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Abstract 

In order to improve the low output accuracy caused by the elastic deformations of the branch chains, a finite 
element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper. First, taking a 
5-prismatic-spherical-spherical (PSS)/universal-prismatic-universal (UPU) parallel mechanism as an example, the error 
model is established by a closed vector chain method, while its influence on the dynamic accuracy of the parallel 
mechanism is analyzed through numerical simulation. According to the structural and error characteristics of the par-
allel mechanism, a vector calibration algorithm is proposed to reduce the position and pose errors along the whole 
motion trajectory. Then, considering the elastic deformation of the rod, the rigid-flexible coupling dynamic equa-
tions of each component are established by combining the finite element method with the Lagrange method. The 
elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part, and 
the correctness of the model is verified by simulation. Moreover, the effect of component flexibility on the dimension-
less root mean square error of the displacement, velocity and acceleration of the moving platform is investigated by 
using a Newmark method, and the mapping relationship of these dimensionless root mean square errors to dynamic 
accuracy is further studied. The research work provides a theoretical basis for the design of the parameter size of the 
prototype.
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1  Introduction
Compared with the serial mechanism, the parallel mech-
anism has advantages of greater stiffness, higher preci-
sion, reduced inertia, and higher payload to weight ratio 
[1–4]. It has been widely used in aerospace, food process-
ing, vehicle and ship industry, and medical equipment 
fields [5–8].

The geometric errors of mechanical parts are inevitably 
produced in the process of processing and assembly. The 
error calibration method can effectively reduce the influ-
ence of geometric errors on the accuracy of the parallel 

mechanism [9, 10]. The calibration method is very impor-
tant for geometric error compensation. The common cal-
ibration methods include external calibration, constraint 
calibration and self-calibration. The pose of the parallel 
mechanism is directly measured through external preci-
sion equipment in the external calibration method [11–
13], which can identify the geometric parameters of the 
moving platform. However, it has several disadvantages 
such as low calibration efficiency, high cost, and poor 
external anti-interference ability, etc. In the constraint 
calibration method [14–16], the kinematic calibration 
is performed by imposing constraints on the system 
to limit the local motion capability of the mechanism 
components. Compared with the external calibration 
method, the constraint calibration method is relatively 
simple to operate and does not require expensive external 
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measuring equipment, but it restricts the mechanical 
part motion characteristics, which makes it difficult to 
identify all kinematic parameters. The self-calibration 
method [11, 14, 17] only needs the extra redundant infor-
mation of internal sensors of the mechanism to form full 
closed-loop control. In view of the economy of hardware 
and simplification of control system, the self-calibration 
method is adopted in our study. Meanwhile, the error 
calibration can improve the motion accuracy of the 
mechanism, which is of great significance to the dynamic 
accuracy analysis of the parallel mechanism [18, 19].

Dynamic accuracy is an important performance index 
for a parallel mechanism [20–22], which requires that the 
actual motion state of the mechanism is as consistent as 
possible with the desired motion state. Accordingly, it is 
necessary to study the influence law of error factors on 
the dynamic accuracy of the parallel mechanism in the 
design stage of the mechanism. The performance of the 
system is often significantly reduced, while the failure 
rate will increase or even cause major losses if these error 
factors are not fully taken into account. Therefore, the 
dynamic accuracy of a precision mechanism is worthy 
of in-depth study. Yun et al. [23] established a kinemat-
ics model of an 8-PSS/SPS parallel mechanism system 
via the stiffness model and Newton-Raphson method, 
where Kane’s method was used to build up the dynamics 
model for analyzing the workspace, motion precision and 
dynamic characteristics. The size ranges of leg of a 3-DOF 
UPU parallel mechanism were obtained from sensitivity 
analysis in Ref. [24]. Based on the design and sensitiv-
ity analysis, the parallel mechanism was developed and 
various experiments have shown that the manipulator 
exhibited high accuracy and precision. In Ref. [25], the 
elastic dynamic equations of a flat-shaped parallel robot 
were derived, and the effects of two commonly used 
static balancing techniques on the dynamic performance 
of closed-chain mechanisms were deeply analyzed. The 
finite element method [26] was used to derive the elasto-
dynamic equation of a plane high-precision linkage, and 
its dynamic characteristics and also natural frequency 
were analyzed. Taking the plane 3-PRR parallel mecha-
nism as the object [27], a mechanism dynamics model 
with the clearance of the rotating pair was established. 
The root mean squared error (RMSE) was proposed as 
the index to quantify the effect of joint clearance on the 
dynamics of the system. As discussed above, the rigid 
body models were usually adopted as the research object, 
while the finite element method was used for analyzing 
the dynamic accuracy of the planar parallel mechanism. 
Few related studies on dynamic accuracy, caused by the 
elastic deformation of the spatial parallel mechanism, 
were analyzed due to the complexity of elastic dynamic 
model.

