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Abstract 

Multifidelity surrogates (MFSs) replace computationally intensive models by synergistically combining information 
from different fidelity data with a significant improvement in modeling efficiency. In this paper, a modified MFS 
(MMFS) model based on a radial basis function (RBF) is proposed, in which two fidelities of information can be ana-
lyzed by adaptively obtaining the scale factor. In the MMFS, an RBF was employed to establish the low-fidelity model. 
The correlation matrix of the high-fidelity samples and corresponding low-fidelity responses were integrated into 
an expansion matrix to determine the scaling function parameters. The shape parameters of the basis function were 
optimized by minimizing the leave-one-out cross-validation error of the high-fidelity sample points. The performance 
of the MMFS was compared with those of other MFS models (MFS-RBF and cooperative RBF) and single-fidelity RBF 
using four benchmark test functions, by which the impacts of different high-fidelity sample sizes on the prediction 
accuracy were also analyzed. The sensitivity of the MMFS model to the randomness of the design of experiments 
(DoE) was investigated by repeating sampling plans with 20 different DoEs. Stress analysis of the steel plate is pre-
sented to highlight the prediction ability of the proposed MMFS model. This research proposes a new multifidelity 
modeling method that can fully use two fidelity sample sets, rapidly calculate model parameters, and exhibit good 
prediction accuracy and robustness.
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1 Introduction
The use of computational simulations in design optimiza-
tion and uncertainty analysis has progressed significantly 
over the past two decades [1, 2]. However, computation-
ally complex simulations still have difficulty satisfying 
engineering requirements; for instance, a simulation with 
high precision should reflect extensive details and may 
take several days [3–5]. Thus, it is impractical and unfea-
sible to exclusively rely on high-precision simulations, 
which are time-consuming.

A solution attracting significant attention is to cap-
ture the main characteristics of the original model using 
surrogate modeling techniques, which approximate the 
input–output relationship with reduced computational 
costs [6–9]. Surrogate models can be divided into four 
categories: traditional single-fidelity, hybrid, adaptive 
sampling-based, and multifidelity surrogates. Single-
fidelity surrogate models have been used for engineer-
ing optimization for decades and can be classified as 
either interpolation or regression [10, 11]. Interpolation 
means that the surrogates can pass through all sample 
points, including radial basis functions (RBFs) [12–14] 
and Kriging (KRG) [15–17]. In contrast, the regression 
model can establish a smoother model and alleviate the 
overfitting problem of the surrogate model. Typically, it 
does not require the prediction of the sample point to be 
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equal to the actual response, and typical regression sur-
rogate models include the polynomial response surface 
[18, 19], support vector regression [20, 21], and moving 
least squares (MLS). The observations for the samples of 
the above models all show high fidelity. However, in prac-
tical engineering cases, the surrogate model constructed 
with a few samples cannot approximate the actual system 
satisfactorily. Moreover, the large number of high-fidelity 
samples is hampered by the unaffordable computational 
costs.

A multifidelity surrogate (MFS) based on multiple sam-
ple sets with different accuracies is proposed to improve 
the prediction performance of the model. Samples with 
higher accuracy are high-fidelity samples, and samples 
with lower accuracy are low-fidelity samples [22]. Typi-
cally, high-fidelity samples incur higher computational 
costs than low-fidelity samples. Generally, the number of 
high-fidelity samples obtained for the same sample cost is 
significantly smaller than the number of low-fidelity sam-
ples. Low-fidelity data can be obtained by simplifying the 
finite element models, employing coarse finite element 
meshes, or using empirical formulas [23]. High fidel-
ity and low fidelity are relative concepts; thus, the accu-
racy of a sample is relative. For example, 3D simulation 
has a higher fidelity than 2D simulation but lower fidelity 
than the experiment [24]. A widespread practice involves 
using a portion of the total computational cost to obtain 
a few high-fidelity samples and the remaining cost to 
obtain low-fidelity samples. For instance, the cost ratio 
of obtaining high -to-low-fidelity samples is 5:1, suggest-
ing that the computational or experimental cost required 
to obtain one high-fidelity sample can be used to obtain 
five low-fidelity samples. Assuming that the total cost is 
10, if half of the cost is used to obtain five high-fidelity 
samples, the remaining cost can obtain 25 low-fidelity 
samples. Therefore, MFS can take advantage of the coarse 
and precise versions by compensating for the expensive 
high-fidelity model with coarse low-fidelity approxima-
tion [25–27]. Consequently, a low-fidelity model can 
provide a basis for a high-fidelity surrogate, with some 
accepted discrepancies, to represent the overall trend 
of the actual model. The MFS model can then alleviate 
the computational burden by calibrating the low-fidelity 
model using a small amount of high-fidelity data [28].

