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Abstract 

The performance and efficiency of a baler deteriorate as a result of gearbox failure. One way to overcome this chal-
lenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes. This paper 
proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox. This 
method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through 
attribute reduction. The main benefit of the improved adaptive genetic algorithm is its excellent performance in 
terms of the efficiency of attribute reduction without requiring prior information. Therefore, this method should be 
capable of timely diagnosis and monitoring. Experimental validation was performed and promising findings high-
lighting the relationship between diagnosis results and faults were obtained. The results indicate that when using the 
improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information, 100% 
fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature 
parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods. The 
proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical 
devices.
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1  Introduction
The selection of fault feature parameters is a common 
problem in fault diagnosis and monitoring. There is 
increasing evidence that the fault diagnosis rate of a baler 
gearbox is affected by the selection of fault characteris-
tic parameters. As a relatively new type of agricultural 
equipment, the maintenance of continuous-operation 
balers requires professional equipment, parts, and techni-
cal personnel, which further increases the time required 
for maintenance and delays agricultural production [1]. 
Therefore, we conducted a study to obtain the minimum 
characteristic parameter set that can effectively diagnose 

different fault types in baler gearboxes. Figure 1 presents 
a self-propelled straw baler and its gearbox. 

Analyzing vibration signals in the time and frequency 
domains and using the obtained feature parameters to 
identify faults are commonly used fault diagnosis meth-
ods [2–7]. Tang et  al. [8] used the time-domain signal 
statistical index as a feature to process the vibration char-
acteristics of a gearbox and combined it with the fast 
Fourier transform algorithm to determine fault locations. 
Barszcz et al. [9] analyzed the impact signal of a gearbox 
using kurtosis as a characteristic parameter and realized 
the fault diagnosis of a planetary gearbox. Long et al. [10] 
proposed an adaptive tunable Q-factor wavelet transform 
algorithm that introduces envelope spectral entropy as 
a fault feature parameter based on spectral kurtosis to 
measure the signal pulse strength and periodicity, and 
experimental results demonstrated that this method can 
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effectively realize bearing fault diagnosis. Hou et al. [11] 
used globally optimized sparse coding and approximate 
singular value decomposition to extract the weak fault 
features of rolling bearings and realize fault diagnosis. 
Zappald [12] proposed the use of the sideband power fac-
tor as a standard for evaluating the gear state and realized 
automatic diagnosis. Considering the redundant compo-
nents of the vibration signals of a gearbox and numerous 
fault characteristic parameters, it is difficult to select truly 
effective and concise fault characteristic parameters. The 
feature parameter set contains many feature parameters 
that are insensitive and redundant as fault features. Too 
many feature parameters increases the complexity of 
decision rules and difficulty of fault diagnosis. Therefore, 
it is necessary to extract a set of meaningful parameters 
from a large number of fault feature parameters to make 
the set as small as possible and more convenient for the 
decision making process [13].

The rough set theory is an attribute reduction the-
ory proposed by Pawlak, a Polish scholar [14]. Classi-
cal rough set attribute reduction generally adopts the 
method of determining a kernel set [15]. On this basis, 
Hu et al. [16] proposed a discernibility matrix method 
using classical rough set theory to complete the cal-
culations of the attribute reduction process. Xu et  al. 
[17] improved the traditional equivalence class divi-
sion method using the cardinality sorting algorithm, 
which was proven to be beneficial for large-scale deci-
sion making in real applications. The above methods, 
which are based on the classical rough set theory, have 
significant defects. Attribute reduction is a nondeter-
ministic polynomial complete problem and the calcula-
tions of the classical attribute reduction algorithm are 
very complex and inefficient when the decision table 
contains massive data and attribute sets. To address 
this challenge, Chen et  al. [18] proposed an attribute 
reduction algorithm based on granular computing and 
obtained decision rules with greater generalization 
ability. Ganter et al. [19] proposed a formal background 
attribute reduction method using reducible objects 

and attributes. Qu et  al. [20] proposed a method for 
feature selection based on a support vector machine 
(SVM) and performed accurately feature classification. 
However, the SVM algorithm has the disadvantage of 
requiring training for multiple data types. Liu et al. [21] 
realized attribute set reduction using a genetic algo-
rithm and effectively analyzed road traffic accidents. 
Compared to the methods of finding a kernel set and 
discernibility matrix, the genetic algorithm provides a 
method for attribute reduction without requiring prior 
information, and calculation efficiency is improved 
when dealing with big data. However, to the best of our 
knowledge, improper parameters for a genetic algo-
rithm will cause the algorithm to fall into local opti-
mal solutions, which deteriorates the effectiveness of 
optimization.

