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Vibration Characteristics of Rotor System 
with Loose Disc Caused by the Insufficient 
Interference Force
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Abstract 

The rotating parts looseness is one of the common failures in rotating machinery. The current researches of looseness 
fault mainly focus on non-rotating components. However, the looseness fault of disc-shaft system, which is the main 
work part in the rotor system, is almost ignored. Here, a dynamic model of the rotor system with loose disc caused by 
the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic 
surface topography, the vibration characteristics of the system are analyzed and discussed by the number simula-
tion, and verified by the experiment. The results show that the speed of the shaft, the contact stiffness, the clearance 
between the disc and shaft, the damping of the disc and the rotational damping have an influence on the rotation 
state of the disc. When the rotation speed of the disc and the shaft are same, the collision frequency is mainly com-
posed of one frequency multiplication component and very weak high frequency multiplication components. When 
the rotation speed of the disc and the shaft is close, the vibration of the disc occurs a beat vibration phenomenon in 
the horizontal direction. Simultaneously, a periodical similar beat vibration phenomenon also occurs in the waveform 
of the disc-shaft displacement difference. The collision frequency is mainly composed of a low frequency and a weak 
high frequency component. When the rotation speed of the disc and the shaft has great difference, the collision fre-
quency is mainly composed of one frequency multiplication, a few weak high frequency multiplication components 
and a few low frequency multiplication component. With the reduction of the relative speed of the disc, the trajectory 
of the disc changes from circle-shape to inner eight-shape, and then to circle-shape. In the inner eight-shape, the 
inner ring first gradually becomes smaller and then gradually becomes larger, and the outer ring is still getting smaller. 
The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with 
the loose disc.
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1  Introduction
Looseness fault of rotating parts, which is one of the 
common failures in the rotor system, has a serious influ-
ence on the normal operation of the rotor system, and 
leads to the reduction of mechanical power, or even 

machine malfunction. Generally, mechanical loose-
ness includes pedestal looseness, base looseness and 
so on. For a double-disc single-span rotor system with 
pedestal looseness fault, Ma et al. [1] used three dimen-
sional spectrums and shaft center trajectory to analyze 
the influence of no loose bolt stiffness, looseness gap, 
and rotational speed on the dynamic characteristics 
of the rotor system. Sun et  al. [2] proposed a finite ele-
ment model which can characterize complex structures, 
and verified the effectiveness of the proposed model by 

Open Access

Chinese Journal of Mechanical 
Engineering

*Correspondence:  lizhinong@tsinghua.org.cn

1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang 
Hangkong University, Nanchang 330063, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-022-00724-1&domain=pdf


Page 2 of 15Li et al. Chinese Journal of Mechanical Engineering           (2022) 35:70 

comparing critical speed and vibration mode. Zhang 
et al. [3] proposed a rotor model with nonlinear oil film 
force, and solved this mode by the numerical method 
of Runge-Kutta, and obtained frequency characteris-
tics of the rotor system. Lu et al. [4] proposed a coupling 
model of the rotor system with looseness and rub-impact 
faults, and discussed the influence of the looseness stiff-
ness and the clearance between rotor and stator on the 
dynamic characteristics of the rotor system based on the 
nonlinear finite element method and the contact theory. 
Based on nonlinearity measure, Mian et al. [5] proposed 
an evaluation method of the pedestal looseness in bear-
ing-rotor system with piecewise-linear stiffness, damp-
ing and nonlinear elastic force under constant rotational 
speed at constant speed. In Ref. [6–9], the correspond-
ing model was proposed, and the dynamic characteristics 
of the proposed model were analyzed. Liu [10] proposed 
a dynamic model of looseness-rubbing coupling fault 
in the rotor-bearing system with dual-disk and three-
support. Wang [11] proposed a model of rotor-support-
casing in the rotor system with support looseness fault. 
Yu [12] proposed a dynamic model of rotor-bearing sys-
tem with loose support. Chen [13] proposed a dynamics 
model in a rotor-ball bearing-stator coupling system with 
rotor unbalance-loose coupling fault. For the complex 
movement of a single loose bearing pedestal rotor-bear-
ing system, Zhang [14] proposed a nonlinear non-steady 
oil-film force model with short bearings. Cao et  al. [15] 
proposed a nonlinear dynamic equation of rotor-bearing 
system with looseness fault between the pedestal and 
the casing. Xu et al. [16] proposed a dynamics model of 
dual rotor system with loose bearing pedestal based on 
the dual rotor structure of experiment rig. Yang et  al. 
[17] analyzed the vibration features of the rotor system 
with respect to the effects of geometrical nonlinearity, 
rotor-stator rub and pedestal looseness, and revealed the 
change rules of resonant characteristic and rub region 
under different loose stiffness. Cao et  al. [18] proposed 
a vibration differential equation with piecewise-linear 
stiffness by considering the system with one-side sup-
port looseness and the rotor with unbalanced extraneous 
exciting force. Cao et al. [19] proposed a dynamic model 
of rotor-bearing-pedestal system to investigate the vibra-
tion characteristics and stability due to fit clearance.

