11) yields

Because the actual values of l1j and R1j have been iden-
tified, their errors are ignored. Differentiating both sides 
of Eq. (35) and substituting l̃1j and R̃1j into the equation 
yields

We define ẽ2j as follows:

Substituting Eq. (37) into Eq. (36), �l2j is derived as

The coefficient matrix in Eq. (38) is the error Jacobian 
of the UPS limb.

Finally, �s2j and �u2j can be identified using the 
least-squares method to minimize �l2j . �s3j and �u3j 
can also be identified using the same procedure in this 
step, because both UPS limbs have the same kinematic 
architecture.

Therefore, there are a total of 18 independent kine-
matic errors for the 2-UPS & UP parallel leg mechanism.

3.3 � Error Model of Parallel Manipulator
By combining Eqs. (15) and (18), a simplified represen-
tation of the inverse kinematic solution for the ith kine-
matic limb in the 6-PSU parallel manipulator is obtained:

Thus, the error model of each PSU limb is expressed as 
follows:

(34)
�l2j = l2j −

∥∥∥R̃1j

(
l̃1je1 + s2j +�s2j

)
−

(
u2j +�u2j

)∥∥∥.

(35)

[
R1j

(
l1je1 + s2

)
− u2

]T[
R1j

(
l1je1 + s2

)
− u2

]
= l22 .

(36)

[
R̃1j

(
l̃1je1 + s2j

)
− u2j

]T(
R̃1j�s2j −�u2j

)
= l2j�l2j .

(37)ẽ2j =
R̃1j

(
l̃1je1 + s2j

)
− u2j

l2j
.

(38)�l2j =
[
ẽT2jR̃1j −ẽT2j

]
1×6

[
�s2j
�u2j

]

6×1

.

(39)qi = IPSU (p,R,ai, ci, ei, Li).
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where p̃ and R̃ represent the position and orientation, 
respectively, of the frame {P} with respect to the frame 
{M}.

The inverse kinematic residual of each limb is unrelated 
to the kinematic parameters of the other limbs; there-
fore, the error parameters of each limb can be identified 
independently.

Differentiating both sides of Eq. (17) and ignoring the 
measurement error of the pose yields

We define k i as follows:

Substituting Eq. (42) into (41) yields

As ei is a unit vector, the following constraint must be 
satisfied:

Hence there are only two independent variables in �ei . 
We define �ei as follows:

The nominal value of ei is 
[
0 0 1

]T ; accordingly, we 
have

By combining Eqs. (45) and (46), we have

As �eix and �eiy are small, �eiz ≈ 0 . Therefore, �ei can 
be expressed as follows:

Thus, the number of kinematic-error parameters is 
reduced, and the nonlinear constraint in Eq. (44) can be 
eliminated.

(40)�qi = qi − IPSU

(
p̃, R̃,ai +�ai, ci +�ci, ei +�ei, Li +�Li

)
,

(41)
(p + Rai − ci − qiei)

T(R�a −�c − e�q − q�e) = l�l.

(42)k i = p + Rai − ci − qiei.

(43)�qi =

�
kTi R

kTi ei
−

kTi
kTi ei

−
qik

T
i

kTi ei
− 1

kTi ei

�


�ai
�ci
�ei
�li


.

(44)�ei� = 1.

(45)�ei =
[
�eix �eiy �eiz

]T
.

(46)ẽi =
[
�eix �eiy

√
1−�e2ix −�e2iy

]T
.

(47)�eiz =
√
1−�e2ix −�e2iy − 1.

(48)�ei =



1 0
0 1
0 0



�
�eix
�eiy

�
.

The parameters can be defined as follows:

Substituting Eq. (48) into Eq. (43) yields

Thus, each PSU limb has nine independent kinematic 
errors, and the error model of the parallel manipulator 
has 54 parameters to be identified.

4 � Calibration Experiment
4.1 � Measurement System
The experimental setup for calibration is shown in Fig-
ure 5. A Leica AT960 laser tracker was used as the meas-
urement equipment, and SpatialAnalyzer@ was used as 
the DAQ software.