The elastic deformation of the branch chain of the 
mechanism will cause elastic vibration, which leads to 
the pose error of the moving platform [28, 29]. There-
fore, the study of flexible deformation is very important 
to improve the dynamic accuracy of the mechanism. Tak-
ing a 5PSS/UPU coupling mechanism as an example [30, 
31], a closed vector chain method is proposed to reduce 
the influence of geometric errors on dynamic accuracy. 
Combing the finite element method with Lagrange 
method, the rigid-flexible coupling elastic dynamic 
equation of the system was established, and the effect of 
dynamic accuracy of component flexibility on the paral-
lel mechanism was further analyzed. Finally, the design 
principle for the mechanism parameter of the prototype 
was obtained.

This paper is organized as follows. In Section  2, the 
influence of geometric error on the dynamic accuracy of 
the 5-PSS/UPU parallel mechanism is studied, and the 
calibration method of geometric errors for the parallel 
mechanism is proposed. Section 3 establishes the rigid-
flexible coupled model and analyzes the influence of the 
flexibility of the links on the dynamic accuracy of the par-
allel mechanism. Subsequently, numerical simulations 
are carried out. The conclusions are outlined in Section 4.

2 � Analysis of Geometric Error
2.1 � Error Modeling of 5‑PSS/UPS Parallel Mechanism
The basic structure of the 5-PSS/UPU parallel mecha-
nism is shown in Figure  1. It consists of a fixed base, a 
mobile platform and six branches connecting the two. 
The six branches include five PSS joint branches and 
one UPU joint branch. The symmetrically distributed 
PSS branched chains are the power input of the paral-
lel mechanism, while the UPU branched chain provides 
constraints on the mechanism. Each drive branch is 
composed of 1 prismatic pair and 2 spherical pairs. The 
structure diagram of the 5-PSS/UPU parallel mechanism 
is shown in Figure 2, which depicts the fixed coordinate 
system O-XYZ and moving coordinate system D-XDY-
DZD. D and O are the centers of the moving and fixed 

Figure 1  Virtual prototype of 5-PSS/UPU parallel mechanism
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platforms respectively. The Z axis is perpendicular to the 
static platform, the X axis is from the coordinate origin to 
point A1, and the Y axis is determined by the right-hand 
rule. The ZD axis is perpendicular to the moving platform 
upwards, the XD axis is from the coordinate origin to 
point C1, and the YD axis is determined by the right-hand 
rule. Ei-XEiYEiZEi is the local coordinate system where the 
origin coincides with Ai, the YEi axis coincides with AiBi, 
the XEi axis is perpendicular to OEi, and the ZEi-axis is 
determined by the right-hand rule, where i = 1, 2, 3, 4, 5, 
6.

In the fixed coordinate system O-XYZ, the error model 
of the 5-PSS/UPU mechanism is established by vector 
method. The vector closed loop equation of a branch of 
the parallel mechanism can be expressed as

where D is the position vector of the coordinate origin of 
the dynamic coordinate system; ODR is the rotation matrix 
from the dynamic coordinate system to the fixed coor-
dinate system; si denotes the direction vector of the i-th 
driving branch; ni represents the direction vector of the 
link of the i-th branch. Li and li denote the length of the 
i-th flexible link and displacement of the i-th actuator, 
respectively.

Assuming that all error sources are small variables, dif-
ferentiating Eq. (1) can be rewritten as

where dD = [dxD, dyD, dzD]
T, dODR = εD × O

DR.

εD = [dγD, dβD, dαD]
T represents the differentiation of 

the rotation angle of the moving platform around the X, 
Y and Z axes.

Eq. (2) can be rewritten by taking the dot products of 
both sides with vector nTi  as

(1)D + O
DR

DC i = Ai + lisi + Lini,

(2)
dD + dODR · DC i +

O
DR · dDC i

= dAi + dlisi + lidsi + dLini + Lidni,

The error can be approximated as a kind of differen-
tiation since it is a small variable. The error mapping 
model of the parallel mechanism can be expressed as

where δW  denotes the position and pose error of the 
moving platform. δΛ represents the input error of driving 
displacement. δL is the length error of a fixed link. δDC 
is the position error of the spherical hinge at the moving 
platform. δA is the error of the apical position of the lin-
ear actuator. δS is the direction error of the linear actua-
tor. JW  is the Jacobian matrix of error transmission. GL is 
the coefficient matrix of link length error. GC is the coef-
ficient matrix of the position error of spherical hinge at 
the moving platform. GA is the coefficient matrix of api-
cal position error of linear actuator. GS is the error coef-
ficient matrix of the linear actuator direction.

