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Influence of Shear Effects 
on the Characteristics of Axisymmetric Wave 
Propagation in a Buried Fluid‑Filled Pipe
Ping Lu1*   , Xiaozhen Sheng2, Yan Gao3 and Ruichen Wang4 

Abstract 

The acoustic propagation characteristics of axisymmetric waves have been widely used in leak detection of fluid-filled 
pipes. The related acoustic methods and equipment are gradually coming to the market, but their theoretical research 
obviously lags behind the field practice, which seriously restricts the breakthrough and innovation of this technology. 
Based on the fully three-dimensional effect of the surrounding medium, a coupled motion equation of axisymmetric 
wave of buried liquid-filled pipes is derived in detail, a contact coefficient is used to express the coupling strength 
between surrounding medium and pipe, then, a general equation of motion was derived which contain the pipe soil 
lubrication contact, pipe soil compact contact and pipe in water and air. Finally, the corresponding numerical calcula-
tion model is established and solved used numerical method. The shear effects of the surrounding medium and the 
shear effects at the interface between surrounding medium and pipe are discussed in detail. The output indicates 
that the surrounding medium is to add mass to the pipe wall, but the shear effect is to add stiffness. With the con-
sideration of the contact strength between the pipe and the medium, the additional mass and the pipe wall will 
resonate at a specific frequency, resulting in a significant increase in the radiation wave to the surrounding medium. 
The research contents have great guiding effect on the theory of acoustic wave propagation and the engineering 
application of leak detection technology in the buried pipe.
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1  Introduction
With the development of urbanisation in past decades, 
the component like pipe has become a necessary means 
of liquid and gas transportation. The issue of plumbing 
leakage is a widespread concern in both industry and 
academy due to its social, environmental and economic 
utility. It has been estimated that, in mainland China, 
current direct economic losses caused by underground 
pipe network leaks exceed 200 billion Yuan (approxi-
mately 22.65 billion pound sterling), sometimes the pipe 
leakage might cause unexpected major source of hidden 

danger not only for damaging urban biological environ-
ment and the security of people’s lives and properties. 
The latest research of the ‘track and trace’ technology for 
buried pipelines, which is widely used in the transporta-
tion of liquid and gas media such as crude oil and natu-
ral gas, is being widely discussed and studied extensively. 
Acoustic detection methods has attracted more atten-
tion because of such non-destructive evaluation does not 
directly destroy the structure of the original piping sys-
tem [1–8]. When the leaking of the pipeline happened, 
the high-pressure fluid in the pipe will be pressured out 
of the pipeline and cause unavoidable noise, The acous-
tic leak detection method is used to detect the events of 
leaks in different locations of the pipeline, using cross-
correlation technique to estimate the delay of leakage 
noise between two measuring points, then the location 
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of leakage would be calculated [9]. The effectiveness of 
these methods much depends on the rationality of the 
selection of the propagation characteristic parameters of 
the dominant wave in the pipeline.