However, the above researches ignore the looseness fault 
in the disc-shaft system. Because the working environment 
of the disc in the rotor system is complex, and the working 
time is also long, the looseness of the disc-shaft easily occurs. 
When the interference between the disc and shaft is insuf-
ficient, the relative sliding of disc-shaft will be easily caused. 
This relative sliding has an influence on the dynamic char-
acteristics of the rotor system with a loose disc. At present, 
some progress has been made in the looseness of rotating 

parts of rotor system [20–25]. Behzad [20, 21] proposed the 
model of the looseness of disc-shaft system with large clear-
ance based on the hypothesis that the rotating speed of the 
disc is constant, and the disc and the shaft are always in con-
tact. However this model ignored the collision and friction of 
disc-shaft, and assumed that the disc and the shaft rotated at 
the same speed. Obviously, the engineering practice does not 
meet these requirements. In practice, the disc-shaft loose-
ness in the rotor system generally also occurs when the clear-
ance is small, even no clearance [22]. In our works [23, 24], a 
dynamic model of rotor system with the clearance between 
the shaft and the disc is proposed in Ref. [23],and a rotor sys-
tem model with disc-shaft looseness with non-steady-state 
oil film force is proposed in Ref. [24]. Wei [25, 26] studied 
the disc-shaft looseness fault in rotor system caused by the 
excessive speed of the shaft. However these research results 
in disc-shaft system do not consider the influence of the disc-
shaft looseness fault on the motion state of the rotor system 
with the insufficient interference force.

Therefore, the motion differential equations of the rotor 
system with loose disc caused by the insufficient interfer-
ence force is proposed based on the contact model of the 
disc-shaft system with the microscopic surface morphol-
ogy, and the numerical simulation and experiment test 
have been completed. The influence factors of the motion 
state of the disc, the vibration characteristics of the disc, 
the variation of the displacement difference of disc-shaft, 
and the trajectory of the disc. These obtained outcomes 
provide theoretical support for the fault diagnosis of the 
disc-shaft system with slight loose disc in engineering 
practice.

2 � Mathematical Model
2.1 � Contact Model of Disc‑Shaft System 

with the Microscopic Surface Morphology
Figure  1 is a schematic diagram of disc-shaft contact 
[27]. In Figure 1, the outer ring represents the reference 
plane of the inner diameter of the disc and the inner ring 

Figure 1  The contact model in disc-shaft system



Page 3 of 15Li et al. Chinese Journal of Mechanical Engineering           (2022) 35:70 	

represents the cylindrical surface of the outer diameter 
of the shaft. The coordinates of the center of the shaft, 
which is represented by o1, is the point (x1, y1). The sym-
bol r1 is the radius of the shaft. The coordinates of the 
center of the disc, which represented by o2, is the point 
(x2,y2). The symbol r2 is the radius of the disc. The exten-
sion line of o1o2 intersects with the shaft and the disc at 
point P and point Q respectively. The line o1Q rotated 
around the center of the shaft by an angle, which is rep-
resented by φ counterclockwise, and intersects with the 
shaft and the disc at points B and C respectively.

In the triangle �o1o2C , the line o1o2 is the relative 
distance r of disc-shaft, and o2C = r2 , According to 
cosine theorem, o2C can be written as

Due to cos∠o2o1C = − cosϕ , Eq. (1) can be simpli-
fied as

Then, at any angle φ , the clearance between the disc 
and shaft is as follows

When the height of micro-convex, which is repre-
sented by z, is higher than the clearance between the 
disc and shaft, which is represented by �d(φ) , The 
normal force generated by the micro-convex can be 
obtained [24]

where γ1 is the radius of the disc, γ2 is the radius of the 
shaft, γ is the radius of the micro-convex, E1 is the elas-
tic modulus of the disc, E2 is the elastic modulus of the 
shaft, and E is the elastic modulus of the micro-convex. 
Suppose that the normal distribution function of z on the 
contact surface is φ(z) , the mean of normal force gener-
ated by a single micro-convex at any angle ϕ is expressed 
as

(1)o2C
2
= o1o2

2
+ o1C

2
− 2o1o2o1C cos∠o1o2C .

(2)r22 = r2 + o1C
2
+ 2ro1C cosφ.

(3)
�d(φ) = o1C − r1 =

√

r22 − r2 sin2 φ − r cosφ − r1.

(4)�F = 4E
′

γ 1/2(z −�d(ϕ))3/2
/

3,

(5)1
/

γ = 1
/

γ1 + 1
/

γ2,

(6)1
/

E′
= 1

/

E1 + 1
/

E2,

(7)�F(ϕ) =

∫

∞

�d(ϕ)

�Fφ (z)dz.

Let η is the density of the micro-convex, r1d(ϕ) is the 
length of the micro-convex, then the number of micro-
convex is ηlr1dϕ on the micro-area segment with a width 
of l. The total force on the entire contact surface can be 
obtained by integrating Eq. (7)

Since the contact force is symmetric with respect to o1o2 , 
Eq. (8) can be simplified as follows

The radial force generated by a single micro-convex at 
any angle φ is �Fr = �F cosϕ , then the mean of radial 
force is �Fr(ϕ) = �F(ϕ) cosϕ . Therefore, the total radial 
force generated over the entire circumference can be 
expressed as follows

Suppose that the contact of each micro-convex meets to 
the conditions of friction law of Coulomb in the process of 
contact of disc-shaft, let µ is the friction coefficient at the 
contact point, and �ω = ω1 − ω2 , where ω1 is the rota-
tion speed of the disc, ω2 is the speed of the shaft. Then 
the tangential force generated by a single micro-convex at 
any angle ϕ is �Ft = sgn(�ω)�F cosϕ , then the mean of 
the tangential force is �Ft(ϕ) = sgn(�ω)�F(ϕ) cosϕ . the 
total tangential force generated over the entire circumfer-
ence can be expressed as

where sgn(�ω) is the step function, which is expressed as

The frictional force Ff  generated by the entire contact 
surface of disc-shaft can be expressed as follows:

(8)

F =

∫ 2π

0
�F dϕ

= 4
/

3lηr1E
′

γ 1/2
∫ 2π

0

∫

∞

�d(ϕ)

[z −�d(ϕ)]φ (z)dzdϕ.