To address these problems directly, we proposed and 
improved version of the genetic algorithm, which is 
applied to attribute reduction. In our method, redun-
dant information in the fault feature parameter set is 
eliminated, and fault diagnosis is realized according to 
a decision rule table obtained through reduction, which 
provides a scientific and effective method for fault feature 
selection and diagnosis.

The remainder of this paper is organized as follows. In 
Section  2, the theory and methodology of fault feature 
selection are presented. A fault diagnosis experiment on 
a baler gearbox is presented in Section 3. Finally, our con-
clusions are summarized in Section 4.

2 � Attribute Reduction Based on an Improved 
Genetic Algorithm

Attribute reduction is a method for eliminating redun-
dant information while maintaining classification ability. 
Currently, the rough set is a commonly used method for 
attribute reduction. It uses concepts such as indiscern-
ible relationships and positive domains to perform tra-
versal analysis and judge different attributes to eliminate 
unnecessary attributes in a decision system [22–24]. The 
traditional reduction algorithm is inefficient, and the 
results of reduction are limited by prior information. As 
a heuristic intelligent algorithm, the genetic algorithm 
[25–27] can improve the efficiency of reduction and is 
not restricted by prior information. In our improved 
genetic algorithm, the dependence of decision attributes 
on conditional attributes is used as a fitness function and 
different combinations of condition attributes are used as 
genetic populations. Additionally, the simplest and most 
important condition attributes for decision attributes are 
obtained through selection and cross-mutation genetic 
operators. The structure of the genetic algorithm is sche-
matically illustrated in Figure 2.

Figure 1  Self-propelled straw baler and its gearbox
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2.1 � Theory of Improved Genetic Algorithm
In the genetic algorithm, the crossover probability pc 
and mutation probability pm have a significant impact on 
algorithm results. The values of pc and pm are static in the 
standard genetic algorithm. According to this algorithm 
principle, if the value of pc is too large, the algorithm will 
generate new individuals quickly, but individuals with 
high adaptability will be destroyed. If the value of pm is 
too small, then evolution speed will be slow. Additionally, 
if the value of pm is large, then the algorithm convergence 
speed will be slow. In contrast, new individuals will be 
generated slowly and population diversity will be reduced 
if the value of pm is small [28]. To address these issues, 
Cao et  al. [29] proposed an adaptive genetic algorithm 
that introduces calculation formulas for the values of m 
and c according to the fitness value of each individual as 
follows:

where Fmax is the maximum fitness value of the popula-
tion, Favg is the average fitness value of the population, F ′ 
is the larger fitness value among two crossed individuals, 
and F ′ ′ is the fitness value of mutated individuals. C1, C2, 
C3, and C4 are parameters greater than zero and less than 
one.

The adaptive genetic algorithm adjusts the mutation 
and crossover probabilities according to individual fit-
ness values, which improves the iteration speed of the 
algorithm. However, it does not consider the diversity 

(1)pc =

{

C1(Fmax−F ′)
Fmax−Favg

F ′ ≥ Favg,

C2 F ′ < Favg,

(2)pm =

{

C3(Fmax−F ′′)
Fmax−Favg

F ′′ ≥ Favg,

C4 F ′′ < Favg,

and dispersion of the entire population [30–32]. Addi-
tionally, in the adaptive genetic algorithm, if the fitness 
value is close to or reaches the maximum value, then the 
mutation probability pm will be close to zero. In this case, 
the ability to generate new individuals in the early stages 
of the algorithm is reduced and it easily falls into local 
optima [33]. Given the above two problems, we propose 
the following new calculation equations for the crossover 
and mutation probabilities of individuals whose fitness 
values are greater than Favg in Eq. (1):

where � = Fmax − Fmin, k1 = ω1 × c1, k2 = ω2 × c2 repre-
sent the adaptive control parameters. ω1 and ω2 are the 
weights of the influence of the population dispersion and 
individual fitness on the crossover probability and ω1 + 
ω2 = 1. When ω1 is zero, only the influence of the indi-
vidual fitness value on the crossover probability is con-
sidered. When ω1 is one, only the population dispersion 
on the crossover probability is considered. The param-
eters for population dispersion and individual fitness are 
the same as those in Eq. (1).