The Jacobian matrix of error transmission is invert-
ible if the parallel mechanism is in a nonsingular con-
figuration. Eq. (4) can be abbreviated as

with

{

K = J
−1
W [E5GLGC GAG5]

δp = [δΛT δLT δCT δAT δST]
,where K  repre-

sents the mapping matrix of geometric error. δp 
denotes the geometric error source of the parallel 
mechanism. In δDC , δA and δS, there are errors in the x, 
y and z axis directions.
δp of Eq. (5) includes 11 error sources of the paral-

lel mechanism. Among them, the z-direction error of 
linear actuator apex δAz is 0. Since the direction vec-
tor of linear actuator along the x, y and z axes of the 
three errors are not independent of each other, two 
independent error parameters (declinations δϕ and δθ ) 
are used to facilitate the analysis of error sensitivity, as 
shown in Figure 3.

In Figure 3, δϕ = ϕ′ − ϕ, δθ = θ ′ − θ . The relationship 
between δϕ, δθ and δsx, δsy, δsz can be expressed as

where both ϕ and θ are known quantity. The expressions 
of δϕ and δθ can be derived from Eq. (6), so 11 error 
sources can be reduced to 9 independent error sources.

(3)

nTi dD + nTi εD × rDCi + nTi
O
DR · dDC i

= nTi dAi + nTi dlisi + nTi lidsi + nTi dLini + nTi Lidni.

(4)
JW δW = δΛ+ GLδL+GCδ

DC + GAδA+ GSδS,

(5)δW = K δp,

(6)











δsx = cos(δθ + θ) cos(δϕ + ϕ)− cos(θ) cos(ϕ),

δsy = cos(δθ + θ) sin(δϕ + ϕ)− cos(θ) sin(ϕ),

δsz = sin(δθ + θ)− sin(θ) cos(ϕ),

O
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Figure 2  Structure diagram of 5-PSS/UPU parallel mechanism
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2.2 � Calibration of Geometric Errors
According to the structural characteristics and driving 
mode of the 5-PSS/UPU parallel mechanism, a vector 
calibration algorithm based on the inverse position solu-
tion is used to calibrate the geometric error. The posi-
tioning accuracy of actuator can be ignored since the 
high-precision screw module has high repetitive position 
accuracy.

When considering the existence of errors, Eq. (1) can 
be written as

where D, ODR and ni in Eqs. (1) and (7) are identical in the 
same pose of the moving platform. By subtracting the 
two equations, the new equation is taken the dot prod-
ucts of both sides with vector nTi  as

Error sources δDC i and δsi contain two independ-
ent error parameters. There are eight unknown error 
parameters in Eq. (8), and the five branches include 
40 unknown error parameters. Five equations can be 
obtained by measuring posture of the moving platform, 
thereby at least 8 groups of different mechanism position 
parameters, which are required to be different as large as 
possible between them to reduce the coupling effect of 
each error parameter. According to actual condition, sev-
eral sets of position parameters are measured and took 
the average of that to obtain higher calibration accuracy.

The vector calibration algorithm is used to iden-
tify the parameters of the 5-PSS/UPU parallel mecha-
nism. Adopting Eq. (5) and the error data of Figure 4 as 
the actual size error, different position parameters can 
be obtained in terms of the actual structure size of the 
parallel mechanism, which is used to replace the actual 

(7)

D + O
DR

(

DC i + δDC i

)

= (Ai + δAi)+ (li + δli)(si + δsi)+ (Li + δLi)ni,

(8)nTi · ODR · δDC i = nTi · δAi + lin
T
i · δsi + δLi.

measured position parameters. The actual structure size 
parameters and mechanism size parameters obtained by 
identification are regarded as the input and output of the 
calculation of vector calibration. Finally, the input and 
output parameters are compared to evaluate the accuracy 
of the calibration algorithm. The actuator branched chain 
1 is selected for simulation calculation, and the pose 
parameters given by the actual structure size of the paral-
lel mechanism (Table 1).

As shown in Table 2, the error values were obtained by 
the vector calibration algorithm according to Eq. (8). One 
can find that most of the calibration values obtained by 
the vector calibration method have an accuracy of more 
than 90%, which indicates the correctness and effective-
ness of the calibration method. The reason for affecting 
the accuracy is that the driving input error is ignored. 
In addition, it is noteworthy that sensors also have some 
accuracy problems in real situation, so the accuracy of 
the actual calibration results will be lower than that of the 
simulation results. On the whole, the vector calibration 
method is generally effective for the calibration of 5-PSS/
UPU parallel mechanism.

To further verify the effectiveness of calibration for 
improving dynamic accuracy, the position and pose 
errors of the moving platform before and after the cali-
bration were compared. The specific process is that the 
joint displacement is obtained by using the inverse kin-
ematics solution in a given the trajectory of the moving 
platform, and then the motion trajectory error before 
and after calibration is compared after substituting it into 
the actual model. The error calibration values of all error 
sources obtained by the vector calibration algorithm are 
shown in Figure 4.