(9)

F =
8

3
lηr1E

′

γ 1/2
∫

π

0

∫

∞

�d(ϕ)

[z −�d(ϕ)]φ (z)dzdϕ.

(10)

Fr =
8

3
lηr1E

′

γ 1/2
∫

π

0

∫

∞

�d(ϕ)

[z − d(ϕ)]φ (z) cosϕdzdϕ.

(11)

Ft = sgn(�ω)
8

3
µlηr1E

′

γ 1/ 2
∫

π

0

∫

∞

�d(ϕ)

[z −�d(ϕ)]φ(z) cosϕdzdϕ,

(12)sgn(�ω) =







1, �ω > 0,
0, �ω = 0,
−1, �ω < 0.

(13)Ff = sgn(�ω)µF .
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The components of the force from the disc on the shaft 
in two coordinate directions are respectively expressed as 
follows.

2.2 � Motion Equations of the Rotor System with Loose Disc
Figure  2 shows a rotor system with concentrated mass 
and rigid support. This system is composed of a rotor and 
a loose disc. From Ref. [20], the influence of gyroscopic 
effect on the dynamic response of the system is very lit-
tle, for simplicity, the gyroscopic effect is ignored. The 
dynamic response of the rotor system can be obtained by 
integrating the equation of motion.

The vibration equation of the shaft is expressed as 
follows

where m1 , c1 and k are the mass, damping coefficient and 
stiffness coefficient of the shaft respectively, e1 and ω 
are the eccentric distance and the rotation speed of the 
shaft respectively. fx and fy are the components of the 
force from the disc on the shaft in the x-direction and the 
y-direction respectively.

The vibration equations of the disc are is expressed as 
follows

where m2 is the mass of the disc , c2 is the vibration 
damping coefficient of the disc, e2 is the eccentric dis-
tance of the disc.

(14)
{

Fx
Fy

}

= −
1

r

[

Fr −Ft
−Ft Fr

]{

x1 − x2
y1 − y2

}

.

(15)

{

m1ẍ1 + c1ẋ1 + kx1 = m1e1ω
2 cos (ωt)+ fx,

m1ÿ1 + c1ẏ1 + ky1 = m1e1ω
2 sin (ωt)−m1g + fy,

(16)



















m2ẍ2 + c2ẋ2

= m2e2θ̇
2 cos θ +m2e2θ̈ sin θ − fx,

m2ÿ2 + c2ẏ2

= m2e2θ̇
2 sin θ −m2e2θ̈ cos θ −m2g − fy,

The rotational vibration equation of the disc is 
expressed as follows

where j is the moment of inertia of the disc, c3 is the rota-
tional damping coefficient of the disc.

For the convenience of calculation and analysis, dimen-
sionless to the equations [15–17], The dimensionless 
equation of motion can be written as

where τ=ωt, Xi=xi/σ, Yi=yi/σ, Ẋi=dxi/dτ, Ẏ i=dyi/dτ,  
Ẍi=dẊi/dτ, Ÿ i=d Ẏ i/dτ, i=1,2, ω0 =

√

k
/

(m1 +m2) , 
Ω=ω/ω0, E1=e1/σ, E2=e2/σ, ξ1=c1/m1ω0, ξ2=c2/m2ω0, 
ξ3=c3/m3σ2, K=k/m1ω0

2, G=g/ω0
2σ, Fx=fx/m1ω0

2σ, Fy=fy/
m1ω0

2σ, J=j/m1σ2, S=m2/m1, C=4/3lηr1E’σ√2σγ/π. σ is 
the root mean square of the micro-convex distribution 
on contact surface of disc-shaft.

Due to the nonlinear of Eq. (18), its analytical solu-
tion is hardly obtained. Here the fourth-order Runge-
Kutta [28–30] method is used to solve Eq. (18). In order 
to ensure the convergence of the solution and reduce the 
calculation error, the time step of the solution is set to 
π

/

640.

3 � Numerical Analysis
In this model, the parameters is ω0 = 500 , E1 = 1 , 
E2 = 4 , G = 98

/

25 , s = 1
/

3 , J = 1
/

3× 107 , σ = 10−5 , 
the initial condition is that the disc is stationary.

3.1 � Analysis of Motion State of the Disc
When the disc-shaft looseness fault occurs, the speed of 
the disc is no longer the same as speed of the shaft, and 
the motion state will inevitably change, this is also the 
unique characteristic of this fault. From Eqs. (10), (11), 
(13) and (18), the speed of the shaft Ω, contact stiffness C, 
clearance H, damping of the disc ξ2 and rotational damp-
ing ξ3 have an influence on the motion characteristics of 
the disc-shaft system. Therefore, the motion state of the 
disc is discussed mainly from the above several factors.