The studies of the acoustic characteristics and propa-
gation mechanism of pipes is developed with pipe leak 
detection. At present, the acoustic leak detection and 
location of pipelines are usually carried out by time 
delay estimation method, which depends strongly on 
wave propagation characteristics. The early research 
was mainly to solve the wave equation in thin-walled 
shell pipe, in which the external medium outside pipes is 
considered vacuum. Fuller, et al. [10] derived the propa-
gation characteristics of n = 0 wave within elastic fluid-
filled pipes in vacuo defined as “hard” and “soft” shells, 
then the energy distribution of radial input force and 
internal pressure fluctuation under various waveforms is 
studied theoretically [11]. Xu et al. [12] studied the vibra-
tion propagation characteristics of liquid filling pipes in a 
vacuum environment. Pinnington et  al. [13] established 
an acoustic propagation model of cast iron pipes with-
out considering the dispersion characteristics, after that, 
studied the n = 0 wave propagation characteristic and 
transfer equation of the pressurised pipes [14, 15]. With 
the development of pipe research, the influence of the 
medium around the pipes has gradually attracted people’s 
attention. Sinha et al. [16] studied the numerical results 
of acoustic wave propagation characteristics of fluid-
filled pipes in infinite fluid. Greenspon [17] presented 
the axisymmetric vibration of thick-wall and thin-walled 
liquid-filled pipes in water medium. Long et al. [18] put 
forward a model of acoustic velocity dispersion in the 
process of acoustic vibration signal propagation and veri-
fied by experiments. Zhang, et al. [19] proposed a calcu-
lation model for sound velocity under different pipeline 
embedding conditions. Muggleton et  al. [20–22] ana-
lysed the propagation characteristics of fluid-dominated 
axisymmetric waves (s = 1, n = 0) in filled buried pipes. 
Gao et al. [23, 24] developed a general expression for the 
fluid-dominated wavenumber in a thin-walled fluid-filled 
pipe surrounded by a layered elastic soil, and the influ-
ence of load effect on elastic medium around pipeline is 
considered. Kalkowski et  al. [25] present a multi-wave 
model for propagation in axisymmetric fluid-filled wave-
guides based on the semi-analytical finite elements. Yan 
et  al. [26] developed an experimental investigation for 
mapping and locating pipe leakage employing the image 
fusion of ground surface vibration.

Current research studies reveal that at low frequencies, 
the fluid-dominated axisymmetric wave is not only the 
main carrying waveform of the vibration energy within 
the buried fluid-filled pipe, but also is an effective signal 

component which can be used for pipe leakage inspection. 
This waveform corresponds to the breathing mode of the 
pipeline, and the current researches on the problem are 
mainly focused on the metal pipeline. Due to the flexibility 
of the plastic pipe, the coupling between the pipe and the 
surrounding medium (mainly soil) is significant, making 
the influence of the acoustic wave propagation speed and 
the damping characteristics of the surrounding medium on 
the energy attenuation more complicated. However, such 
coupling effect has not been properly addressed in the past; 
especially the actual contact strength of the pipe-medium 
interface cannot be considered. With the large-scale use of 
plastic pipes and the frequent leakage hazards in China’s 
urbanisation construction, it is urgent to carry out related 
research to avoid unnecessary costs.

In this paper, the coupling vibration equation of “soil-
pipe-fluid” is derived in detail, the acoustic wave propa-
gation characteristic model of the buried pipeline is 
established, and the shear effect of the medium outside the 
pipe and the shear effect of the interface between the pipe 
and the medium on the axisymmetric wave of the fluid 
dominant are discussed.

2 � Differential Equations of Motion 
of the Medium‑Pipe‑Fluid System

2.1 � Free Motion Equation of Fluid‑Filled Pipe
In this section, the coupled motion equations of fluid dom-
inant axisymmetric waves in a buried fluid-filled pipes are 
deduced based on the motion equations of the fluid-filled 
pipe in vacuum [10]. The soil medium around the pipes is 
regarded as a homogeneous and isotropic elastic medium 
which allows both compression wave and shear wave to 
propagate. According to the current research, the s = 1 
wave is usually the main carrier of energy in the leakage 
signal therefore of most interest, and the dynamic damping 
effect of the pipeline is neglected. Figure 1 shows the cylin-
drical coordinates of pipes, where u, v, w are the shell dis-
placements in the axial (x), circumferential (θ), and radial 
(r) directions, respectively. a and h are the pipe radius and 
the wall thickness respectively and is assumed. The internal 
fluid is assumed to be inviscid, and both the surrounding 
medium and internal fluid are assumed to be lossless.

For axisymmetric waves (n = 0), the rotational motion 
of the pipe can be neglected, so the circumferential dis-
placement and shear stress are both set to zero, free-
motion equation of fluid-filled pipe can be described 
simply according to Donnell-Mushtari shell equation [27] 
as follows:

(1)
[
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A31 A33
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u
w
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where A11 =
∂2

∂x2
−

ρp(1−ν2p)

Ep
∂2

∂t2
 ; A13 =

νp
a

∂
∂x ; A13 = A31 ; 

A33 =
1
a2

+ δ2a2 ∂4

∂x4
+

ρp(1−ν2p)

Ep
∂2

∂t2
 . Here, ρp, Ep, νp are 

the density, Young’s modulus and Poisson’s ratio of the 
pipe; δ is the stiffness factor, δ2 = h2/12a2 ; pf (a) is the 
internal pressure at fluid pipe interface.