The pose errors of the moving platform after calibra-
tion can be calculated along the trajectory in Eq. (9). As 
shown in Figure  5, the calibrated dynamic accuracy of 

Figure 3  Linear motor direction vector error angle

Figure 4  Error calibration values
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the parallel mechanism has been greatly increased. In 
the fixed coordinate system, the position errors along the 
X-axis, Y-axis and Z-axis directions are reduced by 93.5%, 
92.5%, and 91.7% respectively, while the angle errors 
around the three directions are reduced by 93.6%, 91.2%, 
and 86.8% respectively. It illustrates that the necessity of 
calibration of the parallel mechanism before it is put into 
work. On the other hand, the reliability of the proposed 
calibration algorithm has also been illustrated.

3 � Analysis of Dynamic Accuracy
3.1 � Dynamic Modeling of Rigid‑flexible Coupling
Before establishing elastodynamic modeling of parallel 
mechanisms, two assumptions are proposed: one is that 
the displacement of the mechanism obtained by elasto-
dynamic analysis is much smaller than that of the rigid 
body dynamics. Second, whilst there is a coupling effect 
between the rigid and elastic motion of the mechanism, 
the coupling relationship terms between them can be 
ignored in terms of a mechanism with less flexibility [32].

3.1.1 � Spatial Beam Element Model
The five-branch links of the parallel mechanism are 
identically regarded as flexible parts, while the moving 
platform, fixed base, modules and each motion pair are 
all regarded as rigid bodies. Meanwhile, the influence 
of clearance of the spherical pair is ignored. The flexible 
link is regarded as the spatial beam element, as shown in 
Figure  6. The coordinate system oij-xijyijzij of beam ele-
ment is introduced where the subscript i and j represent 
the i-th branch link and the j-th element. Each element 
has 2 nodes where each node has 9 elastic displacement 
degrees of freedom. The generalized coordinate δij of the 
spatial beam element can be expressed as

(9)







x = 10 sin(0.4πt), β = −0.1π,

y = 10 sin(0.4πt), γ = 0,

z = 500− 5 sin(0.4πt).

Table 1  Posture parameter samples

Sample number γ (rad) β(rad) n1x (mm) n1y (mm) n1z (mm) l1 (mm)

1 0.0217 0.0217 − 0.5622 0.0093 0.8270 8.6538

2 0.0468 0.0468 − 0.5354 0.0196 0.8444 19.6880

3 0.0672 0.0672 − 0.5127 0.0280 0.8581 29.3322

4 0.0811 0.0811 − 0.4970 0.0337 0.8671 36.2070

5 0.0871 0.0871 − 0.4902 0.0362 0.8709 39.2365

6 0.0845 0.0845 − 0.4931 0.0351 0.8692 37.9234

7 0.0737 0.0737 − 0.5055 0.0307 0.8623 32.4848

8 0.0556 0.0556 − 0.5257 0.0233 0.8504 23.7929

Table 2  Calibration results

Error source Real value Calibration value Accuracy 
rate (%)

δL1 0.255 0.239 93.42

δDC1x − 0.144 − 0.130 90.06

δDC1y 0.00542 0.00601 88.89

δDC1z 0.0143 0.0155 91.61

δA1x − 0.103 − 0.110 92.50

δA1y − 0.234 − 0.221 94.65

δθ1 0.237 0.247 95.44

δϕ1 0.116 0.108 93.37

Figure 5  Comparison of posture errors before and after calibration 
(BC, before calibration; AC, after calibration)
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where δij1 − δij3 and δij10 − δij12 represent element node 
displacements. δij4 − δij6 and δij13 − δij15 represent ele-
ment node rotation angles, δij7 − δij9 and δij16 − δij18 rep-
resent element node curvatures.

The angular displacement around the axis is interpo-

lated by a cubic difference function. The displacement 
and rotation angle in the other directions are interpolated 
by a quintic function. If Wx

(

xij , t
)

, Wy

(

xij , t
)

, Wz

(

xij , t
)

, 
ϕx
(

xij , t
)

, ϕy
(

xij , t
)

 and ϕz
(

xij , t
)

 are used to denote the 
elastic displacement and elastic angular displacement of 
any point in the element along x-axis, y-axis and z-axis 
directions, other parameters can be represented by gen-
eralized coordinate δij .

According to the boundary conditions of the beam 
element and the corresponding interpolation function, 
the displacement functions of the beam element can be 
expressed as

where N ij1, N ij2, N ij3, and N ij4 represent the vector 
matrix obtained by interpolation.

(10)δij = [δij1, δij2, ..., δij17, δij18]
T,

(11)











W
�

xij , t
�

=
�

NT
ij1δijN

T
ij2δijN

T
ij3δij

�T
,

ϕ
�

xij , t
�

=
�

NT
ij4δijṄ

T
ij3δijṄ

T
ij2δij

�T
,

(12)
δrij =

[

xA yA zA θx θy θz 0 0 0

xB yB zB θx θy θz 0 0 0
]T
,

where xA(B), yA(B) and zA(B) represent the rigid body dis-
placements of the element nodes A(B) along the X-axis, 
Y-axis and Z-axis directions. θx, θy and θz represent the 
rotation angle of the two element nodes around the 
X-axis, Y-axis and Z-axis.