From the perspective of typology, the proposed six-
legged walking machine tool consists of seven parallel 
mechanisms whose bases are mounted on the robot body. 
In contrast to industrial robots and conventional machine 
tools, a legged robot is not fixed to the ground. Hence, 
before measuring the end effectors of each leg and the 
manipulator, the robot body must first be located by the 
laser tracker. Accordingly, an artifact with four magnetic 

(49)Ae =



1 0
0 1
0 0


,�e∗i =

�
�eix
�eiy

�
.

(50)

�qi =

�
kTi R

kTi ei
−

kTi
kTi ei

−
qkTi
kTi ei

Ae − 1

kTi ei

�

1×9



�ai
�ci
�e∗i
�li




9×1

.

Sf S'f 
Lf

L'f 
OP' 

Artifact

Laser tracker

Six-legged robot

F/T sencor

Ball joint SMR

SMR 
holder

OP 

R1

R3

R2

dz

(b)

(a)

(c) (d)
Figure 5  Experimental setup: a Overall setup, b reference artifact on 
the body, c SMR holder under the foot, d calibration artifact on the 
moving platform
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nests is mounted on top of the robot body, as shown in Fig-
ure 5(b). The magnetic nests are used to hold a spherically 
mounted retroreflector (SMR) for the laser tracker and thus 
provide four reference points fixed on the robot body. This 
allows the laser tracker to locate the robot body from dif-
ferent azimuths. In general, every time the robot changes 
its position on the ground, the reference points must be 
measured again. By aligning the reference points, the meas-
ured data points of the different legs and the manipulator 
can be unified into a single coordinate frame fixed on the 
robot body. In this way, the robot can turn around on the 
ground, allowing the end effectors of all the legs and the 
manipulator to be measured.

To measure the foot-tip position of each leg, the passive 
ball joint structure under the F/T sensor is replaced with an 
SMR holder, as shown in Figure  5(c). The location of the 
SMR center S′fj with respect to the ankle frame {Aj} was 
designed to be identical to that of the original passive ball 
joint center Sfj ; i.e., L′f = Lf  . Thus, the SMR coordinates 
represent the foot-tip position.

The end-effector pose of the parallel manipulator is 
determined by three reference points fixed on the moving 
platform, as shown in Figure 5(d). Three magnetic nests are 
fixed on the moving platform to maintain the SMR. The 
reference points R1 , R2 , and R3 are the center locations of 
the SMR when it is placed on the magnetic nests. A meas-
urement coordinate frame {P′} based on these reference 
points is established. The origin of {P′} is coincident with 
R1 . The x-axis of {P′} points from R2 to R1 , while the y-axis 
points from R3 to R1 . Assuming that the positions of R1 , R2 , 
and R3 are denoted as r1 , r2 , and r3 , respectively, the orien-
tation of {P′} is derived as follows:

Hence, the pose of {P′} can be represented as (r1,RP) . 
Considering the distance between the universal joint cent-
ers and the mounting flange of the moving platform and 
the distance between the SMR centers and the mounting 
flange, the moving-platform frame {P} is acquired by trans-
lating {P′} along the negative direction of its z-axis by a 
fixed distance dz. Thus, the orientation of {P′} is identical to 
that of {P} , and the origin coordinates of {P} are as follows:

(51)ex =
r2 − r1

�r2 − r1�
,

(52)ez =
(r2 − r1)× (r3 − r1)

�(r2 − r1)× (r3 − r1)�
,

(53)ey = ez × ex,

(54)RP =
[
ex ey ez

]
.

Thus, the pose of the moving platform can be repre-
sented by (pP ,RP).