Various MFS models have been established to pre-
dict complex system behaviors by integrating infor-
mation from low- and high-fidelity samples for design 
optimization. Kennedy and O’Hagan [29] built an MFS 
model using Bayesian methods and Gaussian processes 
to improve model performance. Forrester et  al. [30] 
constructed a correlation matrix containing high- and 
low-fidelity information, used the maximum likelihood 

method to optimize the parameters and extended the 
KRG model to a two-level co-Kriging model. Han [31] 
proposed a hierarchical Kriging model using the basic 
Kriging formula, which adopts the low-fidelity Kriging 
model as the MFS model trend and maps it to the high-
fidelity data, to obtain an MFS model with improved 
accuracy and expand the MFS framework. Han et al. [32] 
combined the gradient information with an MFS model. 
Zheng et  al. [33] approximated the low-fidelity model 
using the RBF model, tuned the model with high-fidelity 
points to obtain the base surrogate, and corrected this 
base surrogate with the Kriging correction function. Li 
et  al. [34] proposed a multifidelity cooperative method 
using an RBF. They used the low-fidelity model as the 
basis function of the method and obtained the model 
parameters using high-fidelity sample points. Zhou [35] 
mapped low-fidelity responses to the high-fidelity model 
directly by considering the low-fidelity model as prior 
information. Durantin [36] established a cooperative RBF 
(CO-RBF) model by extending the MFS framework based 
on an RBF. Durantin [36] then compared it with the clas-
sical co-Kriging model and applied the model to the opti-
mization of gas sensor structures. Cai [23] developed an 
MFS model based on an RBF. The proposed model could 
simplify the scaling function between high- and low-
fidelity models using matrix calculation to express the 
approximate model explicitly and solve problems with 
more than two fidelities. Zhang [37] proposed a simple 
and effective MFS model using a linear regression equa-
tion that can partially alleviate the uncertainty induced 
by high-fidelity sample noise. Song et al. [38] introduced 
an augmented correlation matrix to determine the scal-
ing factor and the relevant basis function weights. Wang 
[39] used the MLS method to construct the discrepancy 
function of an MFS model. The researcher achieved an 
efficient solution for the scale factor in the comprehen-
sive correction function by adaptively determining the 
radius of the influence zone.

In this paper, a modified MFS (MMFS) model based on 
the RBF with an adaptive scale factor is proposed. It is 
assumed that the discrepancy between high-fidelity and 
low-fidelity data can be captured using an adaptive scale 
factor. RBF was employed to approximate the low-fidel-
ity responses. An expansion matrix was augmented with 
the classical correlation matrix of high-fidelity samples 
and low-fidelity responses. Next, the model was estab-
lished using this matrix and high-fidelity samples. The 
shape parameters of the RBF were obtained by minimiz-
ing the leave-one-out cross-validation (LOOCV) error. 
The performance of the MMFS was evaluated using four 
benchmark test functions and an engineering case. The 
contribution of this study is that it defines the scale factor 
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as an adaptive term and builds an expansion matrix to 
estimate the model parameters.

The remainder of this paper is organized as follows. 
Section  2 presents a brief review of RBF, MFS, and the 
proposed MMFS. In Section  3, three benchmark test 
functions are used to validate the performance of the 
MMFS model, and the results and data analysis are pre-
sented. An engineering case is discussed to demonstrate 
that MMFS can be applied to real-world problems. 
Finally, the conclusions and future work are presented in 
Section 4.

2  MMFS Model
2.1  RBF Method
The RBF is a well-known surrogate model based on data-
set interpolation, and it can solve multidimensional and 
nonlinear problems [40–43]. A key assumption is that the 
RBF uses linear combinations of radially symmetric func-
tions based on the Euclidean distance to approximate 
the response functions. The RBF model is built from a 
set of n input vectors, X = [x1, x2, · · · , xn]T(X ∈ R

n×d ), 
yielding a vector of corresponding scalar responses 
Y = [y1, y2, · · · , yn]T(Y ∈ R

n×1 ), where n is the number of 
inputs, and the dimension of the input space is denoted 
d , which is identical to the number of variables. The RBF 
predictor can be formulated as follows:

where ŷ(x) is the prediction of an evaluation point x , 
ϕ(�x − xi�) is the basis function representing the cor-
relation between point x and the i th sample point xi 
( i = 1, 2, · · · , n ), � = [�1, �2, . . . , �n]T are the coefficients 
of the linear combinations. In this paper, the sample 
points x are defined as the centers of the basic functions, 

(1)ŷ(x) =
n∑

i=1

ϕ(�x − xi�) · �i,

and commonly used basis functions ϕ(�x − xi�) are listed 
in Table 1.