Assuming that the mass of each element is concen-
trated on the axis, the kinetic energy of the element can 
be expressed as

where ρ and S are the material density and cross-sec-
tional area of the element. Ix represents the polar inertia 
moment of the element cross-section along the X-axis 
direction.

If the shear deformation of beam element and the 
coupling between the axial and lateral displacement are 
ignored, the deformation potential energy of the spatial 
beam element can be expressed as

where Iy and Iz represent the polar inertia moments of the 
element cross-section of the element along the Y-axis and 
Z-axis. Kij denotes the stiffness matrix of the element.

According to the Lagrange dynamics equation [33], by 
applying the kinetic energy and deformation potential 
energy of the space beam element, the elastodynamic 
equation of the element in the local coordinate system 
can be expressed as

(13)

Tij =
1

2

� Lij

0
ρS





�

dωax

�

xij , t
�

dt

�2

+

�

dωay

�

xij , t
�

dt

�2

+

�

dωaz

�

xij , t
�

dt

�2


dx

+
1

2

� Lij

0
ρIp

�

dϕax
�

xij , t
�

dt

�2

dx =
1

2

�

δ̇ij + δ̇rij
�T

Me

�

δ̇ij + δ̇rij
�

,

(14)

Vij =
1

2
E

∫ Lij

0

[

(

∂ωx(xij , t)

∂x2

)2

+

(

∂ωy(xij , t)

∂x2

)2

+

(

∂ωz(xij , t)

∂x2

)2
]

dx

+
1

2

∫ Lij

0

GIx

(

∂ϕx
(

xij , t
)

∂x

)2

dx =
1

2
δTijK ijδij ,

with K ij = E

∫ Lij

0
(SṄ 1Ṅ

T
1 + IzN̈ 2N̈

T
2 + IyN̈ 3N̈

T
3 )dx

+ GIx

∫ Lij

0
Ṅ 4Ṅ

T
4 dx,

(15)Mij δ̈ij + K ijδij = F ij + Pij +Qij ,

with Mij = ρS

∫ Lij

0
NωN

T
ωdx + ρIx

∫ Lij

0
N 1N

T
1 dx,

Nω =
[

N 1 N 2 N 3

]

.
A B

ijx

17ijδ
14ijδ12ijδ

11ijδ
10ijδ
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Figure 6  Spatial beam element model
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where Mij denotes the mass matrix of the element. Fij 
denotes the generalized external force term including 
force and torque. Pij represents the interaction force term 

caused by the connection of the beam element. Qij is the 
rigid body inertial force term.

To facilitate elastic modelling, the elastodynamic equa-
tions in the local coordinate system are converted to 
the base coordinate system. As shown in Figure  7, the 

generalized coordinates δij in the base coordinate system 
can be expressed as

where Rij = diag
(

Rij ,Rij ,Rij ,Rij ,Rij ,Rij

)

, Rij represents 
the transformation matrix from the local coordinate sys-
tem to the base coordinate system of link.

From Eq. (16), the relational expressions with the first 
and second derivatives of δij can be obtained

By substituting Eq. (17) into Eq. (15), the elastodynamic 
equation of the element in the base coordinate system 
can be expressed as

where Mij = R
T

ijMijRij , C ij = 2R
T

ijMij
˙
Rij ,

3.1.2 � Elastodynamic Modeling of Fixed‑length Link
The fixed-length link is regarded as a flexible rod while the 
rest are assumed to be rigid parts. As shown in Figure 8, 
the link is divided into n elements, which are numbered 
1, 2, ..., n + 1 in sequence. Each element is connected adja-
cently in turn. The elastic displacement of the right end of 
the j-th element is consistent with that of the left end of the 
(j + 1)-th unit, 1 ≤ j ≤ n − 1.

Connecting the left and right ends of the fixed-length 
link are spherical pairs, thereby the curvature of the end 
beam element is 0, that is, δ(i1)7 = δ(i1)8 = δ(i1)9 = 0, 
δ(in)16 = δ(in)17 = δ(in)18 = 0. Synthetically, the general-
ized coordinate qi of the link can be obtained from the dis-
placement relationship between the elements.

(16)δij = Rijδij ,

(17)







δ̇ij = Rij
˙
δij +

˙
Rijδij ,

δ̈ij = Rij
¨
δij + 2 ˙Rij

˙
δij +

¨
Rijδij .

(18)Mij
¨
δij + C ij

˙
δij + K ijδij = Qij ,

K ij = R
T
ijMij

¨
Rij + R

T
ijK ijRij , Qij = R

T
ij

(

F ij + Pij +Qij

)

.