Furthermore, in the practical application of the robot, 
the calibration artifact is replaced with a spindle or 
other end effectors. The relative poses of the meas-
urement frame {P′} and tool frame {T } with respect to 
the moving-platform frame {P} are shown in Figure  6. 
In the moving platform, the front face is precision-
machined and used as the tool flange for mounting the 
end effectors. A coordinate frame {F1} is fixed on the 
moving platform, with its xy-plane coincident with the 
tool flange and its origin located at the center of the tool 
flange. The moving-platform frame {P} is determined by 
translating {F1} along its z-axis with a constant distance 
dz1 . dz1 can be acquired from the assembly drawing and 
represents the distance between one of the ideal uni-
versal joint centers and the tool flange. The actual uni-
versal joint centers may not be located in the xy-plane 
of {P} . Nevertheless, the position errors of the universal 
joint centers are considered in the error model, as indi-
cated by Eq. (40).

The calibration artifact is precision-machined as well; 
thus, the distance between the SMR center and the 
mounting face dz2 is known. One of the magnetic nests 

(55)pP = RP




0
0

−dz


+ r1.

Spindle

Calibration artifact

Moving platform

OT

OF3

OF2 

OP'

OP 

OF1

dz1

dz3

dz2

Mounting face

Mounting face

Tool flange

Figure 6  Relative positions of the calibration artifact, spindle, and 
moving platform
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is precisely attached to the center of the calibration 
artifact. A coordinate frame {F2} is defined by trans-
lating the measurement frame {P′} along its −z axis 
with the distance dz2 . When the calibration artifact is 
mounted on the tool flange, {F2} is coincident with {F1} ; 
thus, the following calculation can be performed:

Moreover, the relative pose between {P′} and {P} is 
known.

Similarly, in the spindle module, a reference frame {F3} 
is attached to the mounting face. The position of the tool 
center point (TCP) with respect to {F3} is determined by 
the tool setting. The origin of the tool frame {T } coin-
cides with the TCP. The orientation of {T } is identical 
to that of {F3} . When the spindle is mounted on the tool 
flange, {F3} is coincident with {F1} . Hence, the pose of {T } 
with respect to {P} can be derived. Although the actual 
TCP position was not measured in the experiment, the 
positional accuracy of the TCP can be determined using 
the pose accuracy of the moving platform. To achieve a 
high machining accuracy, the TCP position with respect 
to the tool flange should be measured using other equip-
ment, such as a tool setting gauge, or should be identified 
by a trial cut, which requires further research.

4.2 � Calibration Configurations
The configuration of each leg is represented by the foot-
tip position. For each configuration, there are three 
unknowns in Eq. (30) and six unknowns in Eq. (34). 
These equations use the common foot-tip position. The 
number of constraint equations must be greater than or 
equal to the number of unknowns. Hence, at least six 
configurations are required for the calibration of the leg. 
Considering the workspace limit of the leg, three equidis-
tant values within the range of each generalized coordi-
nate of the UP limb are selected: α1j = −π

/
18, 0, π

/
18, 

β1j = −π

/
18, 0, π

/
18, and l1j = 900, 950, 1000 . Then, 

all the combinations of these three coordinates are tra-
versed to generate 27 (33) foot-tip positions. All the 
selected configurations are within the leg workspace, as 
shown in Figure 7(a).

The configuration of the parallel manipulator is repre-
sented by the position of the moving platform. For each 
configuration, nine unknowns exist in Eq. (40). Hence, 
at least nine configurations are required for the calibra-
tion of the manipulator. If the configuration generation 
method of the leg is applied to the parallel manipulator, 
there will be 729 (36) configurations, as each pose has 
six independent coordinates. A calibration experiment 
with such a large number of configurations is redundant 
and time-consuming. Therefore, a random-generation 

(56)dz = dz1 + dz2.

method was used instead, which included the following 
steps. 