In Table  1, r = �x − xi� =

√
∑d

j=1

(
xj − x

j
i

)2
 is the 

Euclidean norm of points x and xi.
The shape parameter, σ , of the basis function requires 

additional optimization to be determined. This is dis-
cussed in detail in Section 2.3.

The unknown parameter, � , can be obtained by sub-
stituting the sample points into Eq. (1). Thus, it can be 
ensured that the predictions of the sample points are 
equal to the true responses.

A matrix form of Eq. (2) can be expressed as 
Y = φ · � , where φ is an n× n matrix of the correlations 
between sample points, and Y is the sample response.

2.2  MFS Model
Generally, a multifidelity model is constructed by tun-
ing a low-fidelity model with a few high-fidelity sample 
points. A correction function was employed as a bridge 
connecting the two levels of the models. The three 
common correction function frameworks include addi-
tion, multiplication, and comprehensive corrections.

(1) Addition correction: This method assumes that 
a deviation term exists between the high- and low-
fidelity models. Therefore, the high-fidelity model 
combines a low-fidelity surrogate with a discrepancy 
function. The basic formula is ye = yc + d.
(2) Multiplication correction: This method assumes 
a proportional relationship between both fidelity 
models. The high-fidelity model can be established 
by multiplying the low-fidelity model by a scale fac-
tor. The fundamental formula for this is ye = ρyc.
(3) Comprehensive correction: This method com-
bines the two methods above and is the most widely 
used correction function. The general form of the 

(2)





y(x1)
y(x2)
...

y(xn)



 =





ϕ(�x1 − x1�) ϕ(�x1 − x2�) . . . ϕ(�x1 − xn�)
ϕ(�x2 − x1�) ϕ(�x2 − x2�) . . . ϕ(�x2 − xn�)

...
...

. . .
...

ϕ(�xn − x1�) ϕ(�xn − x2�) . . . ϕ(�xn − xn�)



 ·





�1

�2

...

�n



.

Table 1 Basis functions of RBF

Basis function name Basis function form Basis function name Basis function form

Linear ϕ(r) = r Gaussian ϕ(r) = e
−r

2/2σ 2

Cubic ϕ(r) = r
3 Multiquadric ϕ(r) =

√
r2 + σ 2

Thin Plate Spline ϕ(r) = r
2/lnr Inverse Multiquadric ϕ(r) = 1/

√
r2 + σ 2
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comprehensive correction function is ye = ρyc + d . 
This correction function was used in this study, and 
ρ and d were regarded as adaptive functions for the 
location of point x using the basic RBF theory for cal-
culations.

2.3  MMFS Model
2.3.1  MMFS Framework
Figure 1 depicts the framework of the proposed MMFS 
model. The modeling process starts with selecting sam-
ple datasets with two fidelities. The low-fidelity sur-
rogate is then approximated using the RBF method to 
estimate the coarse responses of the high-fidelity sam-
ples. Next, the MMFS model is constructed by estimat-
ing the parameters of the model correction function 
as adaptive parameters and expanding the correlation 
matrix of the sample points with low-fidelity responses. 
Finally, predicting unknown points requires forming 
a new expansion matrix from the correlation matrix 
between the sample and unknown points.

2.3.2  Determination of Correction Coefficient
For a group of low-fidelity sample points 
Xc =

[
x1c , x

2
c , x

3
c , · · · , x

nc
c

]T with responses Y c =

[
y
1
c , y

2
c , y

3
c , · · · , y

nc
c

]T , 
the low-fidelity function prediction can be estimated 
using the RBF:

where nc is the number of low-fidelity samples.
The comprehensive correction framework was used in 

this study, in which the scale factor and deviation value 
were assumed to be adaptive parameters based on the 
positions of the evaluation points. The general form of 
the proposed MMFS model can be expressed as follows:

The high-fidelity data is utilized by substituting the 
high-fidelity points X e =

[
x1e , x

2
e , x

3
e , · · · , x

ne
e

]T and the 
corresponding responses Y e =

[
y1e , y

2
e , y

3
e , · · · , y

ne
e

]T 
into Eq. (4) to determine α and ω . The MMFS model is 
expressed as follows:

where φ is the correlation matrix of the high-fidelity 
samples, Y c(xe) is the low-fidelity response of the high-
fidelity point xe calculated using Eq. (3). If xe is a mem-
ber of the low-fidelity sample set, yc(xe) can be obtained 
directly from a low-fidelity response set, Y c.
ϕij is used to express ϕ

(
�xi − xj�

)
 for simplicity, 

and xi and xj are the ith and jth high-fidelity samples, 
respectively. Subsequently, substituting the high-fidel-
ity points into Eq. (5) expresses the calculation process 
in detail:

By transforming Eq. (6) into a matrix form to simplify 
the solution process, the unknown parameters can be 
represented using vectors as β:

(3)ŷc(x) =
nc∑

i=1

ϕ(�x − xi�) · �i,

(4)
ŷ(x) = φ(�x − xe�) · α · yc(x)+ φ(�x − xe�) · ω.