(19)qi = [δ(i1)1, δ(i1)2, . . . , δ(i1)6, δ(i2)1, δ(i2)2, . . . , δ(in)1, δ(in)2, . . . , δ(in)15].
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(a) Element generalized coordinates in link coordinate system
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ijy
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(b) Element generalized coordinates in base coordinate system 

Figure 7  Unit coordinate system transformation

Figure 8  Division of the link unit
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The relationship between qi and δij can be expressed as

where

By substituting Eq. (20) into Eq. (18) and taking the dot 
products of both sides with vector Aij to obtain the element 
elastodynamic equation of the link in the base coordinate 
system {O}.

where Mi
ij = A

T

ijMijAij , C i
ij = A

T

ijC ijAij , K i
ij = A

T

ijK ijAij , 
Qi

ij = A
T

ijQij .

The elastodynamic equation of the link can be obtained 
by superposing the elastodynamic equation of each 
element.

where Mi =
n
∑

j=1

Mi
ij , C

i =
n
∑

j=1

C i
ij , K

i =
n
∑

j=1

K i
ij ,

3.1.3 � Kinematics and Dynamics Constraint Equation
The kinematic constraint of the system is the deforma-
tion coordination condition. Compared with the five 
fixed-length links, the moving platform can be regarded 
as a rigid body due to relatively larger rigidity. In this par-
allel mechanism, the displacement of the hinge point of 
the fixed-length link connected to the moving platform 

(20)δij = Aijqi,

Aij =











�

B18×15 018×(9n−12)

� �

j = 1
�

,
�

018×(9j−12) E18 018×(9n−9j−3)

� �

j = 2, 3, · · · , n− 1
�

,
�

018×(9n−12) C18×15

� �

j = n
�

,

B18×15 =





E6

03×6

09×6

06×9

03×9

E9



, C18×15 =

�

E15

03×15

�

.

(21)Mi
ijq̈i + C i

ijq̇i + K i
ijqi = Qi

ij ,

(22)Miq̈i + C iq̇i + K iqi = Qi,

Qi =

n
∑

j=1

Qi
ij .

is consistent with that of the corresponding point of the 
moving platform, as shown in Figure 9.

The elastic deformation of the link makes the center 
point of the moving platform move from the original 
point OD to the point O′

D . The three position and pose 

changes caused by the movable platform are expressed 
as [δxD, δyD, δzD, δαD, δβD, δγD] , which is abbreviated 
as qD = [qD1, qD2, qD3, qD4, qD5, qD6] where qD1 = δxD, 
qD2 = δyD, qD3 = δzD, qD4 = δγD, qD5 = δβD and 
qD6 = δαD . δxD, δyD, δzD, δαD, δβD and δγD are small vari-
ables, which can be approximated as according to Taylor 
and McLaughlin Equations.

The transformation matrix from coordinate system 
{

D′ − X ′
DY

′
DZ

′
D

}

 to {D − XDYDZD} can be expressed as 
�T  . The transformation matrix ODT

′ from the coordinate 
system 

{

D′ − X ′
DY

′
DZ

′
D

}

 to the base coordinate system 
can be expressed as ODT

′ = �TO
DT  . From the view of the 

moving platform, the position of each hinge point on the 
moving platform is always fixed. The expression of C ′

i in 
the base coordinate system can be expressed as

where qCi is the elastic displacement of the hinge. JCi 
denotes the kinematic constraint matrix. qD represents 
the pose changes of the moving platform caused by elas-
tic deformation.

Eq. (24) is the kinematic constraint equation of the 
5-PSS/UPU parallel mechanism. Meanwhile, the dynamic 
constraint equation needs to be meet, i.e., the external 
force and inertial force of the moving platform must be 
balanced with the force exerted by the fixed-length link 
on the moving platform. Ignoring the coupling relation-
ship between the rigid body motion and elastic motion of 
the moving platform, the dynamic constraint equation of 
the moving platform can be expressed as

where MD is mass matrix of the moving platform. q̈aD 
denotes the acceleration array of the moving platform. F i 
is the combined force array of the branch-chain on the 

(23)

{

sin δαD ≈ δαD, sin δβD ≈ δβD, sin δγD ≈ δγD,

cos δαD ≈ 1, cos δβD ≈ 1, cos δγD ≈ 1.

(24)
[

q′Ci
1

]

= �T

[

qCi
1

]

= �T

[

J ciqD
1

]

,

(25)MDq̈aD = F i + Fw ,

DX

DY

DZ

DX ′

DY ′

DZ ′

X
Y

Z

O

iC

iC′

D

D′

Figure 9  Constraints of system kinematics
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moving platform, Fw is the external force array on the 
moving platform.

The dynamic constraint equation in term of 
q̈aD = q̈D + q̈rD can be rewritten as:

where QD = F i + Fw −MDq̈rD.