In Eqs. (3) and (4), 
∑N

i=1|Fi−Favg|
−N•�

 represents the disper-
sion degree of the population. From these equations, one 
can see that if the population tends to be discrete, then 
the crossover probability increases and the mutation 
probability decreases to improve the ability of the popu-
lation to develop excellent individuals. In contrast, when 
the crossover probability decreases, the mutation prob-
ability increases and the ability of the population to pro-
duce new individuals increases.

2.2 � Selection, Crossover, and Mutation in the Improved 
Genetic Algorithm

Selection, crossover, and mutation are the core opera-
tions of the genetic algorithm. The roulette gambling 
method is adopted for the selection of individuals in 
the population. First, the selection probability of indi-
viduals is set according to the fitness function value such 
that an individual with a larger fitness function value is 
more likely to be selected. The candidate individuals for 

(3)
pc = k1 × exp

(

∑N
i=1

∣

∣Fi − Favg
∣

∣

−N�

)

+ k2× exp

(

F ′ − F∂

Fmax − Favg

)

,

(4)
pm = k3 × exp

(

∑N
i=1

∣

∣Fi − Favg
∣

∣

−N�

)

+ k4 × exp

(

F ′′ − Favg

Fmax − Favg

)

,

Figure 2  Genetic algorithm structure
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crossover and mutation are then selected from the initial 
population according to roulette gambling.

The fitness function used to evaluate the quality of an 
individual is key to selection from the population. In 
the process of attribute reduction using a genetic algo-
rithm, the decision attribute has the greatest depend-
ence on the reduced condition attribute set and the 
condition attribute set is minimized. The fitness func-
tion was defined as follows:

 where Lr is the sum of the different digits in an individu-
al’s chromosomes. If additional attributes are included in 
the reduced attribute set, then the greater the value of Lr , 
the lower the fitness F. γc(D) is the dependence of deci-
sion attribute D on condition attribute C, which is the 
importance of the condition attribute set [34]. In Eq. (6), 
POSC(D) is the positive domain of D, and U is the entire 
domain.

Selected individuals from the population are ran-
domly matched. A random selection of nodes in a pair 
of chromosomes must be located at the same position 
as the pair. For each node in the crossover process, 
there is a certain probability of replacement with a 
node in the same position as the paired chromosome. 
Mutation is the inversion of the binary code of indi-
vidual chromosomes in the population. For candidate 
mutant individuals, each point has a certain probabil-
ity of mutation in a chromosome. The probabilities of 
crossover and mutation are obtained using Eqs. (3) and 
(4), respectively.

A new population is generated through selection, 
crossover, and mutation. According to the optimal con-
servation strategy [35], the optimal individuals in the 
parent population are copied directly to the offspring 
population, replacing the individuals with the lowest 
adaptability among the offspring. The population size is 
kept constant.

2.3 � Attribute Reduction Simulation Experiment
To test the effectiveness and feasibility of attribute 
reduction based on the improved genetic algorithm, 
it was used to analyze the basic features of signals and 
identify their categories. Harmonic, superposition, 
and noise signals were the objects to be recognized. 
The periodicity, maximum value, frequency compo-
nent, and mean value were considered as recognition 

(5)F =
L− Lr

L
+ γC(D),

(6)γC(D) =
|POSC(D)|

|U |
,

features. The simulated harmonic signal {x1, x2, x3}, har-
monic superimposed signal {x4, x5, x6}, and noise signal 
{x7, x8, x9} were defined as follows:

 where xj is the amplitude of the simulated signal, and t is 
the time domain of the simulated signal.

From Figure 3, it can be inferred that if the simulated 
signal is periodic, it sets the attribute feature C1 = 1. 
Otherwise, C1 = 0. If its maximum value is greater than 
2.5, then C2 = 1. Otherwise, it is zero. If only one fre-
quency component is included, then C3 = 1. Otherwise, 
it is zero. if the overall mean value of the signal is zero, 
then C4 = 1. Otherwise, it is zero. The initial decision 
table is provided in Table 1.