(5)Y e(xe) = φ · α · Y c(xe)+ φ · ω,

(6)






ye
�
x1e
�
=

�
ϕ11α1 + ϕ12α2 + · · · + ϕ1neαne

�
y1e

+
�
ϕ11ω1 + ϕ12ω2 + · · · + ϕ1neωne

�
,

ye
�
x2e
�
=

�
ϕ21α1 + ϕ22α2 + · · · + ϕ2neαne

�
y2e

+
�
ϕ21ω1 + ϕ22ω2 + · · · + ϕ2neωne

�
,

· · ·
ye
�
xnee

�
=

�
ϕne1α1 + ϕne2α2 + · · · + ϕneneαne

�
ynee

+
�
ϕne1ω1 + ϕne2ω2 + · · · + ϕneneωne

�
.

(7)
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ye
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ϕ11y
1
e ϕ12y

1
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1
e
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2
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2
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2
e

...
...

. . .
...

ϕne1y
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e ϕne2y
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e · · · ϕneney
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·





α1
α2
...

αne



+





ϕ11 ϕ12 · · · ϕ1ne
ϕ21 ϕ22 · · · ϕ2ne
...

...
. . .

...

ϕne1 ϕne2 · · · ϕnene



·





ω1

ω2

...

ωne



.

Figure 1 MMFS framework
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Therefore,

where

H =





ϕ11y
1
e ϕ12y

1
e · · · ϕ1ne y

1
e

ϕ21y
2
e ϕ22y

2
e · · · ϕ2ne y

2
e

.

.

.
.
.
.

. . .
.
.
.

ϕne1y
ne
e ϕne2y

ne
e · · · ϕnene y

ne
e

ϕ11 ϕ12 · · · ϕ1ne
ϕ21 ϕ22 · · · ϕ2ne
.
.
.

.

.

.
. . .

.

.

.

ϕne1 ϕne2 · · · ϕnene




, 

β =





α1
α2
...

αne
ω1

ω2

...
ωne





 ,

 and 
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1
e ϕ12y

1
e · · · ϕ1ne y

1
e

ϕ21y
2
e ϕ22y

2
e · · · ϕ2ne y

2
e

.

.

.
.
.
.

. . .
.
.
.

ϕne1y
ne
e ϕne2y

ne
e · · · ϕnene y

ne
e




=





y
1
e 0 0 0 0

0 y
2
e 0 0 0

0 0 0
. . . 0

0 0 0 0 y
ne
e





·





ϕ11 ϕ12 · · · ϕ1ne
ϕ21 ϕ22 · · · ϕ2ne
.
.
.

.

.

.
. . .

.

.

.

ϕne1 ϕne2 · · · ϕnene



.

H is a row full-rank matrix; therefore, the generalized 
inverse matrix of H is HT

(
HHT

)−1 . β can be expressed as 
follows:

(8)Y e(xe) = H · β ,
In this study, the shape parameter, σ , in the basis func-

tion, ϕ(r) =
√
r2 + σ 2 , was optimized by minimizing the 

LOOCV error. Cross-validation is considered an effective 
method for obtaining parameters in practical engineering 
problems. Sample points were randomly split into sev-
eral subsets to obtain the cross-validation error. At each 
stage, each subset was removed as testing samples, and 
the remaining subsets were fitted for training samples. 
Because of the lower accuracy of the low-fidelity samples, 
only a high-fidelity sample dataset with a few points could 
be used to estimate σ . Therefore, the leave-one-out method 
was applied by selecting one high-fidelity point as the test-
ing point at every iteration and the remaining ne − 1 high-
fidelity samples as the training points. After fitting the 
model, the discrepancy between the predicted value and 
the actual response of the removed point was obtained. 
Finally, the sum of the squares of these differences was 
minimized:

At this point, parameters β and σ were obtained, and the 
MMFS model was established.

2.3.3  Prediction of Testing Points
x = [x1, x2, · · · , xN ]T represents the evaluation points to 
be predicted, where N  is the number of points, and ϕitj is 
used to express ϕ

(
�xie − xj�

)
 . Next, the fundamental for-

mula of the MMFS model was expressed in a matrix form 
as follows:

(9)β = HT
(
HHT

)−1

Y e .

(10)minimize LOOCV =
ne∑

i=1

(
yi − ŷi

)2
.