3.1.4 � Elastic Dynamics Equation of Parallel Mechanism 
System

On the basis of the kinematics and dynamics constraint 
relations of each component of the system, the elasto-
dynamic equations of each link are assembled from the 
elastodynamic equations of each branch chain. To facili-
tate the analysis, a generalized coordinate of branch 
chain q̂i(i = 1, 2, 3, 4, 5) is defined as

The relation equation qi = R̂iq̂i between q̂i and qi 
can be obtained from the kinematics constraint relation 
equation. Substituting the equation into Eq. (22), the new 
equation is taken the dot products of both sides with vec-
tor R̂

T

i  as

Meanwhile, to facilitate the assembly of the system 
equations, the generalized system coordinate q̂i and qi 
can be written as

The mapping relation between generalized system 
coordinates q and q̂i can be written as:

By assembling and superposing all the elastodynamic 
equations of the branch links as well as considering the 
effect of the system damping, the elastodynamic equa-
tions of the whole system in the base coordinate system 
can be expressed as

where M is the total mass matrix of the system. C is the 
coefficient matrix of the damping effect. K  is the total 
stiffness matrix of the system, Q is the generalized force 
matrix of the system.

(26)MDq̈D = QD,

(27)

q̂i =
[

δ(i1)1, δ(i1)2, . . . , δ(i1)6, δ(i2)1, δ(i2)2, . . . , δ(in)1, . . . , δ(in)9,

δ(in)13, δ(in)14, δ(in)15, qD1, qD2, qD3, qD4, qD5, qD6
]T
.

(28)Mi
¨̂qi + C i

˙̂qi + K iq̂i = Qi.

(29)







q̂i = [ q̃i qD ]T,

q =
�

q̃T1 , q̃
T
2 , q̃

T
3 , q̃

T
4 , q̃

T
5 , q

T
D

�T
.

(30)q̂i = Riq.

(31)Mq̈ + Cq̇ + Kq = Q,

3.2 � Analysis of Dynamic Accuracy
According to the force simulation results analyzed the 
Newton-Euler method of each rigid body component 
and the structure size of each component, one can 
know that the dynamic accuracy of the parallel mech-
anism is affected by the deformation of the five flex-
ible links. Thus, the elastodynamic model is actually a 
rigid-flexible coupling dynamics model [34]. To verify 
the correctness of the elastodynamic model, the gen-
eralized forces are obtained via the co-simulation with 
HYPERMESH, ANSYS and ADAMS software. First, the 
flexible links are meshed by hexahedron elements in 
HYPERMESH, and the mnf files of the meshed links are 
obtained via ANSYS. Then, loading the link files, rigid 
links are replaced with flexible bodies in ADAMS. The 
simulation model is shown as Figure 10.

The structure and material parameters of the 5-PSS/
UPU parallel mechanism are shown in Table  3. The 
external force Fw = [0 0 500 0 0 0] is imposed on the 
center of the moving platform. The motion trajectory of 
the moving platform is given in Eq. (32). The solution 
time and solution integration step are set to t = 2 s and 
�t = 0.001 s.

Figure 10  Rigid-flexible coupling model of parallel mechanism

Table 3  Structure parameters of 5-PSS/UPU parallel mechanism

Parameter name Value

Link length LBC (mm) 560

Link material density ρBC (kg·m−3) 2.7 × 103

Cross-sectional area of link SBC (mm−2) 400π

Elastic modulus of link EBC (Pa) 0.7 × 1011

Link shear modulus GBC (Pa) 2.7 × 1010

Mobile platform quality mD (kg) 20
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The actuator displacements are obtained by substi-
tuting the motion and dynamic constraints into the 
deformation equation, which is used as the input of the 
simulation model to obtain the actuator forces. The com-
parison between theoretical actuator forces calculated 
via Eq. (31) and that of simulation is shown in Figure 11. 
One can find that the errors of the actuator force of the 
theoretical value and the simulation value are less than 
4%, which proves the correctness of the rigid-flexible 
coupling dynamic model. The main reason for this error 
is that the number and form of the unit division of the 
simulation are different from the theory.

The Newmark method [35] is used to calculate the 
position and pose errors of the moving platform caused 
by the elastic deformation of the branch rod, as shown in 
Figure 12.

Obviously, it can be seen from Figures 12 and 13 that 
violent oscillations of the pose of the moving platform 
are emerged due to the elastic deformation of the branch 
link. The dynamic accuracy of the moving platform is 
greatly affected because of these oscillations. When the 
time t = 1.772 s and t = 1.264 s, the maximum displace-
ment error occurs along the X-axis and Y-axis direc-
tions and the Z-axis direction. At the time t = 1.791 s and 
t = 1.248 s, the maximum angle error arises in the β and 
γ direction.

To quantitatively analyze the influence of factors, such 
as the cross-sectional area of the branch link, the elastic 
modulus and the mass of the moving platform on the 
dynamic accuracy of the flexible parallel mechanism, the 
evaluation of above factors is obtained by calculating the 

(32)







x = 0, β = π/18 sin (2πt),

y = 0, γ = π/18 sin (2πt),

z = 0.554 + 0.08 sin (πt).

dimensionless root mean square error [36]. The influence 
index of dimensionless root mean square error can be 
written as

Figure 11  Comparison of simulation and theoretical actuator forces 
(Ft, Theoretical force; Fs, Simulation force)

Figure 12  Position displacement error of moving platform
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where xai represents the output of the moving platform 
in real condition, xi denotes the output of the moving 
platform in ideal condition. RMS(xai − xi) represents the 
root mean square error of the output of the moving plat-
form in real condition. RMS(xi) represents the root mean 
square error of the output of the moving platform in ideal 
condition. N is the simulated sample size.