Step 1)  Randomly generate six coordinates within 
certain ranges, e.g., x ∈ [−100, 100] , y ∈ [−100, 100] , 
z ∈ [−40, 160] , α ∈ [−0.3, 0.3] , β ∈ [−0.3, 0.3] , and 
γ ∈ [−0.3, 0.3] , and create a pose χ = (x, y, z,α,β , γ ).
Step 2) Substitute the pose into the inverse kine-
matic solution of the parallel manipulator, and check 
whether all the joint coordinates are within their 
travel ranges. If so, the pose is selected as one of the 
calibration configurations; otherwise, return to step 
1) to generate another pose.
Step 3) Repeat steps 1) and 2) until the number of 
configurations is adequate.

Ultimately, 50 configurations were generated for the 
calibration of the manipulator, as shown in Figure 7(b).

4.3 � Calibration Procedures
Because there was no proper fixture to fix the robot body 
on the ground, we used the robot legs to support the 
robot. A six-legged robot needs at least three legs stand-
ing on the ground to keep the body stable. Hence, the six 
legs were divided into two groups. Legs 1, 3, and 5 were 
included in the first group, and the remaining legs consti-
tuted the second group. The leg numbering is shown in 
Figure 2(a). During the calibration of a leg in one group, 
the legs of the other group were used to elevate and sup-
port the robot body as a stable tripod. After the hanging 
legs were calibrated, they were commanded to support 
the body in place of the previous supporting legs. Then, 
the previous supporting legs would hang in the air for 
calibration, as shown in Figure 8. In this way, all the legs 
were calibrated.

Before the leg calibration, several preparations were 
required. The first preparation was the standing-posture 
adjustment of the robot, as mentioned previously. Sub-
sequently, the motors except those in the calibrating leg 

Moving platform
Calibration configurations

(b) Manipulator
Calibration configurations

Supporting area

(a) Leg

Leg workspacelegged robot

OB
OHj

Manipulator workspace

Figure 7  Calibration configurations in workspaces
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were disabled to weaken the disturbance signal. A pris-
matic joint could be locked by disabling the correspond-
ing motor, as each motor integrated a clutch. The next 
step was to replace the passive ball-joint component at 
the bottom of the calibrating leg with the SMR holder, 
to allow the foot-tip to be measured by the laser tracker. 
Finally, the reference points on the top of the body had 
to be measured before the calibration of each leg. The 
laser tracker had to be relocated in the DAQ software by 
aligning these reference points with the previous setup to 
ensure that the measured foot-tip positions of the differ-
ent legs were unified to a common coordinate frame fixed 
with the robot body.

After performing the above-mentioned preparations, 
we placed the SMR on the SMR holder of the calibrating 
leg and executed the calibration program. Two groups 
of data were measured for the leg calibration. The first 
group of data contained the foot-tip trajectory when the 
motor of the UP limb was disabled and the motors of the 
UPS limbs were actuated. Because the prismatic joint of 
the UP limb was locked, the distance between the foot-
tip and the universal joint center remained the same. 
When the UPS limbs were actuated in the same direc-
tion, the UP limb swung around an axis passing through 
the hip center U1j . When the UPS limbs were actuated in 
different directions, the UP limb swung around another 
axis through U1j . Hence, the foot-tip trajectory was a 
cross attached to a spherical surface. Subsequently, the 
UP limb was enabled, the leg was actuated to 27 calibra-
tion configurations in sequence, and the corresponding 
foot-tip positions were logged as the second group of 
data. After calibration of each leg, the SMR holder was 
removed, and the original passive ball joint structure was 
mounted on the leg again. The calibration procedures 
were repeated for all six legs.

The DAQ and preprocessing procedures of the six-
legged robot in the DAQ software are shown in Figure 9. 
The measured foot-tip positions of each leg and the refer-
ence points are shown in Figure 9(a). The measured data 
of the six legs were unified to a single coordinate frame 
by aligning the reference points, as shown in Figure 9(b). 
The hip center of each leg was identified via sphere fit-
ting of the cross trajectory, as shown in Figure 9(c). Then, 
the body frame {B} was created according to the sphere 
centers of the six legs, as shown in Figure 9(d). Finally, the 
sphere center positions and the foot-tip positions corre-
sponding to the calibration configurations were exported 
for further processing using {B} as the reference frame, as 
shown in Figure 9(e).