2.2 � Motion Equation of Soil Medium
The displacement of soil medium in all directions can be 
present as u(x, r, θ , t) . For axisymmetric motion, the 
torsional displacement can be ignored, then uθ = 0 . Trav-
elling wave solutions for the surrounding medium may be 
assumed of the form:

where Wm , Um are the amplitude in radial and axial 
motion of soil medium, which are the functions of radius 
r.

In the column coordinate system, the expansion process 
of soil medium can be expressed as

where ∂/∂θ = 0 . So, the rotating components of soil 
medium in the axial and radial direction can also be 
ignored. The rotating component in the direction θ is

Substituting for ur and ux from Eq. (2) into Eqs. (3) and 
(4) gives

(2)
{

ux = Um exp(i(ωt − knsx)),
ur = Wm exp(i(ωt − knsx)),

(3)� =
1

r

∂

∂r
(rur)+

∂ux

∂x
,

(4)̟θ=
1

2

(

∂ur

∂x
−

∂ux

∂r

)

.

According to stresses waves in solids [28], the displace-
ment of a point in the soil medium satisfies the equation 
of motion

where �m, µm are lame coefficients; ρm is the density of 
the medium; ∇ is the Hamilton differential operator.

The motion equation of soil medium can be obtained 
by combining Eqs. (2)‒(6)

where krds, k
r
rs are the compression and shear wavenum-

bers of soil in radial direction respectively, which can be 
expressed by compressed wavenumber kd , shear wave-
number kr and wavenumber in axil direction ks as follows:

where

Equation of motion shown in Eq. (7) can be expressed as 
the Bessel equation of cylindrical space outside the pipe

where G,H are the functions of coordinate in the axial (x) 
and time (t). H0(·), H1(·) are the Hankel functions of the 
second kind which describe outgoing waves.

In order to satisfy Eqs. (5) and (9), Um, Wm must have 
the form [24]

where Am, Bm are constants.Substituting Eq. (2) into Eq. 
(10) gives

where  T1 =

[

−iksH0(k
r

ds
r) i(krrs)

2H0(k
r
rsr)

k
r

ds
H

′
0
(kr

ds
r) ksH

′
0
(krrsr)

]

, H ′
0(χ) =

∂
∂χ

H0(χ).

According to Hook’s law, the relationship between 
stress and strain in the surrounding medium is

(5)
{

� = ( ∂Wm
∂r +

Wm
r − iksUm) exp(i(ωt − ksx)),

̟θ = 1
2 (−iksWm −

∂Um
∂r ) exp(i(wt − ksx)).

(6)(�m + µm)∇(�)+ µm∇
2
u = ρm

∂2u

∂t2
,

(7)

{

∂2�
∂r2

+ 1
r
∂�
∂r + (krds)

2� = 0,
∂2̟θ

∂r2
+ 1

r
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+ (krrs)
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(8)(krds)
2 = k2d − k2s , (k

r
rs)

2 = k2r − k2s ,

k2d = ρmω
2/(�m + 2µm), k

2
r = ρmω

2/µm.

(9)
{

� = GH0(k
r
dsr),

̟θ = HH1(k
r
rsr),

(10)
{
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r
dsr)+ iBm

1
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∂
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∂
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r
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Figure 1  Coordinate system for a buried fluid-filled pipe
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Substituting Eq. (11) into Eq. (12) gives

where T2 =





−2iµmksk
r

ds
H

′
0
(kr

ds
r) iµm(2k

2
s − k2r )H1(k

r
rsr)

2µm(k
r

ds
)2H ′′

0
(kr

ds
r)− �mk

2
d
H0(k

r

ds
r) −2µmksk

r
rsH1(k

r
rsr)



,

H ′′
0 (χ) =

∂2

∂χ2H0(χ).Combining Eqs. (10) and (12) and 
eliminating the potential coefficients Am,Bm , the rela-
tionship between stress and displacement can be 
expressed by

where T = T 2T
−1
1 .