(17)jθ̈ + c3θ̇
2
= ft r2 −m2ge2 cos θ ,

(18)


























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













Ẍ1 = E1 cos τ +
Fx
�2 −

ξ1
�
Ẋ1 −

K
�2X1,

Ÿ1 = E1 sin τ −
G
�2 +

Fy
�2 −

ξ1
�
Ẏ1 −

k
�2Y1,

Ẍ2 = E2θ̇
2 cos θ + E2θ̈ sin θ −

Fx
s�2 −

ξ2
S� Ẋ2,

Ÿ2 = E2θ̇
2 sin θ − E2θ̈ cos θ −

Fy
s�2 −

ξ2
S� Ẏ2 −

G
�2 ,

θ̈ = FtR
2 1
j�2 − SG 1

j�2 E2 cos θ −
ξ3
j θ̇

2,

Loose discRotor

Figure 2  The model of the rotor system with loose disc
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3.1.1 � Influence of Shaft Speed
The change of relative speed of the disc θ ′1 at different 
rotation speed of the shaft Ω is shown in Figure  3. The 
change of relative speed of the disc θ ′1 with speed of the 
shaft Ω is shown in Figure 4. From Figure 3a, when Ω≤1, 
the shaft speed of the disc is basically the same as that of 
the shaft. From Figure 3b, when 1 < Ω ≤ 2.6 , The disc is 
no longer at the same speed as the shaft, θ ′1 decreases with 
the increase of Ω . From Figure 3c, when 2.6 < Ω ≤ 5.8 , 
the rotation speed of the disc is no longer stable and in a 
surge state. From Figure 3d, when 5.8 < Ω , the rotation 
speed of the disc returns to a stable state again, and the 
relative speed of the disc θ ′1 continues to decrease with 
the increase of Ω . From Figure 4, when Ω is low, the disc 
and the shaft basically rotate at the same speed. With the 
increasing of Ω , θ ′1 decreases gradually.

3.1.2 � Influence of the Contact Stiffness of Disc‑Shaft
Due to the contact stiffness of disc-shaft 
C = 4

/

3lηr1E
′

σ

√

2σγ
/

π  , i.e., there is a linear relation-
ship between C and the contact stiffness of disc-shaft. 
Therefore, the influence of the elastic modulus on the 
motion state of the disc is known by discussing the influ-
ence of C on the motion state of the disc. Figure 5 is the 
change of relative speed of the disc θ ′1 under the different 
C.

When C ≤ 4 × 106 N/m , θ ′1 gradually increased with 
the increase of C, which is seen in Figure  5a. When 
4 × 106 N/m < C ≤ 6× 107 N/m , the rotational speed of 
the disc is in the state of surge, and θ ′1 gradually increases 
with the increases of C, which is seen in Figure  5b. 
When 6× 107 N/m < C ≤ 3× 108 N/m , the rotation 
speed of the disc recovers to the stable state again, and 

τ
(a) Ω=0.6

θ 1
’(r

ad
/s)

500 505 5100.99

1

1.01
θ 1

’(r
ad

/s)

(b) Ω=1.6
τ

0 200 400 600
0

0.5

1

θ 1
’(r

ad
/s)

(c) Ω=3
τ

300 350 400 450 500 550 600
0.3

0.4

0.5

0.6

θ 1
’(r

ad
/s)

τ
(d) Ω=6.6

0 200 400 600
0

0.1

0.2

0.3

0.4

Figure 3  Change of θ ′
1
 under the different Ω 

Figure 4  Change of θ ′
1
 with Ω (The unmarked part indicates that θ ′

1
 is 

in a surge state)
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θ ′1 continues to increase with the increases of C, which is 
seen in Figure 5c. When C > 3× 108 N/m , the rotation 
speed of the disc is the same as that of the shaft. With the 
increase of C, the rotation state of the disc is more sta-
ble. The increase of C is the increase of the contact stiff-
ness, also is the increase of the interference force and the 
reduction of the looseness fault of the disc-shaft, there-
fore the rotation speed of the disc is getting more stable.

3.1.3 � Influence of the Clearance of the Disc‑Shaft
Let H is the clearance of the disc-shaft. Figure 6 shows 
the change of relative speed of the disc θ ′1 under the dif-
ferent clearance of the disc-shaft H. From Figure  6, θ ′1 

Figure 5  Change of θ ′
1
 under the different C 
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gradually decreases with the increases of H. The reason 
is that the interference force of disc-shaft system grad-
ually decreases with the increases of H. The influence 
of the interference force is consistent with the rotation 
speed of the shaft and the contact stiffness of disc-shaft.

3.1.4 � Influence of Damping
Figure 7 is the change of θ ′1 at ξ1 = 1/3 . Firstly, the influ-
ence of ξ1 is analyzed. From Figure 7, under the condi-
tion of ξ2 = 2 and ξ3 = 1

/

3× 109 , With the change of 
ξ1 , the simulation result demonstrates that the rotation 
state of the disc is almost constant, that is, the motion 
state of the disc is not sensitive to the change of ξ1.