As shown in Table  1, C1, C2, C3 and C4 are the fea-
tures of the signals. The numbers 1, 2 and 3 in column D 
represent the harmonic, superposition, and noise signals, 
respectively. After establishing the decision informa-
tion table, the adaptive genetic algorithm and improved 
genetic algorithm were used to reduce the attributes of 
the decision table.

The first step in this process is to generate several 
binary individuals with chromosome length L randomly. 
An individual L chromosome represents L attributes in 
the decision table. If a chromosome is encoded as one, 
then the corresponding attribute of the chromosome is 
reserved. Otherwise, it is removed. For example, for a 
decision system with a conditional attribute C = {C1, C2, 
C3, C4}, chromosome {1100} represents an attribute set 
composed of C1 and C2.

MATLAB was used as the simulation software to 
program the adaptive genetic algorithm and improved 
genetic algorithm. The initial population size for the 
algorithms was set to five, and the probability control 
parameters of the adaptive genetic algorithm crossover 
and mutation were set as k1 = 1, k2 = 1, k2= 0.1, k4 = 1. 
Performance can be improved by the genetic algorithm 
control parameter:k1 = 0.2, k2 = 0.8, k3= 0.02, k4 = 0.08.

The iteration termination conditions were set as fol-
lows. ① The number of iterations is 50; ② The fitness 
improvement is lower than the set threshold for every 
iteration. If the genetic algorithm satisfies either of these 
two termination conditions, then the optimal individual 

(7)


















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




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














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



x1 = sin(0.5t+12),

x2 = 2sin(0.8t),

x3= 0.5sin(t+100),

x4 = sin(3t) + 2sin(t+26),

x5 = sin(t)+ 1.5sin(0.5t+17)+ 0.5sin(2t+75),

x6 = sin(t)+ 2.5sin(t) + sin(t+16),

x7 = rand(1, N),

x8 = 3rand(1, N) + 0.5sin(2t),
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in the current population represents the optimal solu-
tion. The adaptive genetic algorithm and improved 
genetic algorithm were used for attribute reduction and 
the iterative process is illustrated in Figure 4.

In Figure  4, the red “*” curve represents the optimal 
value searching iteration process of the adaptive genetic 
algorithm. The red “o” curve represents the average value 
obtained by searching through the iteration process of 
the adaptive genetic algorithm. The blue “*” curve rep-
resents the optimal value searching iteration process of 
the improved genetic algorithm. The blue “o” curve rep-
resents the average value searching iteration process of 
the improved genetic algorithm. As shown in Figure  4, 
in terms of optimal value optimization, the results of 
the two algorithms are approximately the same, and 

the optimal solution is obtained in the third iteration of 
each algorithm. The population average fitness of the 
improved genetic algorithm is optimized at the fifth iter-
ation and that in the adaptive genetic algorithm is opti-
mized in the eighth iteration. The optimization result of 
both algorithms is {1010} and the decision rule in Table 2 
can be obtained by deleting repeated elements.

Figure 4 and Table 2 indicate that there is no signifi-
cant difference between the two algorithms when the 
number of simulation experimental data is small. How-
ever, the population evolution speed of the improved 
genetic algorithm is significantly higher than that of 
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Figure 3  Simulated signals

Table 1  Initial decision table for the simulation experiment

C1 C2 C3 C4 D

1 0 1 0 1

1 0 1 0 1

1 0 1 0 1

1 1 0 0 2

1 1 0 0 2

1 0 0 0 2

0 0 0 1 3

0 1 0 0 3

0 1 0 1 3

Figure 4  Attribute reduction based on the adaptive genetic 
algorithm and improve genetic algorithm
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the adaptive genetic algorithm. Attribute reduction can 
be performed based on the adaptive genetic algorithm, 
and the improved genetic algorithm can effectively 
realize the identification signal, which proves the effec-
tiveness and feasibility of the proposed method

3 � Feature Selection Experiment on a Baler 
Gearbox

The main method of fault diagnosis for baler gearboxes 
is to extract the fault features of a fault signal and then 
judge the occurrence and type of the fault according to 
the fault feature values. Different feature parameters 
exhibit different sensitivities and correlations for dif-
ferent fault types. In the past, for fault diagnosis, a vari-
ety of fault feature parameters have generally been used 
for comprehensive analysis, and the selection of feature 
parameters has lacked a unified standard. In this study, 
an improved genetic algorithm was used for attribute 
reduction to extract the minimal and most effective fea-
ture parameters for gearbox fault diagnosis.