2.3 � Coupling Motion Equations of Pipe‑Medium
When single axisymmetric waves are considered, the 
load distribution at the pipe-medium interface is shown 
in Figure 2. It assumes that the pipe and medium are in 
constant contact during the course of movement, the 
radial displacement of the surrounding medium at the 
pipe interface is assumed the same as that of the pipe-
wall, ur = w. The contact stress of pipe and medium in 
the radial direction are considered as identical, which 
expressed as σ̃rr . The frictional stress along the pipe sur-
face equals the shear stress in the axial direction, which 
expressed as τx . The coupled motion equations given by 
Eq. (1) can be written as

(12)

{

σ̃rx = µm

(

∂ur
∂x +

∂ux
∂r

)

,

σ̃rr = �m�+ 2µm
∂ur
∂r .

(13)
(

σ̃rx
σ̃rr

)

= T2

(

Am

Bm

)

exp(i(ωt − ksx)),

(14)
(

σ̃rx
σ̃rr

)

= T

(

ux
ur

)

.

According to Donnell-Mushtari shell equation [29], the 
displacement of pipe can be expressed

Substituting Eq. (16) into Eq. (15) gives

where � is the non-dimensional frequency, 
� = ωa/cL = kLa ; cL is the shell compressional wave 
speed; kL is the shell compressional wavenumber, 
k2L = ω2ρp(1− ν2p)/Ep . For a thin-walled pipe h/a ≪ 1 , 
so δ2(ksa)4 is very small to be ignored. Then, the displace-
ment of the shell can be solved by the pressure in the pipe 
pf (a) , the shear force between the pipe and the soil τx and 
the compressive stress between the pipe and the soil σ̃rr.

According to Ref. [10], for the liquid cannot withstand 
shear force, the liquid pressure inside the pipe can be 
expressed directly as the normal displacement of the pipe 
wall:

where krfs is the internal fluid radial wavenumber which 
can be expressed (krfs)

2 = k2f − k2s  , here, kf = ω/cf  is the 
fluid wavenumber and cf =

√

Bf /ρf  is the free-field fluid 
wavespeed; Bf  is the bulk modulus and ρf  is the density of 
the internal fluid; J0 is a Bessel function of order zero; 
J ′0 = (∂/∂χ)J0(χ).

It is challenging to give a more realistic coupling equa-
tion between soil and pipeline because of the complexity 
of soil properties. Pipeline and soil are usually defined as 
two extreme conditions, lubrication contact and compact 
contact to solve the wavenumber [22]. The actual bound-
ary at pipe-soil interface is not both but a transient state. 
In recent studies, contact coefficients ξ ∈ [0, 1] have been 
used to characterize this uncertain coupling relation-
ship. ξ = 1 represents compact contact and ξ = 0 repre-
sents lubrication contact, then at the pipe soil interface 

(15)
[

A11 A13

A31 A33

](

u
w

)

=
1− ν2p

Eh

(

−τx
pf (a)+ σ̃rr(a)

)

.

(16)
{

u = Us exp(i(ωt − knsx)),
w = Ws exp(i(ωt − knsx)).

(17)

[

�2 − (ksa)
2 −iνp(ksa)

−iνp(ksa) 1−�2 + δ2(ksa)
4

](

u
w

)

=
1− ν2p

Eph
a2
(

−τx
pf (a)+ σ̃rr(a)

)

,

(18)pf (a) =
ω2ρf J0(k

r
fsa)

krfsJ
′
0(k

r
fsa)

w,

Figure 2  Displacements and stresses acting at the pipe soil interface
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ξu = ux w = ur . The force at the interface of the pipe and 
soil shown by Eq. (14) may be expressed separately by the 
displacement of the pipe,

Substituting Eqs. (18) and (19) into Eq. (17) to eliminate 
the sine term exp(i(ωt − ksx)) , The axisymmetric s wave 
coupled equations of motion can be obtained for the bur-
ied fluid-filled pipe, as

Solving Eq. (20) can be obtained

The fluid loading term, FL [11] and the surrounding 
medium loading matrix, SL, are given by

then Eq. (21) can be written in a simple form

3 � Wave Characteristic
For the s=1 wavenumber in buried fluid-filled pipes, 
k21 ≫ k2L , so (k1a)2 ≫ �2 . When the frequency is low, 
krfs → 0 . According to the properties of Bessel functions, 

(19)
{

τx = T11ξu+ T12w,
σ̃rr(a) = T21ξu+ T22w.