The calibration procedures of the parallel manipula-
tor were simpler than those of the legged robot. First, 
all the legs were commanded to recover to their initial 

Figure 8  Views from the laser tracker during the calibration of 
different groups of legs

(c) Sphere fitting
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Figure 9  DAQ and preprocessing of the six-legged robot in the DAQ 
software
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configurations, with all six feet standing on the ground; 
thus, the robot body was kept still. The reference points 
on the body were measured again to relocate the laser 
tracker. We then used a handheld probe called the 
T-Probe together with the laser tracker to scan the geo-
metric feature of the hexagonal frame of the parallel 
manipulator and create the machine frame {M} , i.e., the 
reference coordinate frame for the parallel manipulator 
subsystem. Additionally, the relative pose between the 
machine frame {M} and the body frame {B} was acquired. 
Subsequently, the parallel manipulator was actuated to 
25 calibration configurations three times, with the SMR 
placed on the magnetic nests R1 , R2 , and R3 . Thus, the 
corresponding SMR positions were measured using the 
laser tracker, as shown in Figure 10.

4.4 � Data Processing and Parameter Identification
The data processing and parameter identification pro-
cedures for the robot are shown in Figure  11. The 
sphere-fitting process and creation of several reference 
coordinate frames were conducted in the DAQ software, 
whereas the objective functions for all the kinematic 
limbs were solved in MATLAB using the lsqnonlin opti-
mization toolbox function.

Several identified parameters of the leg deviated sig-
nificantly from their nominal values, which indicated that 
some of the kinematic parameters in the error model of 
the leg were non-identifiable. Hence, we used QR decom-
position of the identification Jacobian of each kinematic 
limb to distinguish identifiable parameters from non-
identifiable parameters [22].

Considering the UP limb of the leg as an example, by 
applying Eq. (33) for all calibration configurations, the 
identification Jacobian J e of the UP limb was obtained as 
follows:

(57)�q1 = J e�sfj ,

where �q1 represents the joint coordinate errors of the 
UP limb for all configurations. Then, J e was decomposed 
into an orthogonal matrix Q and an upper triangular 
matrix R through QR decomposition. Thus, Eq. (57) can 
be rewritten as

The third diagonal element of R was equal to zero, indi-
cating that the corresponding kinematic parameter sfjz 
was non-identifiable. The norm of the second diagonal 
element of R was close to zero and much smaller than the 
first diagonal element; hence, the corresponding param-
eter sfjy had low identifiability. Therefore, in the final 
identification process, �sfjy and �sfjz were set as zero, and 
only sfjx was identified.

Similarly, through QR decomposition of the identifica-
tion Jacobian of the UPS limb, s2jy , s2jz , s3jy , and s3jz were 
found to have low identifiability. Hence, their errors were 
ignored. Thus, nine kinematic parameters of a leg were 
identified using the error model, with three kinematic 
parameters identified via sphere fitting. The kinematic 
parameters of the different legs were identified using the 

(58)QT�q1 = R�sfj .

Figure 10  Measured data of the parallel manipulator in the DAQ 
software

Identify u1j ( j = 1,2,...,6 ) via 
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to {M} for all calibration 
configurations to MATLAB
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solving the nonlinear least 
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Parallel legs Parallel manipulator

Figure 11  Data processing and parameter identification procedures
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same method. The nominal and identified values of the 
kinematic parameters of Leg 1 are presented in Table 1.

The parameter identification for the parallel manipula-
tor did not have the same problem as that for the leg. All 
the kinematic parameters of each PSU limb were identi-
fied separately by the error model. The nominal and iden-
tified kinematic parameters of the parallel manipulator 
are compared in Table 2.

