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Abstract 

The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the lane-
exchanging scenario. The nearby vehicle trajectory needs to be predicted, from which the autonomous vehicle is 
controlled to prevent possible collisions. This paper proposes a lane-exchanging driving strategy for the autonomous 
vehicle to cooperate with the nearby vehicle by integrating vehicle trajectory prediction and motion control. A trajec-
tory prediction method is developed to anticipate the nearby vehicle trajectory. The Gaussian mixture model (GMM), 
together with the vehicle kinematic model, are synthesized to predict the nearby vehicle trajectory. A potential-field-
based model predictive control (MPC) approach is utilized by the autonomous vehicle to conduct the lane-exchang-
ing maneuver. The potential field of the nearby vehicle is considered in the controller design for collision avoidance. 
On-road driving data verification shows that the nearby vehicle trajectory can be predicted by the proposed method. 
CarSim® simulations validate that the autonomous vehicle can perform the lane-exchanging maneuver and avoid 
the nearby vehicle using the proposed driving strategy. The autonomous vehicle can thus safely perform the lane-
exchanging maneuver and avoid the nearby vehicle.

Keywords:  Autonomous vehicle, Lane-exchanging, Vehicle trajectory prediction, Potential field, Model predictive 
control
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1  Introduction
The autonomous vehicle is a promising technique that 
draws great attention from automotive manufactures, 
research institutes, and high-tech companies recently [1], 
owing to its great potential of improving driving safety 
and traffic efficiency [2, 3]. However, the complex driv-
ing scenarios impede the development and application of 
the automated driving technology [4]. With the appear-
ance of nearby road users, the autonomous vehicle has 
to cooperate with other traffic participants to ensure the 
road safety and efficiency [5].

The trajectory prediction of nearby vehicles have been 
investigated to enable the autonomous vehicle to col-
laborate with other road users. A unified framework is 
proposed for the maneuver classification and the motion 
prediction of surrounding vehicles [6]. After learning 
the probability distribution from the previous motion 
patterns, the vehicle trajectory can be anticipated by 
calculating the probability of the future motion [7]. The 
constant yaw rate and acceleration model and the maneu-
ver recognition model are combined to predict vehicle 
trajectory [8]. Similarly, the physical-based method and 
the maneuver-based method are integrated to predict the 
vehicle trajectory via an interactive multiple model [9]. 
The recurrent neural network and the 3D trajectory cues 
are utilized to anticipate the surrounding vehicle trajec-
tories [10]. The driver behaviors are anticipated through 
the input-output hidden Markov model for cooperating 
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with the nearby vehicles [11]. The deep recurrent neural 
networks are used to develop an integrated time series 
model for estimating the drivers’ brake intention [12]. 
The drivers’ driving styles and the road environments 
are considered to develop a curve speed model [13]. The 
drivers’ intention and maneuver are recognized by the 
inductive multilabel classification, in order to assist the 
drivers in the shared control scheme [14]. The drivers’ 
visual scanning behaviors at both the signalized and the 
unsignalized intersections are investigated to improve 
the road safety [15]. With the predicted trajectories of the 
surrounding vehicles, the motion control methods are 
developed to manipulate the autonomous vehicle accord-
ingly via understanding the behaviors of the nearby vehi-
cles. The robust control, back-stepping control, MPC and 
many other approaches are utilized in vehicle motion 
controller design. The robust control method is used to 
design the trajectory tracking controllers considering the 
modeling errors and the system uncertainties [16]. The 
control efforts are computed by solving a set of linear 
matrix inequalities [17]. A trajectory tracking controller 
using the back-stepping method is designed to track the 
planned trajectory and velocity in different T-intersection 
driving scenarios [18]. The MPC algorithm is employed 
for the vehicle motion control, considering its advantages 
of dealing with the system constraints [19]. By convert-
ing the path-tracking control into the yaw stabilization 
problem, the vehicle motion control is achieved by the 
integral sliding mode control method [20]. An optimal 
control approach is proposed to control the 4-independ-
ent wheel driving electric vehicles by solving a large-scale 
nonlinear optimization problem [21]. The nonlinear 
decoupling method is used to improve the maneuver-
ability and stability of electric vehicles [22]. The steering 
characteristics of an individual driver are considered to 
design the motion controller of the electric vehicles [23]. 
With the consideration of driver behaviors, the intelligent 
vehicles can cooperate with human drivers in different 
driving scenarios.