Next, the influence of ξ2 is analyzed, under the condi-
tion of ξ1 = 1

/

3 and ξ3 = 1
/

3× 109 , With the change of 
ξ2 , the simulation result shows that when ξ2 ≥ 12 , θ ′1 is 
always stable at 0.61. However, when ξ2 ≤ 12 , the vibra-
tion amplitude of the disc becomes larger and larger, 
the rub-impact of the disc-shaft also gets more and 
more intense. The rotation speed of the disc is sharply 
increased from a certain value, which is lower than the 
rotational speed of the shaft, to fluctuation at the rota-
tional speed of the shaft, and the sharp increase of 
rotating speed and serious vibration of the disc occur 
simultaneously. The serious change of the disc-shaft rub-
bing causes the frictional force to change drastically, thus 
causes θ ′1 to fluctuate at θ ′1=1. Figure  8 shows that the 
change of motion state of the disc at ξ2 = 0.1 . From Fig-
ure 8, the amplitude of the disc is particularly large at this 
time, and is still increasing, this is obviously abnormal.

Finally, the influence of ξ3 is analyzed under the condi-
tions of ξ1 = 1

/

3 and ξ2 = 2 . Figure 9 shows the change 
of θ ′1 with ξ3 . The simulation result shows that the relative 
speed of the disc θ ′1 gradually decreases with the increase 
of ξ3 . When ξ3 is smaller, θ ′1 decreased rapidly, and when 

ξ3 is larger, θ ′1 decreased slowly. The bigger the rotational 
damping is, the lower the rotating speed of the disc is.
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Figure 7  Change of θ ′
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Figure 8  Change of motion state of the disc at ξ2 = 0.1

Figure 9  Change of θ ′
1
 with ξ3
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3.2 � Time‑Frequency Characteristic Analysis
Figure 10 shows that the time-frequency characteristics 
of the disc-shaft when the rotation speed of the disc is 
the same as that of the shaft. From Figure 10b, the spec-
trum of X2, i.e., in the horizon direction, is mainly com-
posed of one frequency component. However, there is a 
process of collision between the disc and the shaft, and 
the frequency components of the disc-shaft collision 
should occur in the spectrum. The disc-shaft displace-
ment difference R is a parameter that directly describes 
the process of the disc-shaft collision. From Figure 10d, 
one frequency multiplication is its main component in 
the collision frequency, and the amplitude of other fre-
quency components are extremely weak compared with 
that in the X2 spectrum, therefore the collision frequency 
of the disc-shaft is not found in the spectrum of X2.

Figure  11 shows that the time-frequency characteris-
tics of the disc in the x-direction and the time-frequency 
characteristics of the disc-shaft displacement difference R 
when θ ′1 = 0.86 . From Figure 11b, the rotating frequency 
component of the disc and the rotating frequency com-
ponent of the shaft the spectrum are both in the spec-
trum of X2. The collision frequency component also 
doesn’t occur in the spectrum of X2. Since the rotating 
frequency component of the disc and the rotating fre-
quency component of the shaft are close, the beat vibra-
tion of the disc occurs in the waveform of X2, which is 
seen in Figure  11a. The periodic similar beat vibration 
also occurs in the waveform of the displacement differ-
ence of the disc-shaft. The result shows that the displace-
ment difference of the disc-shaft has a causal relationship 
with the vibration of X2. From Figure 11d, the spectrum 
of R is composed of a few low frequency multiplication 
components and a few weak high frequency components. 
Similarly, because the amplitude of the collision fre-
quency component is very small, the collision frequency 
component is also not found in the X2 spectrum.

Figure  12 shows that the time-frequency characteris-
tics of the disc in the x-direction and the time-frequency 
characteristics of the disc-shaft displacement difference R 
when θ ′1 = 0.42 . From Figure 12b, the rotating frequency 
component of the disc and the rotating frequency com-
ponent of the shaft the spectrum are both in the spec-
trum of X2. The collision frequency component also 
doesn’t occur in the spectrum of X2. From Figure 12d, the 
spectrum of R is composed of one multiplication compo-
nent. A few weak low frequency multiplication compo-
nents and a few weak high frequency components also 
occur in the spectrum of R. Similarly, because the ampli-
tude of the collision frequency component is very small, 
the collision frequency component is also not found in 
Figure 12b.Figure 10  Time-frequency characteristics of the disc-shaft at the 

same speed
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Figure 11  Time-frequency analysis when θ ′
1
= 0.86 Figure 12  Time-frequency characteristics when θ ′

1
= 0.42
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Figure 13  Trajectory of the disc under the different θ ′
1
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3.3 � Motion Trajectory
Figure 13 shows the trajectory of the disc under the dif-
ferent θ ′1 . From Figure  13, With the decreases of θ ′1 , the 
trajectory of the disc changes from circle-shape to inner 
eight-shape, and then return to circle-shape. In the 
inner eight-shape, the inner ring first gradually becomes 
smaller and then gradually becomes larger, the outer ring 
is still getting smaller. The appearance of the inner eight-
shape is caused by the difference of θ ′1.

The reason why the outer ring has been getting smaller 
is that the centrifugal force is getting smaller due to the 
smaller and smaller relative speed of the disc-shaft θ ′1.