The maximum joint coordinate errors before and after 
calibration are compared for Leg 1, as shown in Figure 12. 
The vertical axis in each figure represents the maximum 
absolute value of the three joint coordinate errors for 

each calibration configuration, i.e., 
∥∥�qk

∥∥
∞

 , where �qk 
is defined in Eq. (21). The maximum value of the curve 
before calibration was 5.48 mm in the 27th configuration. 
The maximum error was reduced to 0.12 mm after cali-
bration. The results indicate the effectiveness of the cali-
bration method.

Similarly, the maximum joint coordinate errors before 
and after calibration for the parallel manipulator are 
compared in Figure  13. The maximum joint coordinate 
error of all the active joints and all the configurations was 
reduced from 0.7 to 0.04 mm. Because the initial error of 
the parallel manipulator was much smaller than that of 
Leg 1, the reduction in the joint coordinate error of the 
parallel manipulator was not as significant as that of Leg 
1.

5 � Validation
After calibration, the kinematic errors of the entire 
robot were compensated in the control software. The 
positioning and trajectory errors of the six-legged 

Table 1  Kinematic parameters of Leg 1 (mm)

Nominal value Identified value

u11 (−433.22, 0, −199.07) (−431.96, 1.39, −198.53)

u21 (0, 232, 134) (0.85, 233.58, 133.60)

u31 (0, 232, −134) (−2.07, 233.37, −134.95)

sf1 (142, −34, 0) (138.42, −34, 0)

s21 (0, 59, 34) (−0.73, 59, 34)

s31 (0, 59, −34) (−2.88, 59, −34)

Table 2  Kinematic parameters of the parallel manipulator (mm)

Nominal value Identified value

a1 (24.465, 78.789, 0) (25.197, 78.966, 0.150)

b1 (188.527, 173.511, −178.076) (187.018, 172.224, −180.401)

e1 (0, 0, 1) (0.0009, −0.0022, 1)

l1 260 260.137

a2 (−24.465, 78.789, 0) (−24.621, 79.072, 0.135)

b2 (−188.527, 173.511, −178.076) (−186.919, 173.674, −181.408)

e2 (0, 0, 1) (0.0002, −0.0006, 1)

l2 260 261.328

a3 (−80.466, −18.208, 0) (−81.139, −17.717, −0.166)

b3 (−244.529, 76.514, −178.076) (−242.195, 76.437, −181.098)

e3 (0, 0, 1) (0.0014, 0.0015, 1)

l3 260 259.951

a4 (−56.001, −60.582, 0) (−56.157, −61.042, −0.029)

b4 (−56.002, −250.025, −178.076) (−56.800, −248.027, −181.689)

e4 (0, 0, 1) (−0.0016, 0.0002, 1)

l4 260 260.309

a5 (56.001, −60.582, 0) (55.878, −61.432, −0.056)

b5 (56.002, −250.025, −178.076) (55.208, −247.940, −181.469)

e5 (0, 0, 1) (0.0027, 0.0010, 1)

l5 260 259.796

a6 (80.466, −18.208, 0) (80.866, −18.312, 0.122)

b6 (244.529, 76.514, −178.076) (243.099, 75.538, −181.038)

e6 (0, 0, 1) (0.0000, −0.0003, 1)

l6 260 260.876
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Figure 12  Maximum joint coordinate errors of Leg 1 for different 
calibration configurations
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walking machine tool were evaluated through a series of 
experiments.

5.1 � Positioning‑error Evaluation
In the first experiment, the positioning error of each leg 
and that of the manipulator were evaluated. Each sub-
system was moved to a set of validation configurations 

different from the calibration configurations. The actual 
positions of each foot-tip and actual poses of the moving 
platform were measured using the laser tracker.