(20)












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































































[�2 − (ksa)
2 +

1− ν2p

Ep

a2

h
T11ξ ]Us−

[iνp(ksa)−
1− ν2p

Ep

a2

h
T12]Ws = 0,

[−iνp(ksa)−
1− ν2p

Ep

a2

h
T21ξ ]Us + [1−�2 + δ2(ksa)

4−

ρf

ρp

a

h

�2

krfsa

J0(k
r
fsa)

J ′0(k
r
fsa)

−
1− ν2p

Ep

a2

h
T22]Ws = 0.

(21)

[�2 − (ksa)
2 +

1− ν2p

Ep

a2

h
T11ξ ]

[1−�2 −
ρf

ρp

a

h

�2

krfsa

J0(k
r
fsa)

J ′0(k
r
fsa)

−
1− ν2p

Ep

a2

h
T22]

= [iνp(ksa)−
1− ν2p

Ep

a2

h
T12][iνp(ksa)+

1− ν2p

Ep

a2

h
T21ξ ].

(22)FL =
ρf

ρp

a

h

�2

krfsa

J0(k
r
fsa)

J ′0(k
r
fsa)

,

(23)SL =
(1− ν2p)

Ep

a2

h
T ,

(24)
[�2 − (ksa)

2 + ξSL11][1−�2 − FL− SL22]

= [iνp(ksa)− SL12][iνp(ksa)+ ξSL21].

χ → 0 , J0(χ)
J ′0(χ)

≈ − 2
χ

 . Then the fluid loading term, FL, can 
be simplified as

Substituting Eq. (25) into Eq. (24) gives

where,

where α stands for the surrounding medium loading and 
pipe parameters which can be used to evaluate the influ-
ence of soil load on the pipe wall displacement. β refers 
to fluid and pipe parameters which can be used to evalu-
ate the influence of fluid load on the pipe wall displace-
ment. By means of a complex modulus of elasticity Ep 
( α and β always complex), it is found from Eq. (26) that 
k1 is always complex indicating the s = 1 wave decays as 
it propagates. Then α and β are described as the meas-
ures of the loading effects of surrounding medium and 
fluid on the pipe wall respectively. By Eq. (27), β can be 
obtained directly, but α which is related to the unknown 
wavenumber k1 cannot be solved directly. When the pipe 
is placed in a different medium, the equations can be 
simplified by boundary conditions.

3.1 � Lubrication Contact of Pipe‑Medium
On the condition of lubrication contact, the contact coef-
ficient ξ = 0 , the measure of the loading effects of the 
surrounding medium α = −ν2p − SL22 − iνpSL12/k1a , 
then Eq. (24) can be written as

It can be seen from Eq. (28) that the propagation of 
k1 wave will be delayed as it propagates caused by the 
effect of the pipe wall (i.e., a complex β ) and additional 
damping of the surrounding medium (i.e., a complex α ), 
although there is no frictional damping between pipe and 
surrounding medium.

3.2 � Pipe in Non‑Viscous Liquids
For non-viscous liquids, the shear modulus µm = 0 , contact 
coefficient ξ = 0 , as a result, the lame coefficient �m = Bm , 
the shear wavenumber kr → ∞ , and µmk

2
r = ω2ρm . Then 

(25)FL = −2
ρf

ρp

a

h

�2

(k2f − k2s )a
2
.