3.1 � Fault Feature Extraction
The test object we selected was a prototype of a self-
propelled wheat straw baler developed by the project 
team, and the acquisition object was the vibration signal 
of the baler gearbox when the gear was in the states of 
broken teeth, gear wear, no-fault, and inner ring wear, 
and outer ring wear. The hardware used for signal acqui-
sition consisted of an INV982X acceleration sensor and 
INV3810CT acquisition instrument from the China 

Orient Institute of Noise & Vibration. The software used 
was DASP. Figure  5 presents the arrangement of the 
acceleration sensor on the baler gearbox. The sensor is 
driven by the acquisition instrument, and the acquisition 
signal is stored by the acquisition instrument and trans-
mitted to the host computer. The acquisition instrument 
is controlled by the host computer DASP software and 
the control interface (Chinese interface) is presented in 
Figure 6.

The vibration signals of the gearbox operating at three 
different speeds were collected separately under no load. 
After data acquisition and sorting, the vibration signals 
of the different fault types in the same working state were 
selected as signals for diagnosis. Multiple sets of signals 
were selected for each fault type to extract fault feature 
values. For each signal type, 43 sets of feature values 
were extracted, 10 of which were selected as reduction 
data, and 40 of which were selected as testing data. In 
the time domain, the mean value, maximum value, peak 
value, effective value, root-mean-squared value, square-
root amplitude, skewness, kurtosis, margin, and kurto-
sis indicators were selected as feature parameters. In the 
frequency domain, the power center of gravity and power 
spectrum dispersion were selected as feature parameters 
[36].

3.2 � Establishing a Decision Table
The initial decision table is presented in Table 3, where C1 
to C12 are the conditional attributes, which are the feature 
values of each fault extracted from the gearbox vibration 
signal. D is the decision attribute, where 1 represents the 
broken tooth fault, 2 represents no failure, 3 represents 
the bearing outer ring wear fault, 4 represents the bearing 
inner ring wear fault, and 5 represents the gear wear fault. 
The data in Table 3 have two decimal places and the scien-
tific counting method is adopted for large datasets.

From the initial decision table, one can see that the val-
ues of the same attribute in different instances are on a 
continuum. For example, attribute C1 (mean) is a group of 
evenly distributed data points from 4.18 to 5.49. Accord-
ing to attribute C1, the domain can be divided into 10 sets 
{{X1, X4}, {X2}, {X3} {X5, X6}, {X7, X13}, {X8}, {X9, X15}, 
{X10}, {X11, X12}, and {X14}}. With an increase in domain 
size, the number of groups increases, which increases the 
difficulty of data analysis. To facilitate data processing 
and improve the efficiency of fault diagnosis, this study 
used the semi-naive scalar discrete algorithm [33, 34] to 
discretize the condition attributes C1 to C12 in Table  3. 
The decision table following discretization is presented in 
Table 4.

Table 2  Decision rule table for the simulation experiment

C1 C2 D

1 1 1

1 0 2

0 0 3

Figure 5  Acquisition of vibration signals from the gearbox of a baler
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3.3 � Attribute Reduction
Following discretization of the decision table, the adap-
tive genetic algorithm and improved genetic algorithm 
were used to reduce redundant attributes. First, we 
initialized the genetic population and used the fitness 
function defined in Eq. (5). After initialization, the 

termination conditions for algorithm iteration were 
set as follows: ① reaching the maximum number of 
iterations, where this study set the maximum num-
ber of iterations to 150, and ② the fitness value has 
not improved in the past 15 iterations. The setting of 
the probability control parameters for crossover and 