The lane-exchanging is one of the most challeng-
ing driving scenarios. The ground vehicles may need to 
perform the lane-exchanging maneuvers in the road 
fork driving situation. Under this driving condition, the 
nearby vehicle intends to change to the right-lane where 
the autonomous vehicle drivers, at the same time, the 
autonomous vehicle needs to switch to the left-lane and 
yield to the nearby vehicle, as shown in Figure  1. Some 
research efforts have been devoted to the studies of 
lane-exchanging scenario. The driver characteristics are 
considered in trajectory planning for the two vehicles 
to switch lane simultaneously [24]. The transportation 
requests can be exchanged to facilitate the vehicle col-
laboration in the lane-exchanging scenario [25]. Despites 

the research efforts above, the lane-exchange driving 
strategies of the autonomous vehicles are limited. Since 
the nearby vehicle trajectory is commonly assumed to be 
known in most studies, it is challenging to consider the 
nearby vehicle trajectory in the driving strategy design. 
To overcome these limitations, it is crucial to understand 
the nearby vehicle trajectory so that the autonomous 
vehicle can be controlled accordingly for inter-vehicle 
cooperation and collision avoidance.

This paper proposes a lane-exchanging driving strategy 
by synthesizing the trajectory prediction and the poten-
tial-field-based MPC. The autonomous vehicle should 
yield to the nearby vehicle that is driven by a human 
driver. In this study, the nearby vehicle is the lead-vehicle, 
whereas the autonomous vehicle is the lag-vehicle. The 
effects of the autonomous vehicle on the nearby vehicle 
are assumed to be small in the lead-lag condition. The 
trajectory of the nearby vehicle is predicted to facilitate 
the cooperation between the two vehicles. The structure 
of the proposed method is depicted in Figure 2.

As shown in Figure  2, the nearby vehicle trajectory is 
predicted for the motion control of the autonomous 
vehicle. A trajectory prediction method is developed 
by combining the long-term trajectory prediction and 
short-term trajectory prediction. The GMM method is 
employed to predict the vehicle trajectory in the long-
term, meanwhile, the vehicle kinematic model is used to 
anticipate that in the short-term. The predicted trajectory 

Figure 1  Lane-exchanging scenario
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Figure 2  Structure of the lane-exchanging driving strategy
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is sent to the motion control of the autonomous vehicle 
through the potential-field-based MPC method. Consid-
ering the potential fields of the nearby vehicle, the con-
trol efforts are computed to change the lane and avoid 
possible collisions in the lane-exchanging scenario. The 
contributions of this paper are listed as follows.

(1)	 A lane-exchanging driving strategy integrating 
vehicle trajectory prediction and motion control is 
developed. The predicted trajectories of the nearby 
vehicle are considered and integrated in the motion 
control of the autonomous vehicle, which facilitates 
the inter-vehicle cooperation.

(2)	 A trajectory prediction method is formed to antici-
pate the nearby vehicle trajectory. The long-term 
trajectory prediction using the GMM and the 
short-term trajectory prediction using the vehicle 
kinematic model are combined to anticipate the 
vehicle trajectory.

(3)	 The potential-field-based MPC method is utilized 
to perform the lane-exchanging maneuver with the 
predicted trajectory of the nearby vehicle. To avoid 
possible collisions, the potential field of the nearby 
vehicle is constructed through trajectory prediction 
and included in the controller design.

The structure of this paper is as follows. The trajectory 
prediction method for anticipating the nearby vehicle 
trajectory is introduced in Section 2. With the predicted 
trajectory, the potential-field-based MPC algorithm is 
detailed in Section  3 to conduct the lane-exchanging 
maneuver and avoid collision with the nearby vehicle. 
The simulation results are given in Section 4 and the con-
clusion is provided in Section 5.

2 � Nearby Vehicle Trajectory Prediction
The nearby vehicle trajectory is predicted to facilitate the 
cooperation between two vehicles in the lane-exchanging 
scenario. The predicted trajectory of the nearby vehicle is 
obtained by combing the short-term trajectory predicted 
through the vehicle kinematic model and the long-term 
trajectory predicted through the GMM method.

2.1 � Vehicle Trajectory Predicted by Vehicle Kinematic 
Model

The vehicle trajectory in the nearby future mainly 
depends on vehicle motion. The vehicle kinematic model 
that illustrates the relationship between vehicle velocity 
and vehicle position is used to predict the vehicle trajec-
tory in the short-term [8]. The schematic diagram of the 
vehicle kinematic model is shown in Figure 3.