(33)DRMSP(x) =
RMS(xai − xi)

RMS(xi)
× 100%,

with RMS(xai − xi) =

√

√

√

√

1

N

N
∑

i=1

(xai − xi)2,

RMS(xi) =

√

√

√

√

1

N

N
∑

i=1

x2i ,

Figure 13  Posture displacement error of moving platform

Figure 14  Quantitative analysis of the output DRMSP(x)
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To make the results more intuitive and representa-
tive, the dimensionless root mean square error influence 
index of the displacement, velocity and acceleration in 
the Z-axis direction of the centroid of the moving plat-
form will be calculated. It can be seen from Eq. (33) that 
the dynamic accuracy is proportional to the dimension-
less root mean square error. In terms of the different con-
ditions of the cross-sectional area, elastic modulus and 
moving platform mass of the branch link, the quantita-
tive calculation of the non-dimensional root mean square 
error of the output of the parallel mechanism is shown in 
Figure 14.

Figure  14(a) shows that the non-dimensional root-
mean-square error of the position, velocity and accelera-
tion of the moving platform of the parallel mechanism 
are proportional to the cross-sectional area. When the 
cross-sectional area increases from 400π  mm2 to 
900π  mm2, the dimensionless root-mean-square error 
influence indexes of displacement, velocity and accelera-
tion decrease from 0.0284%, 5.6235% and 59.6772% to 
0.0019%, 0.8277%, and 8.6590%, respectively. It shows 
that the larger cross-sectional area of the branch rod cor-
responds to the smaller output error of the mechanism 
and the higher dynamic accuracy.

Similarly, the non-dimensional root-mean-square error 
of the position, velocity and acceleration of the moving 
platform of the parallel mechanism are proportional to 
the elastic modulus, as shown in Figure 14(b). When the 
elastic modulus increases from 70  GPa to 206  GPa, the 
dimensionless root-mean- square error influence indexes 
of displacement, velocity, and acceleration decrease from 
0.0284%, 5.6235% and 59.6772% to 0.0029%, 0.7950% and 
20.0719%, respectively. It illustrates that the larger elas-
tic modulus of the branch rod corresponds to the smaller 
output error of the mechanism and the higher dynamic 
accuracy.

In Figure 14(c), the non-dimensional root-mean-square 
error of the position, velocity and acceleration of the 
moving platform of the parallel mechanism are propor-
tional to the mass of moving platform. When the mass 
of moving platform increases from 20  kg to 60  kg, the 
dimensionless root-mean-square error influence indexes 
of displacement, velocity, and acceleration increase from 
0.0284%, 5.6235% and 59.6772% to 0.0708%, 13.6946% 
and 124.250%, respectively. It shows that the greater 
mass of the moving platform corresponds to the greater 
the output error of the mechanism, the more unstable 
the vibration amplitude of the mechanism and the lower 
dynamic accuracy.

4 � Conclusions
Taking a 5-PSS/UPU parallel mechanism as an example, 
on the basis of an error model and the mapping law of 
geometric error to the dynamic accuracy, a vector cali-
bration algorithm was proposed to reduce the position 
and pose error along the whole motion trajectory. Then, 
the elastic dynamic model was established via analyz-
ing the elastic deformation of the components. Further-
more, the effect of the flexibility of the components on 
the dynamic accuracy of the parallel mechanism was 
analyzed.

(1)	 The influence of each error source on the dynamic 
accuracy of the parallel mechanism is analyzed 
based on the geometric error model. After the main 
error sources of calibration with the closed-loop 
vector method, the position error along the x-axis, 
y-axis, and z-axis directions are reduced by 93.5%, 
92.5%, 91.7% respectively, while the angle errors 
around the x-axis, y-axis, and z-axis directions are 
reduced by 93.6%, 91.2%, and 86.8% respectively. 
It shows that the dynamic accuracy of the parallel 
mechanism can be improved via reasonable com-
pensation of geometric errors.

(2)	 The elastic dynamics equation of the parallel mech-
anism is established by combining the finite element 
method with Lagrange method, which is solved by 
the Newmark direct integration method. Further-
more, the correctness of the rigid-flexible coupling 
dynamic model is verified by the co-simulation with 
HYPERMESH, ANSYS and ADAMS software.

(3)	 Numerical simulation results show that the cross-
sectional area of the branch connecting rod and 
the elastic modulus are proportional to the dimen-
sionless root mean square error of the output of 
the moving platform, while the mass of the moving 
platform is inverse proportional to the dimension-
less root mean square error of the output of the 
moving platform. With the requirements of rigidity 
and assembly, a reasonable parameter combination 
can effectively improve the dynamic accuracy of the 
mechanism.
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