(11)Ŷ (x) = H∗ · β ,

H∗ =





ϕ1t1yc
1
t ϕ2t1yc

1
t · · · ϕnet1yc

1
t

ϕ1t2yc
2
t ϕ2t2yc

2
t · · · ϕnet2yc

2
t

...
...

. . .
...

ϕ1tN yc
N
t ϕ2tN yc

N
t · · · ϕnetN yc

N
t

ϕ1t1 ϕ2t1 · · · ϕnet1
ϕ1t2 ϕ2t2 · · · ϕnet2
...

...
. . .

...

ϕ1tN ϕ2tN · · · ϕnetN




,
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where ycit denotes the predicted value of the ith testing 
point in the low-fidelity surrogate model, and

2.4  Performance Validation of MMFS Model
The model evaluation criteria can be used after establish-
ing the surrogate model to assess the predictive ability of 
the proposed MMFS approach. In this study, the correla-
tion coefficient, R2 , representing the overall evaluation cri-
teria, was used to express the global accuracy of the model. 
Generally, R2 can be considered the similarity between the 
surrogate model and real model. The numerical value of R2 
generally varies from 0 to 1, and an R2 value of less than 
0 indicates that the model creation failed. A higher value 
of R2 represents better predictive performance of the sur-
rogate model. If this value is close to 1, the reference sig-
nificance of the model can be considered high. Based on 
experience, a model representation of R2> 0.8 is similar to 
the real model and exhibits good predictive capabilities. 
The mathematical expression is as follows:

where N  is the number of training points, yi is the real 
response of the ith testing point, and ŷi is the predicted 
value of the ith testing point.

3  Examples and Results
3.1  Numerical Examples
The MMFS approach developed in this study was 
extended using an RBF. In this section, three benchmark 
test functions, including the Forretal, Branin, Beale, 
and Goldpr functions [29, 32, 44, 45], are used to dem-
onstrate the performance of the MMFS method. The 
MFS-RBF [38], CO-RBF [36], and RBF are also employed 
here, as well as the proposed method, to compare the 
performance of model prediction between different sur-
rogate modeling methods. High-fidelity functions are the 





ϕ1t1yc
1
t ϕ2t1yc

1
t · · · ϕnet1yc

1
t

ϕ1t2yc
2
t ϕ2t2yc

2
t · · · ϕnet2yc

2
t

...
...

. . .
...

ϕ1tN yc
N
t ϕ2tN yc

N
t · · · ϕnetN yc

N
t





(12)

=





yc
1
t 0 0 0 0

0 yc
2
t 0 0 0

0 0 0
. . . 0

0 0 0 0 yc
N
t




·





ϕ1t1 ϕ2t1 · · · ϕnet1
ϕ1t2 ϕ2t2 · · · ϕnet2
...

...
. . .

...

ϕ1tN ϕ2tN · · · ϕnetN



.

(13)

R2 =



 cov
�
yi,�yi

�
�
var

�
yi
�
var

�
�yi
�




2

= 1−

�N
i=1

�
yi − �yi

�2
�N

i=1

�
yi − y

�2 ,

standard terms of these test functions, whereas low-fidel-
ity functions are variant forms corresponding to standard 
functions.

3.1.1  Design of Experiments
Design of experiments (DoE) is a sampling plan con-
ducted before surrogate model construction. The number 
of high-fidelity samples varying from 5 to 10 times the 
number of design variables was considered. Low-fidelity 
sample points are less expensive to obtain; therefore, 
the number of low-fidelity sample points was 25 times 
the number of design variables. Twenty groups of DoEs 
were randomly performed to reduce the impact of DoE 
randomness on model accuracy. Many testing points can 
be obtained to approximate the model evaluation, owing 
to the low cost of numerical functions. Thus, the num-
ber of testing points was 100 times that of the function 
dimension.

In this study, the maximum and minimum criterion-
based Latin hypercube squares method was employed to 
generate relatively random high-fidelity and low-fidelity 
sample points.

3.1.2  Numerical Functions

(1) Forretal function [[32], [35]]

The high-fidelity Forretal function is expressed as 
follows:

and the low-fidelity function is a variant of the high-fidel-
ity function.

(2) Branin function [35]
The Branin function is expressed as follows:

where rand is a random number between 0 to 1, and 
x1 ∈ [−5, 10] , x2 ∈ [−5, 10].

(3) Beale function [44]

(14)ye = (6x − 2)2 · sin(12x − 4), x ∈ [0, 1],

(15)yc = 0.5ye + 10(x − 0.5)− 5.

(16)

ye =
(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1−

1

8π

)
cosx1 + 10

(17)
yc = 0.5

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 5

× rand ×
(
1−

1

8π

)
cosx1 + 10+ rand
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The Beale function is expressed as follows:

where x1 ∈ [−4.5, 4.5] , x2 ∈ [−4.5, 4.5].