(26)k21 = k2f (1+
β

1−�2 + α
),

(27)











α = −SL22 −
[νp+iSL12/k1a][νp−iξSL21/k1a]

1−ξSL11/k1a
,

β = 2 a
h

�

1−ν2p
EP

�

Bf ,

(28)

k21 = k2f (1+
β

1−�2 − ν2p − SL22 − iνpSL12/k1a
).
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the surrounding medium loading matrix SL can be sim-
plified as SL11 = SL12 = 0 . In this case, the measure of 
the loading effects of the surrounding fluid reduces to 
α = −ν2p − SL22 . Eq. (24) can be rewritten as

where SL22 = −
ρm
ρp

a2

h

k2L
krd1

H0(k
r
d1a)

H ′
0(k

r
d1a)

 . Since SL22 is a function of 
the complex k1, α is a complex value. So, s1 wave attenuation 
is attributed to both material losses along the pipe wall (i.e., 
a complex β ) and radiation losses due to the added damping 
of the surrounding medium (i.e., a complex α).

3.3 � Pie in Air
For an air medium, the loading effects of air on the pipe 
wall can be neglected, the contact coefficient is consid-
ered zero. Then, T = 0, SL = 0, and α = −ν2p . Eq. (24) can 
be expressed are consistent with Ref. [13]:

At low frequency, �2 ≪ 1 , and Re(β) ≫ 1 , then k21 > k2f  . 
And that means the wave speed of the s = 1 wave will be 
significantly lower than that of the free wave. In Eq. (30), 
the imaginary part only exists in β , so the wave attenua-
tion is only due to losses within the pipe wall.

Compared to the equation from Eq. (26) to Eq. (30), 
it can be seen that, if the real part of α less than zero, 
Re(α) < 0 , external loads of surrounding medium act as 
additional mass, and the wavenumber will increase com-
pared to the in-air value; Contrarily, if the real part of α 
more than zero, Re(α) > 0 , external loads of surrounding 
medium act as additional stiffness, and the wavenumber 
will decrease relative to the in-air case.

4 � Numerical Results and Discussions
4.1 � Numerical Method
This section presents some numerical results of the shear 
effect on s = 1 wavenumber. The real part kre and imagi-
nary part kim of k1 are set as variables and the Eq. (24) is 
described as a target function

The Neldes-Mead method [30] is used to solve Eq. (31). 
In the optimization progress, the termination condition 
is set as

(29)k21 = k2f (1+
β

1−�2 − ν2p − SL22
),

(30)k21 = k2f (1+
β

1−�2 − ν2p
).

(31)F(kr, ki) =

∣

∣

∣

∣

∣

∣

∣

[�2 − (ksa)
2 − SL11][1−�2 − FL− SL22]−

[iνp(ksa)+ SL12]
2

∣

∣

∣

∣

∣

∣

∣

→ min .

where n is the iterations, kre, kim are the centre of the 
simplex in the current step, ε is the tolerance.In the cal-
culation process, the derivative of Bessel function can be 
deal based on its property.

For the arguments of the Bessel or Hankel functions are 
derived from the square root, it is important to choose 
the sign of the root. The method to choose the sign of the 
root in Ref. [24] is be used. If the real part is larger, the 
partial wave can be considered homogeneous and must 
propagate away from the shell, so the positive square 
root is chosen. On the other hand, if the imaginary part 
is larger, the partial wave can be considered inhomogene-
ous and must decay away from the shell, so the negative 
square root is selected.

The material properties of the fluid, pipe and surround-
ing medium are shown in Table 1. Considering the effi-
ciency and convergence, the wavenumbers are calculated 
up to 1  Hz. The thickness/radius ratio of pipe is 0.125, 
and the plate compressional wave speed is 1725 m/s.

Considering the previous analysis, the shear effect of 
surrounding medium and shear effect of pipe-medium 
interface both affect the wave propagation and attenua-
tion characteristics. This section presents some numeri-

cal sample to discuss the influence of the shear effects. 
The attenuations are defined by the loss in dB per unit 
propagation distance by

(32)
{

1

3

3
∑

i=1

[

F(k(n)re , k
(n)
im )− F(kre, kim)

]2
}1/2

< ε,

(33)















J ′0(k
r
fsa) = −J1(k

r
fsa),

H ′
0(k

r
dsa) = −H1(k

r
dsa),

H ′′
0 (k

r
dsa) = (H2(k

r
dsa)−H0(k

r
dsa))/2,

H ′
1(k

r
rsa) = (−H2(k

r
rsa)+H0(k

r
rsa))/2.