4 � Experimental Research
The experimental system is composed of ZT-3 rotor test 
bench, Bentley displacement sensor and MULLER-BBM 
sampling system. Figure 14 is the ZT-3 rotor test bench. 
The ZT-3 rotor test bench consists of the power output 
system and the rotor system with loose disc. The flexible 
coupling is used as the demarcation point, the right half 
part of demarcation point is the power output system, 
which consists of motor, joint coupling, shaft, bearing 
seat, flexible coupling and phase bonder. The right side of 
the flexible coupling is connected to a shaft with a length 
of 320  mm, and the left side of the flexible coupling is 
connected to a shaft with a length of 500 mm. Both ends 
of the shaft are supported by the sliding bearings. In 
order to ensure the accuracy of the experimental results 
of the rotor system with loose disc, the flexible coupling 
is used to make the power output system only output 
torque, not horizontal or vertical vibration. The phase 
bonder is used to measure the rotational frequency of the 
shaft by an eddy current sensor. The motor in the experi-
ment is a DC motor with the output power of 250 W. The 
speed controller is used to realize stepless speed in the 
range of 0−10000 r / min. The left half part of the demar-
cation point is a rotor system with loose disc, which 

consists of a rotating shaft, two bearing seats, and a disc. 
The diameter of the shaft is 9.5 mm, the mass of the disc 
is 0.612 kg, the outer diameter of the disc is 76.2 mm, and 
the distance between the centers of the two bearing seats 
is 422 mm.

This experiment is used to analyze the vibration char-
acteristics of the rotor system with loose disc. Figure 15 
is the structure of the loose disc, which consists of the 

Figure 14  ZT-3 rotor test bench

Figure 15  Structure of the loose disc
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inner ring and the outer ring. These two parts are assem-
bled together by a cone surface, and the pressure is pro-
vided by the screw thread. When the screw thread rotates 
clockwise, the inner ring and the outer ring are extruded 
by the cone surface contact, so that the diameter of the 
inner ring reduces. Therefore, the screw thread is only 
turned clockwise to fix the disc on the shaft, then turned 
counterclockwise, thus the clearance can be generated 
between the disc and the shaft.

4.1 � Analysis of the Spectrum
Figure 16 shows that the waveform and spectrum in the 
x-direction when the disc and the shaft is at the same 
speed. Figure  17 shows that the waveform and spec-
trum in the x-direction when the speed of the disc and 
the speed of the shaft is close. Figure  18 shows that 
the waveform and spectrum in the x-direction when 
the disc and the shaft have a large difference in rota-
tion speed. From Figure 16, when the disc and the shaft 
is at the same speed, the collision frequency is mainly 

composed of one frequency multiplication component. 
From Figure 18, when the disc and the shaft have a large 
difference in rotation speed, compared with Figure 16, 
except for one frequency multiplication component in 
the collision frequency, a few weak high frequency mul-
tiplication components and a few weak low frequency 
multiplication components also occur in the collision 
frequency. From Figure 17, when the speed of the disc 
and the speed of the shaft is close, the vibration of the 
disc occurs a beat vibration, the collision frequency is 
mainly composed of a few low frequency components. 
The experimental results are consistent with the simu-
lation results.  

4.2 � Analysis of Motion Trajectory
Figure 19 shows that the trajectory of the disc under the 
different θ ′1 . When the disc and the shaft is at the same 
speed, the trajectory of the disc is basically a circle-shape. 
With the decreases of θ ′1 , the trajectory changes from 
circle-shape to inner eight-shape, and then return to 
circle-shape. In the inner eight-shape, the inner ring first 
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Figure 16  Waveform and spectrum in the x-direction when the disc 
and the shaft is at the same speed
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gradually becomes smaller and then gradually becomes 
larger, and the outer ring is still getting smaller. the 
experimental results are also consistent with the simula-
tion results. The experiment results show that the simula-
tion model is very reasonable.

5 � Conclusions
A dynamic contact model of the rotor system with loose 
disc is proposed based on the contact model of the disc-
shaft system with the microscopic surface topography. 
The influences of Ω, C, H, ξ2 and ξ3 on the motion state 
of the disc are discussed. The time-frequency character-
istics of the disc and the motion trajectory of the disc are 
discussed. The experiment results verified the effective-
ness of the proposed model. The obtained conclusions 
are as follows.

(1)	 The rotation speed of the shaft, the contact stiff-
ness, the clearance, the damping of the disc, and 
the rotational damping all have an influence on the 
motion state of the disc. Compared with the rotor 

system with a loose disc caused by the clearance fit, 
The variation of vibration characteristics of the pro-
posed model is smaller and more stable. The rotor 
system with slight fault is more stable and conforms 
to objective laws.

(2)	 The spectrum of the disc in the x direction is com-
posed of the rotation frequency of the disc and the 
rotation frequency of the shaft. When the rotation 
speed of the disc and the rotation speed of the shaft 
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Figure 18  Waveform and spectrum in the x-direction when the disc 
and the shaft have a large difference in rotation speed

Figure 19  Trajectory of the disc under the different θ ′
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are same, the collision frequency is mainly com-
posed of one frequency multiplication component. 
When the rotational speed of the disc and the rota-
tion speed of the shaft is close, the beat vibration 
occurs in the x direction of the disc. Simultane-
ously, the periodical similar beat vibration phenom-
enon also occurs in the waveform of the disc-shaft 
displacement difference. The collision frequency is 
mainly composed of low frequency multiplication 
components and weak high frequency multiplica-
tion components. When the disc and the shaft have 
a large difference in rotation speed, the collision fre-
quency is mainly composed of one frequency mul-
tiplication component, a few weak high frequency 
multiplication components and a few weak low fre-
quency multiplication components.