(4) Goldpr function [45]

The Goldpr function is expressed as follows:

(18)
ye = (1.5− x1 + x1x2)

2 +
(
2.25− x1 + x1x

2
2

)2

+
(
2.625− x1 + x1x

3
2

)2
,

(19)yc = 0.5ye + 10× rand,

where x1 ∈ [−2, 2] , x2 ∈ [−2, 2].

3.1.3  Results and Discussion
A one-dimensional Forretal function was selected to 
visually represent the performance of the MMFS model. 
Figure  2 depicts a simple example of fitting a Forre-
tal function using four high-fidelity and ten low-fidelity 
sample points. The green star symbols in Figure 2 repre-
sent the low-fidelity sample points, and the green curve 
is the low-fidelity model. It can be observed that the 
low-fidelity model shows a similar general trend to the 
real function, but the accuracy is insufficient. The lower 
computational cost of low fidelity can yield more points 
at the same cost. The red circles indicate the high-fidelity 
sample points with higher accuracy. The blue curve rep-
resents the MMFS model. The accuracy, R2, of the MMFS 
model was 0.9388, which can be considered a reliable 
model for representing the real system.

Next, the remaining three test functions mentioned 
above were analyzed, and the impacts of different sizes 
of the high-fidelity groups on the model performance 

ye =
[
1+ (x1 + x2 + 1)2

(
19− 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2

)]

(20)

×
[
30+ (2x1 − 3x2)

2

(
18− 32x1 + 12x

2
1 + 48x2 − 36x1x2 + 27x

2
2

)]
,

(21)yc = log10
(
ye
)
,

Figure 2 Distribution of sample points and surrogate models

Figure 3 Model accuracy of Branin function
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were investigated. Twenty independent samplings were 
performed on each size of the high-fidelity sample group 
to prevent unreasonable or extreme sample distribution 
that leads to significant deviations in the results.

For example, the Branin function is used to demon-
strate the necessity of multisampling. The number of 
high-fidelity sample points was eight, four times the 
dimension of the Branin function. The number of low-
fidelity sample points was 50, 25 times the dimension. By 
sampling 20 groups of training points, each sample data 
group was modeled using MMFS, MFS-RBF, CO-RBF, 
and RBF. The accuracies of the established models are 
shown in Figure 3.

The red curve in Figure  3 represents the R2 values of 
surrogates using the MMFS method for 20 groups of 
DoEs. The blue, pink, and green curves indicate the 
accuracy values modeled using the MFS, CO-RBF, and 
RBF methods, respectively. Most of the R2 values of the 
MMFS exceeded those of the other three methods, dem-
onstrating that the MMFS exhibited a better predic-
tion ability in most DoEs than the MFS-RBF, CO-RBF, 
and RBF methods. The MMFS and MFS-RBF models 
had the best model accuracy, followed by the CO-RBF 
model, with the RBF model values being the worst. The 
accuracies of the different groups showed significant dif-
ferences, and R2 < 0, indicating that the surrogate fitting 
failed. The corresponding curves shown in Figure  3 are 
enlarged and positioned on the right side to distinguish 
between the MMFS and MFS-RBF more clearly.

The MMFS exhibited a higher model accuracy than 
the other three models, although the accuracy values of 
MMFS for the 1st, 2nd, and 14th DoE were lower than 
those of the MFS-RBF model. Such a situation only 
accounted for a low percentage. For the 11th DoE, the 

Figure 4 Average values of model accuracies of the Branin function

Figure 5 Comparison of median model accuracy of Branin function: 
a Comparison of median values of model accuracy, b box plot of 
median model accuracy
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curves showed a significant decline, indicating that this 
group of sample points could not be successfully fitted 
to the other DoEs. This decline may have been caused 
by the unreasonable distribution of sampling points. The 
averages of all model accuracy values were obtained to 
analyze the prediction accuracy of the 20 sample groups 
to reduce the impact of individual error sampling on the 
accuracy results of the model. In this way, the average 
accuracy of all sample sizes of the Branin function was 
obtained, as shown in Figure 4.

When the number of high-fidelity sample points was 
eight, the average R2 values of the MMFS, MFS-RBF, CO-
RBF, and RBF models were 0.9567, 0.9099, 0.6892, and 
−  0.0658, respectively (Figure 4). However, these values 
have high variability. Taking the average value of MFS-
RBF as an example by combining with Figure  3, several 
abnormal values, such as the 9th, 11th, and 19th DoEs, 
decreased the overall values. These situations do not 
occur under normal circumstances; therefore, this risk 
should be prevented when seeking statistical data. It is 
unwise to consider results for these extreme cases in sta-
tistics. For example, if, in one extreme case that 19 of the 
20 model accuracy values are higher than 0.9 and only 
one value is −  100, this accuracy value lower than zero 
may cause significant damage to the average value.