Table 1  Properties of the fluid, pipe and surrounding medium

Properties Fluid Pipe Surrounding medium

Density (kg/m3) 1000 2000 2000

Young’s modulus (N/
m2)

− 5.0×109 −

Bulk modulus (N/m2) 2.25×109 2013 4.5×109

Shear modulus (N/m2) − − 2×107−10×107

Poisson’s ratio − 0.4 0.481

Material loss factor − 0.065 −
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4.2 � Shear Effect of Surrounding Medium
Some numerical results are shown in this section to explain 
the influence of the shear effect of surrounding medium. In 
order to eliminate the effects of surrounding medium and 
pipe interface friction, the “lubrication contact” assume is 
used here. Figure 3 gives the wavenumber for the soil with 
different shear modulus. It can be seen that from Figure 3, 
as the previous theoretical analysis, the effect of the pipe 
and surrounding medium is used to substantially increase 
the real part of the s = 1 wavenumber from the free-field 
value kf . This solution is similar to Ref. [24]. As the shear 
effect of the surrounding medium increased, the real 
part of the wavenumber gradually decreased. The overall 

(34)Loss(dB/unit distance a) = −20
Im

{

k1a
}

ln(10)
.

loading influences of the surrounding medium are to add 
mass to the pipe wall, but the shear effect is to add stiff-
ness, and additional stiffness increases with the increase of 
the shear effect of surrounding medium.

Figure 4 shows the loss in dB per unit propagation dis-
tance. Compared with the attenuation in vacuo, the radia-
tion into the surrounding medium is significantly used 
for much larger attenuation. The attenuation is more seri-
ous in the high-frequency range. In fact, at the lower fre-
quency range, the attenuation dominated by losses within 
the pipe, as the shear effects increased, the attenuation 
slightly decreased. At higher frequencies, radiation as both 
compressional waves and shear waves contributes to the 
attenuation, and then the attenuation increased with the 
shear effects increased. So the shear effects of surround-
ing medium should not be neglected in leak detection of 
buried pipeline.

Figure 3  Real part of wavenumber for s=1wave

Figure 4  Loss of s = 1wave

Figure 5  Real part of the measure effect α

Figure 6  Imaginary part of the measure α
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In order to better understand the shear effects of sur-
rounding medium on dispersive behaviour of s=1 wave, 
the real and imaginary parts of the measure α are given 
in Figures 5 and 6 respectively. As shown in these figures, 
the level of Re(α) is much larger than Im(α) , thus Re(α) 
plays a dominant role in the overall loading effects of sur-
rounding medium on the propagation characteristics. 
As mentioned above, a negative Re(α) indicates that the 
surrounding medium is to add mass to the pipe wall and 
the propagation wavenumber will be increased. With the 
increase of the shear effects, Re(α) increased and slightly 
larger than the value in vacuo, thus the shear effects of 
surrounding medium have some impact on the propaga-
tion characteristics of s = 1 wave. Additionally, it can be 
noted that Re(β) ( Re(β) = 0.58) is much larger than Re(α) , 
which shows the fluid loading dominants the vibration of 

the pipe wall for plastic pipe, so more attention should be 
paid to fluid load wave in leak detection.

4.3 � Shear Effects at the Pipe/Medium Interface
The shear effects at the pipe/medium interface exist in 
buried pipe systems, but it is normally ignored because 
the coupling relationship between pipes and surround-
ing medium is not clear. Figure 7 and Figure 8 show the 
wavenumber for s = 1 wave with different contact coef-
ficients. In calculation, the shear wave speed of surround-
ing medium is set to 300 m/s.