(3)	 With the decrease of the relative rotation speed of 
the disc, the trajectory of the disc changes from 
changes from circle-shape to inner eight-shape, 
and then return to circle-shape. In the inner 
eight-shape, the inner ring first gradually becomes 
smaller and then gradually becomes larger, and the 
outer ring is still getting smaller. The appearance 
of the inner eight-shape is caused by difference in 
the speed between the disc and the shaft. With the 
rotating speed of the disc is getting lower and lower, 
the centrifugal force provided by the disc is get-
ting smaller and smaller, and the outer ring of inner 
eight-shape is getting smaller.

Acknowledgements
Not applicable.

Authors’ Information
Zhi-Nong Li, born in 1966, is currently a professor at Key Laboratory of Nonde-
structive Testing, Ministry of Education, Nanchang Hangkong University, China. He 
received his PhD degree from Zhejiang University, China, in 2003. His research 
interests include intelligent detection and signal processing, mechanical fault 
diagnosis.
Fang Qiao, born in 1995, is currently a graduate student at Nanchang Hang-
kong University, China.
Wen-Xiu Lu, born in 1974, is currently an associate professor at Tsinghua univer-
sity, China. He received his PhD degree from Tsinghua University, China, in 2002.
Jie liu,born in1991, is a graduate student at Nanchang Hangkong University, 
China, in 2018.
Dong Wang, born in 1984, is currently an associate professor at State Key Labo-
ratory of Mechanical Systems and Vibration, Shanghai Jiao tong University, China. 
He received his PhD degree from City University of Hong Kong, China, in 2015.
Fu-Lei Chu, born in 1959, is a professor at Tsinghua University, China. He 
received his PhD degree from Southampton university, England, in 1993.

Authors Contributions
ZL were in charge of the proposed model; FQ and JL wrote the manuscript; 
WL, DW and FC were in charge of the experiment. All authors read and 
approved the final manuscript.

Funding
Supported by National Natural Science Foundation of China (Grant Nos. 
51675258, 51875301, 51265039), State Key Laboratory of Mechanical System 

and Vibration of China (Grant No. MSV201914), and Laboratory of Science and 
Technology on Integrated Logistics Support, National University of Defense 
Technology of China (Grant No. 6142003190210).

Competing Interests
The authors declare no competing financial interests.

Author Details
1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang 
Hangkong University, Nanchang 330063, China. 2 Laboratory of Science 
and Technology on Integrated Logistics Support, National University 
of Defense Technology, Changsha 410073, China. 3 Department of Mechanical 
Engineering, Tsinghua University, Beijing 100084, China. 4 State Key Labora-
tory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, 
Shanghai 200240, China. 

Received: 28 May 2020   Revised: 14 March 2021   Accepted: 8 April 2022

References
	[1]	 H Ma, Z Zhang, X Y Tai, et al. Dynamic characteristic analysis of a rotor 

system with pedestal looseness under two load case. Proceedings of the 
CSEE, 2012, 32(26): 132–137+158.

	[2]	 C Y Sun, R Yang, Y S Chen, et al. Modeling and experiment verification 
of a casing-dual-rotor high-dimensional system. Journal of Vibration and 
Shock, 2018, 37(18): 152–157 (In Chinese).

	[3]	 J Zhang, B C Wen. A study of frequency characteristics of rotor system 
with pedestal looseness at two supports. China Mechanical Engineering, 
2008(1): 68–71 (In Chinese).

	[4]	 Y J Lu, Z H Ren, H Hou, et al. Study on looseness and impact-rub coupling 
faults of vertical dual-disc over-hung rotor-bearing system. Journal of 
Vibration, Measurement & Diagnosis, 2007(2): 102–107+169.

	[5]	 J Mian, J G Wu, X S Peng, et al. Nonlinearity measure based assessment 
method for pedestal looseness of bearing-rotor systems. Journal of Sound 
and Vibration, 2017, 411: 232–246.

	[6]	 Z Y Qin, Q K Han, F L Chu. Bolt loosening at rotating joint interface and its 
influence on rotor dynamics. Engineering Failure Analysis, 2016, 59.

	[7]	 Z Y Qin, F L Chu. Numerical studies on time-varying stiffness of disk-drum 
type rotor with bolt loosening. Journal of Physics: Conference Series, 2015, 
628(1).

	[8]	 Y Liu, Z Y Xue, L Jia, et al. Response characteristics of looseness-rubbing 
coupling fault in rotor-sliding bearing system. Mathematical Problems in 
Engineering, 2017, 2017(PT.11): 1–10.

	[9]	 Z P Li, Y G Luo, H L Yao, et al. Dynamics and fault characteristics of rotor-
bearing system with pedestal looseness. Journal of Northeastern University 
(Natural Science), 2002, 23(11): 1048–1051 (In Chinese).

	[10]	 Y Liu, X Y Tai, H Ma, et al. Looseness-rubbing coupling fault of dual-disk 
three-support rotor-bearing system. Journal of Aerospace Power, 2013, 
28(5): 977–982 (In Chinese).

	[11]	 H F Wang, G Chen. Modeling for whole missile turbofan engine vibration 
with support looseness fault and characteristics of casing response. 
Journal of Aerospace Power, 2015, 30(3): 627–638 (In Chinese).