As shown in Figure 3, for vehicle states at time instance 
t , the vehicle longitudinal and lateral positions of the 

center of gravity (CG) are xt and yt respectively, vt is 
vehicle velocity, ωt is vehicle yaw rate, at is vehicle accel-
eration, and ψt is vehicle yaw angle. To predict the vehi-
cle trajectory in the near future, the vehicle acceleration 
and yaw rate are assumed to be constant in the prediction 
horizon, i.e., at = a0 and ωt = ω0 . The predicted vehicle 
velocity and yaw angle can thus be expressed as

where a0 is the initial vehicle acceleration and ω0 is the 
initial vehicle yaw rate. v0 and ψ0 are vehicle velocity 
and yaw angle at the initial prediction time, respectively. 
Since vehicle positions are represented in the Cartesian 
coordinate, the vehicle velocities in the longitudinal and 
lateral directions need to be computed. According to 
vehicle kinematic model, vehicle velocity can be com-
puted as

where vxt and vyt are the vehicle velocity in the longitu-
dinal and the lateral directions at the prediction time t , 
respectively. Let the initial vehicle longitudinal and lateral 
positions be x0 and y0 . Then, the vehicle trajectory at the 
future time t can be obtained by integrating the velocities 
vxt and vyt [9], which are

The predicted trajectory consists of vehicle longitudinal 
position xt and lateral position yt , which can be written 
as

(1)vt = a0t + v0,

(2)ψt = ω0t + ψ0,

(3)vxt = vt cosψt ,

(4)vyt = vt sinψt ,

(5)

xt =
a0

ω2
0

cosψt +
vt

ω0

sinψt −
a0

ω2
0

cosψ0 −
v0

ω0

sinψ0 + x0,

(6)

yt =
a0

ω2
0

sinψt −
vt

ω0

cosψt −
a0

ω2
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Figure 3  Vehicle kinematic model
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where Tr1(t) is the trajectory predicted by the vehicle 
kinematic model. The constant yaw rate and acceleration 
model is employed for short-term trajectory prediction 
via Eqs. (5) and (6).

2.2 � Vehicle Trajectory Predicted by GMM
Vehicle trajectory in the long-term relates to the driv-
ers’ intention and maneuver. In the lane-exchanging sce-
nario, the nearby vehicle will change to the lane where 
the autonomous vehicle drives. Therefore, the long-term 
trajectory of the nearby vehicle can be anticipated by 
learning the historical driving data of the lane-change 
maneuver when the drivers’ lane-change intention is 
identified. As this study mainly focuses on the vehicle 
trajectory prediction, the lane-change intention of the 
nearby vehicle is assumed to be given or anticipated by 
other advanced algorithms [26].

For the purpose of predicting vehicle trajectory in the 
long-term, it is assumed that the future vehicle trajectory 
depends on the historical vehicle trajectory. Therefore, 
the probability distribution of the historical trajectory is 
utilized to infer that of the future trajectory. Consider-
ing its advantages of approximating various kinds of the 
probability distribution, the GMM method is used to 
represent the probability distribution of vehicle trajecto-
ries. The evolution of vehicle trajectory is thus regarded 
as a Gaussian process, and the Gaussian regression can 
be adopted for vehicle trajectory prediction. The pro-
cedures of vehicle trajectory prediction consist of two 
stages: the GMM model is firstly obtained by learning the 
lane-change driving data; then the future vehicle trajec-
tory can be anticipated via the conditional Gaussian dis-
tribution, given the historical vehicle trajectory.

In order to obtain a uniform representation of the vehi-
cle trajectory and ensure the path smoothness, the vehi-
cle trajectory is represented by Chebyshev polynomial to 
facilitate the trajectory prediction [7]. The historical vehi-
cle trajectory can be expressed as

where Trh(t) is the historical vehicle trajectory. Chhi(t) 
is the Chebyshev polynomial of the historical trajec-
tory evaluated at time step t. The subscript i indi-
cates the order of the Chebyshev polynomial and 
i = 1, 2, . . . ,m. xhi is the Chebyshev polynomial coef-
ficient, and the coefficient vector of the historical tra-
jectory is xh = [xh1xh2 . . . xhm]

T . Based on Eq. (8), the 
historical vehicle trajectory is decomposed as the Cheby-
shev polynomials and their coefficients. The polynomial 

(7)Tr1(t) = (xt , yt),

(8)Trh(t) =

m
∑

i=1

xhiChhi(t),

coefficients are used to represent the historical vehicle 
trajectory. Similarly, the future vehicle trajectory can be 
expressed in the same way. The coefficient vector of the 
future vehicle trajectory is xf =

[

xf 1xf 2 . . . xfm
]T . Since 

vehicle trajectory is represented by polynomial coeffi-
cients, the vehicle trajectory prediction can be converted 
into the prediction of the polynomial coefficients.