Therefore, combining the median values of these model 
accuracies can lead to more relevant conclusions. The 
median R2 value of 20 models and the number of times 
that MMFS was better than the other methods were cal-
culated, as shown in Figures 5 and 6, respectively.

Figure  5(a) shows a comparison of the median model 
accuracy of the Branin function for different high-fidelity 
sample sizes obtained using various modeling methods. 

Figure 6 Number of MMFS better than other methods for 20 DoEs 
of Branin function

Figure 7 Comparison of median model accuracy of Beale function: 
a Comparison of median values of model accuracy, b box plot of 
median model accuracy

Figure 8 Number of MMFS better than other methods of 20 DoEs of 
Beale function
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Instead of using only a single median value for brief sum-
marization, Figure 5(b) shows the box plot for each high-
fidelity sample size to clarify the distribution of the model 
accuracy values of 20 DoEs. The curves in the box plot 
in Figure  5(b) are the same as those in Figure  5(a), and 
the cross symbols in Figure 5(b) represent abnormal val-
ues. The length of the box indicates the distance between 
the first and third quartiles, representing the distribu-
tion range of the largest proportion of the values. A com-
parison of these subplots shows that the median value 
of the MMFS box is generally higher than those of other 
method boxes, demonstrating improved overall accuracy. 
The MMFS box plot has shorter boxes than the box plots 
of other methods, indicating improved robustness.

Figure  6 shows the number of times that the MMFS 
model exhibited higher model accuracy than the other 
three models of 20 DoE for approximating the Branin 
function, where the numbers of high-fidelity points are 8, 
10, 12, 14, 16, 18, and 20. First, 20 DoEs were performed 
based on each number of high-fidelity points to generate 
20 sets of sample points. Subsequently, the MMFS and 
other three models were employed based on each set of 
sample points to construct the surrogate models, and the 
respective model accuracies were calculated. After com-
paring the accuracies of each sample set, the number 
of times the MMFS model was more accurate than the 
other three models was recorded. The maximum number 
of times was 20, and a higher value suggests that MMFS 
exhibits good model performance even when the sam-
ple distribution is different; that is, MMFS has improved 
robustness. Therefore, this number was expected to be as 
large as possible. For example, when the abscissa value 
was 8, the value of the blue curve was 17, and the values 
of the green and pink curves were 19 and 20, respectively. 
Thus, the MMFS, MFS-RBF, RBF, and CO-RBF mod-
els were generated using 20 sets of sampling data when 
the number of high-fidelity sample points was 8. Among 
these models, 17 MMFS models were more accurate 
than the MFS-RBF models, and 19 and 20 MMFS models 
were more accurate than the RBF and CO-RBF models, 
respectively. The values on the curves exceeded 14; that 
is, for a randomly distributed sample set, a high probabil-
ity exists that the MMFS model is more accurate than the 
other three models.

Figures 7 and 8 show the statistical data representations 
of the Beale function. Figure  7 shows the median values 
of the model accuracy, where the red curve represents 
the median values of the MMFS models. When the num-
ber of high-fidelity points was eight, the median accuracy 
of the MMFS model was lower than that of MFS-RBF. 
When the number of high-fidelity points increased to 10, 
the red curve rose higher than the blue curve, represent-
ing the MFS-RBF statistics. Thus, when the high-fidelity 

Figure 9 Median values of model accuracy of Goldpr function: 
a Comparison of median values of model accuracy, b box plot of 
median model accuracy

Figure 10 Number of MMFS better than other methods of 20 DoEs 
of Goldpr function
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sample size was small, the model performance of MMFS 
was lower than that of MFS-RBF, probably because MMFS 
contained more unknown parameters than MFS-RBF. 
However, MMFS was better than the other two methods 
at all sample sizes. Fewer sample points provide a weaker 
reference for parameter estimation, and it is easy to fall 
into an underfitting condition when solving parameters. 
Fortunately, the modeling capabilities of MMFS can grad-
ually increase as the number of sample points increases; 
therefore, MMFS is more suitable than the other methods 
for situations with more sample points. Figure 7(b) shows 

the box-plot statistical figure extracted from Figure  7(a). 
The height of the MMFS box plot was higher than that of 
the MFS-RBF box plot, indicating that the accuracies of 
MMFS were scattered. Therefore, the robustness of the 
MMFS model was not as significant as that of the model 
established using the MFS-RBF method. However, the 
advantages of MMFS over CO-RBF and RBF are evident.