Figure 6  DASP collector control interface

Table 3  The initial decision table for the fault features is discrete

U C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D

X1 5.39 70.47 68.70 7.71 7.71 4.29 −2.22 2.66E+04 16.41 7.52 6.09E+03 1.72E+07 1

X2 5.42 91.76 78.95 7.74 7.74 4.31 17.56 2.68E+04 21.28 7.47 6.03E+03 1.69E+07 1

X3 5.40 75.49 68.94 7.67 7.67 4.31 12.55 2.52E+04 17.52 7.27 6.08E+03 1.70E+07 1

X4 5.39 67.35 64.50 7.67 7.67 4.30 6.03 2.51E+04 15.68 7.27 6.09E+03 1.69E+07 2

X5 5.49 69.77 69.18 7.80 7.80 4.38 33.01 2.59E+04 15.94 7.00 6.10E+03 1.70E+07 2

X6 5.49 70.43 70.30 7.82 7.82 4.37 20.78 2.77E+04 16.10 7.39 6.16E+03 1.70E+07 2

X7 4.22 66.00 59.02 5.97 5.97 3.39 13.89 1.04E+04 19.45 8.17 6.20E+03 1.69E+07 3

X8 4.18 70.85 65.37 5.86 5.86 3.38 15.70 9.11E+03 20.98 7.73 6.08E+03 1.70E+07 3

X9 4.24 65.70 62.22 5.93 5.93 3.42 15.83 9.20E+03 19.22 7.42 6.08E+03 1.69E+07 3

X10 4.21 67.80 63.68 5.91 5.91 3.40 13.00 9.41E+03 19.94 7.70 6.15E+03 1.68E+07 4

X11 4.29 63.14 61.19 6.04 6.04 3.45 20.11 1.04E+04 18.28 7.80 6.24E+03 1.68E+07 4

X12 4.29 63.14 61.19 6.04 6.04 3.45 20.11 1.04E+04 18.28 7.80 6.24E+03 1.68E+07 4

X13 4.22 66.00 59.02 5.97 5.97 3.39 13.89 1.04E+04 19.45 8.17 6.20E+03 1.69E+07 5

X14 4.18 70.85 65.37 5.86 5.86 3.38 15.70 9.11E+03 20.98 7.73 6.08E+03 1.70E+07 5

X15 4.24 65.70 62.22 5.93 5.93 3.42 15.83 9.20E+03 19.22 7.42 6.08E+03 1.69E+07 5
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mutation for the two algorithms was the same as that in 
the simulation experiment. The iterative reduction pro-
cess is illustrated in Figure 7.

In Figure  7, the red “*” curve represents the optimal 
value searching iteration process of the adaptive genetic 
algorithm. The red “o” curve represents the average value 
obtained by searching through the iteration process of 
the adaptive genetic algorithm. The blue “*” curve repre-
sents the optimal value searching iteration process of the 
improved genetic algorithm. The blue “o” curve repre-
sents the average value searching iteration process of the 
improved genetic algorithm.

As shown in Figure  7, the optimization speed for the 
attribute reduction of the improved genetic algorithm 
is significantly higher than that of the adaptive genetic 

algorithm. The improved genetic algorithm converges to 
the highest fitness value faster than the adaptive genetic 
algorithm and the average fitness of the entire population 
is approximately 1.9. The optimal solution of the adap-
tive genetic algorithm is obtained in the 40th iteration 
and the average fitness of the population is approximately 
1.8. The improved genetic algorithm has clear advantages 
over the adaptive genetic algorithm in terms of conver-
gence speed.

The improved genetic algorithm continues to cross, 
mutate, and select over time. After several iterations, 
the optimal solution is {00000101000}, and the minimal 
decision attribute set is {C6, C7, C9}. For the attributes 
in Table 5, only {C6, C7, C9} are reserved, and redundant 
instances with the same attribute values are removed. 
The resulting decision rules are presented in Table 5.

According to Table 5, if the discrete set of the square-
root amplitude, skewness, and margin of a vibration sig-
nal is {110}, then the gear teeth are judged to be broken. 
If the discrete set is {011} or {001}, then the gear teeth are 
considered to be worn.

Table 4  Discrete decision table of fault features

U C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D

X1 1 0 1 1 1 1 1 1 0 0 0 1 1

X2 1 1 1 1 1 1 1 1 0 0 0 1 1

X3 1 1 0 1 1 1 1 1 0 0 0 1 1

X4 0 0 0 0 0 0 1 0 0 0 0 1 2

X5 0 0 0 0 0 0 1 0 0 0 0 1 2

X6 0 0 0 0 0 0 1 0 0 0 0 1 2

X7 1 1 1 1 1 1 0 1 1 0 0 0 3

X8 1 1 1 1 1 1 0 1 1 0 1 0 3

X9 1 1 1 1 1 1 0 1 1 1 1 1 3

X10 0 0 0 0 0 0 0 0 0 0 1 0 4

X11 0 0 0 0 0 0 0 0 0 0 0 1 4

X12 0 0 0 0 0 0 0 0 0 1 1 1 4

X13 0 0 0 0 0 0 1 0 1 1 0 0 5

X14 0 0 0 0 0 0 0 0 1 1 0 0 5

X15 0 0 1 0 0 0 0 0 1 1 0 0 5

Figure 7  Attribute reduction based on the adaptive genetic 
algorithm and improved genetic algorithm