In particular, 26 foothold locations frequently used for 
walking planning of the six-legged robot were selected as 
the validation configurations for each leg. As shown in 
Figure 14, the footholds started at the initial position of 
the foot-tip and then moved along the x, −x, y, and −y 
directions, and three equidistant points were selected in 
each direction. Hence, 13 footholds in a horizontal plane 
were generated as validation configurations. The other 13 
validation configurations were generated by transferring 
these points along the z-axis at a certain distance. Each 
leg was programmed to move to the validation configu-
rations in sequence, and the corresponding foot-tip posi-
tions were measured. The experiment was performed 
twice using the nominal kinematic parameters and iden-
tified kinematic parameters in the control system. The 
position-error distributions of the legs are shown in Fig-
ure 15. The position error is defined as the Euclidean dis-
tance between the command position and the measured 
position of the foot-tip. In the figure, the bars represent 
the error margins. The highest point of each bar indicates 
the maximum Euclidean error of each leg, and the dot 
in the bar indicates the mean error. The blue and orange 
bars indicate the position-error distributions before and 
after calibration, respectively. As shown in Figure 15, the 
position errors of all the legs were significantly reduced 
after calibration. The maximum position error for all the 
legs before calibration was 14.83 mm, and this value was 
reduced to 1.13 mm after calibration. The average posi-
tion error for the legs was < 0.50 mm after calibration. 

For the parallel manipulator, 25 randomly gener-
ated configurations different from the calibration con-
figurations were used for the validation experiment. The 
manipulator was moved to the validation configurations, 
and the corresponding poses of the moving platform 
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were measured via the three-point method using the 
same DAQ and processing steps that were employed in 
the calibration experiment. The pose errors of the parallel 
manipulator with the kinematic parameters before and 
after calibration are compared in Figure 16. The position 
errors are defined as the Euclidean distances between 
the command positions and the corresponding meas-
ured positions. The orientation errors are defined as the 
rotation angles from the command poses and the corre-
sponding measured poses based on the axis–angle repre-
sentation of rotation [32]. As shown in Figure 16(a), the 
position accuracy of the parallel manipulator was signifi-
cantly improved after calibration. The maximum position 
error of the moving platform was reduced from 0.53 to 
0.07 mm after calibration. Moreover, the maximum ori-
entation error was reduced from 2.5 × 10−3 to 2.1 × 10−3 
rad, as shown in Figure  16(b). The improvement in the 
orientation accuracy was not significant and may have 
been caused by the indirect measurement of the orienta-
tion. We checked the primary data and determined that 
the difference between the maximum and minimum val-
ues of ∠R2R1R3 was 1.4 × 10−3 rad, indicating that the 
orientation measurement error was no smaller than this 
value. Because the maximum orientation error before 
calibration was less than twice the measurement error, 
the insignificant improvement in the orientation accu-
racy is reasonable.

5.2 � Trajectory‑error Evaluation
To further investigate the trajectory accuracy of both 
subsystems, the six-legged robot and parallel manipula-
tor were programmed to move along a circular path, and 
the actual trajectories of the moving platform were cap-
tured by the laser tracker. While testing the six-legged 
robot, the manipulator was commanded to remain still. 
The 18 actuators of the legged robot were programmed to 
move synchronously, translating the robot body along a 
circular path with a radius of 100 mm and keeping all the 
feet still on the ground. Similarly, while testing the paral-
lel manipulator, the legged robot stood still, and the mov-
ing platform was programmed to move along a circular 
path of 50 mm. The smaller circle radius was limited by 
the manipulator workspace. Each subsystem was tested 
twice using the nominal and identified kinematic param-
eters. The trajectory deviations were acquired by calcu-
lating the shortest distance between the captured points 
and the ideal circular paths, and the results were plotted 
in a polar diagram, as shown in Figure 17. Here, the radial 
coordinate indicates the central angle of each captured 
point on the circular path, and the angular coordinate 
indicates the trajectory deviation. The trajectory devia-
tions of the robot body and parallel manipulator were 
both significantly reduced after the kinematic calibration. 

The trajectory error is defined as the maximum value of 
the trajectory deviation. The trajectory error of the body 
motion of the six-legged robot was reduced from 2.1 to 
1.3 mm after calibration. The results indicate that the 
kinematic calibration of the legs improves not only the 
motion accuracy of each individual leg but also the coop-
erative motion accuracy among the different legs. The 
trajectory error of the parallel manipulator was reduced 
from 0.54 to 0.048 mm after calibration.