Figure  8 shows that the MMFS model is more accu-
rate than the MFS-RBF, CO-RBF, and RBF models for 
approximating the Beale function for 20 DoEs. As shown 
in Figure 8, the curves showed similar trends and a con-
clusion similar to that in Figure 6. The values in the blue 
curve exceeded 10, suggesting that when the surrogate 
model is established using the MMFS method with the 
same sample set, the probability that the model accuracy 
is higher than that of the MFS-RBF method exceeds 50%. 
Similarly, compared with CO-RBF and RBF, MMFS can 
obtain a more accurate model with a probability higher 
than 75%.

Figures  9 and 10 are statistical representations of the 
Goldpr function.

Table  2 shows the statistical data for the modeling 
capabilities of these four test functions. The data in 

Figure 11 Stress boundary conditions of steel plate

Table 3 Comparison of models in different force states

Model Force states

Fb = 45; α = 30 Fb = 60; α = 15 Fb = 60; α = 45 Fb = 75; α = 30

True model

MMFS
model

Low fidelity
surrogate

High fidelity
surrogate
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Table  2 represent the model accuracies obtained by the 
20 DoE groups modelled under the corresponding condi-
tions, including the average, median, and variance values. 
The data were analyzed in combination with Figures 3–
10. When the number of high-fidelity sample points is 
small, the average and median values of the MMFS model 
accuracy are lower than those of the MFS-RBF model, 
but the MMFS model is more accurate than the other 
two surrogates. However, with an increasing number of 
high-fidelity sample points, MMFS exhibited better mod-
eling capabilities and surpassed the other three methods. 
The MMFS models showed a smaller variance of model 
accuracy, indicating that the model accuracy was concen-
trated near the median, and the model was more robust 
when fitting samples of different distributions.

3.2  Engineering Case
In addition to the numerical test functions, the pro-
posed MMFS method is verified by solving an engi-
neering problem, that is, the stress distribution of a 
structural steel plate with a circular hole in the mid-
dle. Figure 11 shows the shape of the steel plate and the 
direction of the external force. The circle in the center 
is a hole; the length of the plate was 10 cm, the width 
was 5 cm, and the diameter of the central hole was 2 
cm. In addition, left side A was fixed, and center point B 
on the right side was subjected to a concentrated force 
Fb at angle α to the edge of the steel plate. In this study, 
the stress distribution of each position on the steel 
plate was analyzed; therefore, there were two design 
variables in this problem, (X, Y), that is, the coordinates 
of different positions on the steel plate in the horizon-
tal and vertical directions. The steel plate thickness was 
1.3 mm, but the stress data of only six positions could 
be obtained, which were set as high-fidelity data. These 
six positions are represented by the red dots in Fig-
ure 11. Assuming that the low-fidelity model showed a 
deviation in setting the steel plate thickness, the plate 
thickness was 1 mm. The low-fidelity stress data were 
calculated through computer simulations, and the low-
fidelity stress distribution at 1019 nodes on the plate 
was calculated. Therefore, the low-fidelity data are the 
stress values at 1019 positions after plate meshing, 
and the high-fidelity data are the stress values at the 
six positions. By combining this large amount of low-
fidelity data and a small amount of high-fidelity data, 
the MMFS method was used to establish a multifidel-
ity model in different force states of magnitudes and 
directions selected randomly. The comparison between 
the MMFS and single-fidelity models is presented in 
Table 3.

4  Conclusions

(1) Based on the RBF theory, a novel multifidel-
ity surrogate model named the MMFS model was 
developed. The scale factor and deviation term of the 
MMFS model were calculated adaptively based on 
the positions of the sample points and unknown test-
ing points.
(2) The general RBF model was employed to approx-
imate the low-fidelity model, assumed to be a rough 
substitute for the real system. The MMFS model 
parameters can be quickly calculated by employing 
the expansion matrix of the correlation matrix and 
low-fidelity responses.
(3) Using four numerical experiments, three popu-
lar models were employed to investigate the pre-
diction ability of the proposed model. The results 
show that the MMFS model exhibits a good pre-
diction performance and robustness.
(4) A solution to an engineering problem of the 
stress distribution of steel plates demonstrates that 
the MMFS method can capture the main trend of 
the problem using two-fidelity information.
(5) In the field of uncertainty analysis, optimiza-
tion objectives or constraints typically have high 
dimensions and nonlinearity, and the relationship 
between random variables and objective responses 
is a black-box problem. Although the Monte Carlo 
uncertainty analysis method can be applied, it 
requires extensive simulation and is inefficient. 
Therefore, in the future, the MMFS model should 
be used to roughly approximate the response of 
unknown variables. In addition, it should be com-
bined with the importance sampling method to 
iteratively minimize the model prediction uncer-
tainty and improve the prediction accuracy of the 
objective responses or constraints in the uncer-
tainty analysis.
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