Owing to the relationship between the historical and 
future vehicle trajectories, together with the Chebyshev 
polynomials representation, the future vehicle trajec-
tory is predicted by computing the future polynomial 
coefficients using the historical polynomial coefficient. 
The coefficient vector xh of the historical trajectory is 
used as the input feature, and the prediction output is 
the coefficient vector xf  of the future vehicle trajectory. 
In order to describe the relationship between the his-
tory and the future coefficients, a state vector is defined 
as

The distribution of the state vector GS is assumed as a 
Gaussian mixture distribution, which is written as

where uk and �k are the mean and the covariance of 
the Gaussian component k . ωk is the weight of the cor-
responding Gaussian component. n is the number of the 
Gaussian components, and a single Gaussian component 
k can be written as

where the subscript h denotes the history information 
and the subscript f  represents the future information. 
The mean uk and covariance �k of the component k of 
the GMM can be obtained by learning the driving data-
set. The GMM is utilized to approximate the distribution 
of the historical and future trajectories.

After inferring the GMM, the state vector GS can be 
approximated. The relationship between the historical 
trajectory coefficient and the future trajectory coefficient 
are described by Gaussian process. Then, the conditional 
mixture distribution p(xf |xh) is used to predict the future 
trajectory coefficient xf  , given the history trajectory coef-
ficient xh . As the distribution of the polynomial coeffi-
cients consists of n Gaussian components, the covariance 

(9)GS =

[

xh
xf

]

.

(10)GS ∼

n
∑

k=1

ωkN(µk ,�k),

(11)µk =

[

µk ,h

µk ,f

]

,

(12)�k =

(

�k ,h �k ,hf

�k ,fh �k ,f

)

,
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of the Gaussian component k of the conditional mixture 
distribution is written as

The mean of the Gaussian component k of the condi-
tional mixture distribution can be calculated as

For the Gaussian components k , the weight of the con-
ditional mixture distribution is computed as

Eqs. (13)–(15) define a full conditional probability den-
sity function of the polynomial coefficient of the future 
trajectory. The conditional mixture distribution p(xf |xh) 
of the future trajectory coefficients can be given as

From Eq. (16), the conditional mixture distribution of 
the polynomial coefficients of the future trajectory can 
be obtained. The mean and covariance of the conditional 
probability distribution are the combination of the n 
Gaussian components, which are written as

The future vehicle trajectory is predicted by comput-
ing the distribution of the polynomial coefficients of the 
future trajectory, which is approximated by the condi-
tional mixture distribution. Since the vehicle trajectory 
is represented by the Chebyshev polynomial, the future 
vehicle trajectory can be given as

where Tr2(t) is the predicted vehicle trajectory. xf  is the 
predicted coefficient vector of the Chebyshev polyno-
mial. Ch(t) is the Chebyshev polynomial evaluated at 
time t . The future vehicle trajectory can be predicted 
through above procedures.

2.3 � Trajectory Prediction Integration
The short-term trajectory prediction and the long-term 
trajectory prediction are integrated to obtain the final 

(13)�k ,f |h = �k ,f −�k ,fh�
−1
k ,h�k ,hf .

(14)µk ,f |h = µk ,f +�k ,fh�
−1
k ,h(xh − µk ,h).

(15)ωk|h =
ωkp(xh|µk ,xh ,�k ,xh)

∑n
k=1 ωkp(xh|µk ,xh ,�k ,xh)

.

(16)p(xf |xh) =

n
∑

k=1

ωk|hN(µk ,f |h,�k ,f |h),

(17)µσ ,f |h =

n
∑

k=1

ωk|hµk ,f |h,

(18)

�σ ,f |h =

n
∑

k=1

ωk|h(�k + (µk ,f |h − µσ ,f |h)(µk ,f |h − µσ ,f |h)
T).

(19)Tr2(t) = Ch(t) · xf ,

predicted vehicle trajectory. The vehicle kinematic model 
is accurate in the short-term prediction, meanwhile, the 
GMM method emphases on the long-term prediction. To 
obtain the final trajectory prediction, a weighting func-
tion is utilized to combine the predicted trajectories in 
both the short-term and long-term.