As shown in Figure  7, the real part of wavenumber 
for s = 1 wave much larger than the free-field value kf 
with different contact coefficients. Whether the shear 
effect of the interface between surrounding medium 
and pipe wall has a great influence on the real part at 
high frequency (kfa > 0.09). Once these shear effects are 
included, the influence of the contact coefficient on the 
real part is mainly reflected in the middle frequency band 
( kf a ∈ (0.02, 0.09) ). In Figure 8, it can be seen that with 
the consideration of the shear effect of the interface, more 
waves can be radiated into the surrounding medium. The 
attenuation increased as the frequency increased, and has 
a local peak in the middle frequency band. The frequency 
corresponding to these peaks increased with the contact 
coefficient increased. The local peak of attenuation is 
caused by the resonance between the additional mass of 
the surrounding medium and the pipe wall, resulting in 
a dramatic increase in the wave intensity of radiation to 
the surrounding medium. At the high frequency, the fric-
tion force between surrounding medium and pipe wall 
seems not enough for surrounding medium to vibrate 
with the pipe wall, so the results of attenuation gradually 
approaching the value in the case of lubrication contact.

In engineering applications, the actual wave number 
and attenuation should be obtained according to the 
actual pipe-soil coupling situation, and the delay esti-
mation should be carried out according to the leakage 
signal dispersion in order to obtain the accurate leakage 
location results. Medium and low-frequency signal is 
generally be used, and the contact coefficient which has 
a certain influence on the propagation characteristics of 
the wave in this frequency band should not be ignored.

4.4 � Field Test
This section presents some numerical results of wave-
number from actual plastics water pipes. Two field tests 
were carried out for pipes in different buried environ-
ments. The details of the experimental setup and anal-
ysis for test 1 can be found in Refs. [21, 24]. The test 2 
selected the water supply network in Southwest Jiaotong 

Figure 7  Real part of wavenumber for s=1 wave

Figure 8  Loss of s = 1 wave
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University, the sensor is set in the pipe well, and fire 
hydrant discharge signal as leakage signal. The distance 
from pipe well to hydrant discharge is 12 m. The soil and 
pipe coupling parameters cannot be obtained in both 
tests, the theoretical calculation and experimental com-
parison are not presented in this paper.

Figures 9 and 10 show the real and the imaginary com-
ponents of the measured and fitting wavenumbers. Due to 
the different buried environments of pipes in the two tests, 
both the real and imaginary components of the measured 
wavenumbers are large different. There are some reflec-
tions from pipe connections blow 160 Hz which cause 
some fluctuations at the corresponding frequency. At the 
high frequency the measured data becomes unreliable due 
to the noise interference. Experimental measurements 
show good agreement on the trend of the wavenum-
bers with predictions in Figures 7 and 8. Due to the shear 

effects at the pipe/medium interface, the attenuations have 
a local peak (about 700 Hz in test 1 and 320 Hz in test 2), 
which consistent with the present predictions.

5 � Conclusions

(1)	 Axisymmetric waves in thin-walled fluid-filled 
plastic pipe surrounded by an infinite elastic 
medium which can sustain both longitudinal and 
shear waves have been studied. The contact coef-
ficient has been introduced to describe the contact 
strength of pipe and surrounding medium. Then a 
general expression for the fluid-dominated wave-
number has been presented in buried fluid-filled 
plastic pipe.

(2)	 For axisymmetric waves, the fluid loading domi-
nates the vibration of the plastic pipe wall. The 
overall loading effects of the surrounding medium 
are to add mass to the pipe wall, but the shear effect 
is to add stiffness, which increases with the shear 
effect of surrounding medium. The shear effect of 
the surrounding medium also influences the attenu-
ation of the wave.

(3)	 The added mass of the surrounding medium will 
resonate with the pipe wall at a specific frequency 
under the shear effects at the pipe/medium inter-
face, resulting in the change of the propagation 
characteristics of the wave near the frequency. At 
higher frequency, the influence of shear effects at 
the interface on the propagation characteristics 
is not obvious. The wavenumber can be solved by 
compact contact theory and the attenuation will 
approximate the lubricating contact state with the 
frequency increases.
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