Table 5  Table of decision rules

C6 C7 C9 D

1 1 0 1

0 1 0 2

1 0 1 3

0 0 0 4

0 1 1 5

0 0 1 5
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Note 1: The optimal solution obtained through attrib-
ute reduction is not unique. The optimal solution 
obtained by the adaptive genetic algorithm in this study 
is different from that of the improved genetic algorithm, 
and the optimization result of the improved genetic 
algorithm is not unique. Different reduction results do 
not interfere with the final diagnosis result in theory. 
For example, by repeating the above reduction experi-
ment, we can obtain a new minimal feature parameter set 

{C1, C7, C9}, which can also be used as a fault diagnosis 
knowledge base.

3.4 � Validation of Decision Rules
For the decision rule table obtained by the improved 
genetic algorithm and rough set reduction, the validity 
of the rule table was verified through testing. For each 
fault type, 40 groups of data were selected as testing data. 
Three fault features of square-root amplitude, skewness, 
and margin were extracted from the testing data and 

Figure 8  a Test results based on set {C6 C7 C9} attribute set. b Test results based on set{ C1 C7 C9} attribute set
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faults were diagnosed according to the decision rule table 
to check whether the diagnosis results were accurate.

Figure 8a and b presents the results of fault diagnosis 
based on the minimal characteristic parameter sets {C6, 
C7, C9} and {C1, C7, C9}, respectively. In Figure  8, one 
can see that the fault diagnosis method based on genetic 
algorithm attribute reduction can effectively identify the 
type of fault. However, in Figure  8a, there is one mis-
judgment in the normal gearbox signal and two mis-
judgments in the bearing inner-ring wear signal. Similar 

misjudgments can be observed in Figure  8b. For mis-
judgment in the diagnosis process, considering that the 
number of signal groups for different fault types retained 
during reduction is small and that the resulting decision 
table knowledge base is not complete, it is reasonable to 
observe a misjudgment in the diagnosis process.

Therefore, based on the original experiment, the num-
ber of reduced signal groups was increased from three to 
six, the experimental parameters were unchanged, and 
the above experiment was repeated, as shown in Figure 9. 

(a) Test results based on the {C6, C7, C9} attribute set 

(b) Test results based on the {C1, C7, C9} attribute set 
Figure 9  Results based on six sets of testing data
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One can see that the correct diagnosis rate based on 
the new decision rule table reaches 100%, which further 
proves that the proposed method can accurately and 
effectively determine the occurrence and type of gearbox 
failures in a baler.

According to the above fault diagnosis experiment on a 
self-propelled baler gearbox, it has been proven that the 
improved genetic algorithm is more efficient at attribute 
reduction and fault feature extraction, and can obtain 
the minimum feature parameter set. The decision table 
obtained through reduction can accurately diagnose dif-
ferent fault types of the gearbox.

4 � Conclusions
The following conclusions can be drawn from the 
research presented above.

(1)	 A novel method for fault feature selection based on 
an improved adaptive genetic algorithm for attrib-
ute reduction was proposed to obtain fault charac-
teristic parameters accurately without prior infor-
mation.

(2)	 A comparative experiment on the adaptive genetic 
algorithm was designed based on the fault data 
of a baler gearbox and it was observed that the 
improved algorithm can obtain optimization 
results faster, which proves the significance of the 
improved algorithm in terms of improving the effi-
ciency of fault diagnosis.

(3)	 Further verification experiments using data on 
strapping machine gearbox failure were conducted, 
and the population average fitness of the adaptive 
genetic algorithm reached approximately 1.8 at the 
40th iteration, whereas that of the improved genetic 
algorithm reached 1.9 at the 25th iteration.

(4)	 Fault diagnosis results indicated that the fault diag-
nosis accuracy of the baler gearbox based on the 
proposed method reached 100%. In other words, 
fault feature selection was completed effectively 
without a priori information, and fault diagnosis 
was realized based on the selection results, which 
proves that the proposed method can realize fault 
feature selection quickly and effectively.
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