To evaluate the overall trajectory error when the six-
legged mobile robot and manipulator move together, 
the robot body and manipulator were programmed to 
move along a straight line in opposite directions at the 
same speed, with all the feet standing on the ground. The 
end-effector position was captured by a laser tracker at 
a frequency of 100 Hz. The experiment was performed 
in both the lateral and vertical directions, separately. The 
robot body trajectory of lateral movement included four 
steps: (1) moving 50 mm to the left, (2) moving 50 mm 
to the right, (3) moving 50 mm to the right, and (4) mov-
ing 50 mm to the left. In the vertical-movement test, the 
robot body moved up and down with the same sequence 
and distance. Ideally, the end-effector position should 
have remained constant during the co-motion of the 
robot body and manipulator. However, owing to the tra-
jectory errors of the two subsystems and the communica-
tion delay between their control systems, the end-effector 
position deviated from the initial position. The deviation 
in the end-effector position indicated the co-motion tra-
jectory error. The results are shown in Figure 18, where 
Tis and Tie represent the starting and ending times of 
the ith (i = 1, 2, 3, 4) motion step. The maximum devia-
tions on the x-, y-, and z-axes during the lateral move-
ment were 0.701, 0.013, and 0.060 mm, respectively. The 
maximum Euclidean error was 0.702 mm. The maximum 
deviations on the x-, y-, and z-axes during the vertical 
movement were 0.181, 0.065, and 0.213 mm, respectively, 
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and the maximum Euclidean error was 0.332 mm. Hence, 
the six-legged walking machine tool has a higher co-
motion trajectory accuracy in the vertical direction than 
in the lateral direction.

6 � Conclusions
This paper presents the kinematic calibration of a six-leg-
ged walking machine tool. The error models of the 3-DOF 
parallel leg and the 6-DOF parallel manipulator were 
derived by minimizing the inverse kinematic residual of 
each limb, where the inverse kinematic residual is defined 
as the difference between the actual and computed joint 
coordinates. The kinematic parameters of the 2-UPS & 
UP parallel leg mechanism are divided into three groups, 
i.e., the hip center position with respect to the robot 
body, the remaining parameters in the UP limb, and the 
parameters in the UPS limbs. The kinematic parameters 
of the 6-PSU parallel manipulator are grouped by limbs 
as well. The hip center of each leg is first identified via 
sphere fitting, and the other kinematic parameters are 
identified by solving the objective function of each limb 
individually using the least-squares method. Thus, the 
kinematic parameters are partially decoupled, the com-
plexities of the error models are reduced, and the numer-
ical efficiency of the identification algorithm is improved.

A laser-tracker-based kinematic calibration method is 
proposed for the six-legged walking machine tool. Sev-
eral artifacts were designed to assist in the measurement 
of multiple foot-tips. By aligning the reference points 
on the body, the measured data of the different legs and 
manipulator were unified to a common coordinate frame. 
Thus, the lack of a fixed base for the legged robot was 
addressed. A calibration experiment was performed, and 
the results indicated that the calibration method signifi-
cantly improved the motion accuracy of each leg and 
manipulator.

After calibration, the positioning accuracy and trajec-
tory accuracy of the robot were significantly improved. 
The maximum position error of the foot-tips was 
reduced from 14.83 to 1.13 mm, and the maximum posi-
tion error of the manipulator was reduced from 0.53 to 
0.07 mm. The trajectory error of the body motion with all 
the feet on the ground was reduced from 2.1 to 1.3 mm. 
In addition, the trajectory error of the parallel manipula-
tor was reduced from 0.54 to 0.048 mm. The co-motion 
trajectory error when the legged robot and the manipula-
tor moved together was also evaluated after calibration. 
The result was 0.702 mm, with a range of motion equal 
to 50  mm. The proposed kinematic calibration method 
can be extended to other parallel mechanisms, as well as 
other legged robots.
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