	[12]	 H Yu, Y H Ma, S Xiao, et al. Mechanical and dynamic characteristics of 
bearing with looseness on high-speed flexible rotor. Journal of Beijing 
University of Aeronautics and Astronautics, 2017, 43(8): 1677–1683 (In 
Chinese).

	[13]	 G Chen. Nonlinear dynamics of unbalance-looseness coupling fults of 
rotor-ball bearing-stator coupling system. Chinese Journal of Mechanical 
Engineering, 2008, 44(3): 82–88 (In Chinese).

	[14]	 J Zhang, H Li, B C Wen. On the pedestal looseness of dynamic oil film-
rotor system. Journal of Northeastern University (Natural Science), 2003, 
24(10): 880–880 (In Chinese).

	[15]	 Q S Cao, Y M Huang. An improved genetic algorithm for pedestal loose-
ness parameter identification in rotor-bearing systems. Journal of Vibra-
tion, Measurement & Diagnosis, 2018, 38(3): 446–453.

	[16]	 H Z Xu, N F Wang, D X Jiang. Bearing pedestal looseness dynamic model 
of dual rotor system and fault feature. Journal of Aerospace Power, 2016, 
31(11): 2781–2794 (In Chinese).



Page 15 of 15Li et al. Chinese Journal of Mechanical Engineering           (2022) 35:70 	

	[17]	 Y Yang, Y R Yang, D Q Cao, et al. Response evaluation of imbalance-rub-
pedestal looseness coupling fault on a geometrically nonlinear rotor 
system. Mechanical Systems and Signal Processing, 2019, 18: 423–442.

	[18]	 Q S Cao, Q Xiang, G L Xiong. Incremental harmonic balance method for 
the study of support looseness fault’s characteristics. Journal of Mechani-
cal Strength, 2015(6): 999–1004 (In Chinese).

	[19]	 H R Cao, F Shi, Y M Li, et al. Vibration and stability analysis of rotor-bear-
ing-pedestal system due to clearance fit. Mechanical Systems and Signal 
Processing, 2019, 133: 106275.

	[20]	 M Behzad, M Asayesh. Vibration analysis of rotating shaft with loose disk. 
IJE Transactions B: Applications, 2002, 15(4): 385–393.

	[21]	 M Behzad, M Asayesh. Numerical and experimental investigation of 
the vibration of rotors with loose discs. Proc. IMechE Part C. Mechanical 
Engineering Science, 2010, 224: 85–94.

	[22]	 G X Yang, J L Xie, S X Zhou, et al. Research on the influence of axle design 
parameters on contact pressure between axle and hub. Journal of the 
China Railway Society, 2009, 31(3): 31–35 (In Chinese).

	[23]	 J Liu, Z N Li, W X Luo. Effects of unsteady oil film force on rotor system 
with loose disk and shaft. Journal of Vibration and Shock, 2019, 38(17): 
268–275 (In Chinese).

	[24]	 Z N Li, J Liu, W X Luo, et al. Research on dynamic modeling and simula-
tion of rotors with loose disc. Journal of Mechanical Engineering, 2020, 
56(7): 60–71 (In Chinese).

	[25]	 S H Wei, W X Lu. Analysis on vibration characteristics of disk-shaft system 
with loose fit. Journal of Dynamics and Control, 2018, 16(3): 244–249 (In 
Chinese).

	[26]	 S H Wei, W X Lu, F L Chu. Speed characteristics of disk-shaft system with 
rotating part looseness. Journal of Sound and Vibration, 2020, 469.

	[27]	 H Wang, K H Qin, D N Zhou. Nonlinear dynamic modeling of rotor system 
supported by angular contact ball bearings. Mechanical Systems and 
Signal Processing, 2017, 85: 16–40.

	[28]	 H Zhang, X Zhang, N N He. Rotor dynamic analysis of small vehicle 
gasoline turbocharger in semi-floating bearings. Journal of Beijing Institute 
of Technology, 2011, 20(4): 502–508 (In Chinese).

	[29]	 M F Liao, Y Li, M B Song, et al. Dynamics modeling and numerical analysis 
of rotor with elastic support/dry friction dampers. Transactions of Nanjing 
University of Aeronautics and Astronautics, 2018, 35(1): 69–83 (In Chinese).

	[30]	 L Yang, S P Yang, J J Wang, et al. Nonlinear vibration analysis of locomo-
tive rotor system. Journal of Mechanical Engineering, 2018, 54(18): 97–104 
(In Chinese).


	Vibration Characteristics of Rotor System with Loose Disc Caused by the Insufficient Interference Force
	Abstract 
	1 Introduction
	2 Mathematical Model
	2.1 Contact Model of Disc-Shaft System with the Microscopic Surface Morphology
	2.2 Motion Equations of the Rotor System with Loose Disc

	3 Numerical Analysis
	3.1 Analysis of Motion State of the Disc
	3.1.1 Influence of Shaft Speed
	3.1.2 Influence of the Contact Stiffness of Disc-Shaft
	3.1.3 Influence of the Clearance of the Disc-Shaft
	3.1.4 Influence of Damping

	3.2 Time-Frequency Characteristic Analysis
	3.3 Motion Trajectory

	4 Experimental Research
	4.1 Analysis of the Spectrum
	4.2 Analysis of Motion Trajectory

	5 Conclusions
	Acknowledgements
	References