Considering the smoothness of vehicle trajectory, the 
cubic spline function f (t) is used to construct the weigh-
ing function that integrates the two predicted trajecto-
ries. The weighting function is defined as a cubic spline 
within the prediction horizon 

[

0, T
]

 and 0 ≤ f (t) ≤ 1 . 
Then, the prediction trajectory can be written as

The final predicted trajectory is represented by Tr(t) . 
With the prediction time t increases from 0 to T  , the 
weighting function f (t) is decreasing from 1 to 0. At the 
beginning of the trajectory prediction, the short-term 
predicted trajectory Tr1(t) dominates the trajectory pre-
diction and the weighting function f (t) is close to 1. As 
the prediction time increase, the predicted trajectory is 
close to the long-term predicted trajectory Tr2(t) which 
means the weighting function f (t) approaches to 0.

3 � Potential Field Based Model Predictive Control
With the predicted nearby vehicle trajectory, the poten-
tial-field-based MPC algorithm is used to perform the 
lane-exchanging maneuver and cooperate simultaneously 
with the nearby vehicle.

3.1 � Vehicle System Model
A control-oriented vehicle model is formed for the con-
troller design. The bicycle vehicle model that simplifies 
the model complexity while preserving accuracy is uti-
lized to describe vehicle motion on the ground. The bicy-
cle vehicle model is illustrated in Figure 4.

As shown in Figure 4, the bicycle vehicle model illus-
trates the vehicle planar motion. The vehicle longitudinal 
motion, lateral motion and yaw motion are considered, 
whereas the vehicle pitch motion and roll motion are 

(20)Tr(t) = f (t)Tr1(t)+ (1− f (t))Tr2(t).

Figure 4  Vehicle dynamic model
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ignored. Then, the vehicle motion equations can be writ-
ten as [27]

where X and Y  are vehicle global positions in the longi-
tudinal and lateral directions, respectively. Fx is the lon-
gitudinal tire force. Fyf  is the lateral tire force of the front 
wheels, and Fyf  is that of the rear wheel. lf  and lr are the 
distances from vehicle center of gravity to the front axle 
and rear axle, respectively. m is the total vehicle mass, 
and Iz is vehicle yaw moment of inertia. ψ is vehicle yaw 
angle, and ωz is vehicle yaw rate, so that the yaw motion 
of the autonomous vehicle can be considered in the con-
troller design. vx and vy are vehicle longitudinal and lat-
eral velocity, respectively.

In the lane-exchanging scenario, the vehicle yaw angle 
is assumed small [24]. Therefore, we can have the condi-
tions cosψ ≈ 1 and sinψ ≈ ψ . The vehicle global position 
can then be simplified as

Considering the normal driving conditions studied in 
this paper, the linear tire model is used to compute the 
lateral tire forces, which are

where δ is the steering angle of the front wheel. Cf  and Cr 
are the cornering stiffness of the front axle and the rear 
axle, respectively. By substituting Eqs. (23)–(25) into Eq. 
(21), the vehicle system model in Eq. (21) can be rewrit-
ten into the state space representation, which is

where the state vector is ξ , and ξ =
[

X , vx,Y , vy,ψ ,ωz

]T . 
The system output would be η = [Y ,ψ , vx]

T . The control 
inputs are the steering angle and the longitudinal tire 
force, i.e., u = [δ Fx]

T . A is the system matrix, B is the 

(21)



































Ẋ = vx cosψ − vy sinψ ,

Ẏ = vx sinψ + vy cosψ ,

ψ̇ = ωz ,

v̇x = vyωz +
Fx
m ,

v̇y = −vxωz +
Fyf +Fyr

m ,

ω̇z =
Fyf lf −Fyr lr

Iz
,

(22)Ẋ = vx − vyψ ,

(23)Ẏ = vxψ + vy.

(24)Fyf = Cf (δ −
vy + lf ωz

vx
),

(25)Fyf = −Cr
vy − lrωz

vx
,

(26)
{

ξ̇ = Aξ + Bu,
η = Cξ ,

control matrix, and C is the output matrix. The above 
matrices can be expressed as

The vehicle model in Eq. (26) is utilized as the pre-
dictive model of the MPC algorithm. Under the MPC 
scheme, the vehicle system is discretized as

where Ak is the discretized system matrix, and 
Ak = I + T sA. Bk is the discretized control matrix 
and Bk = TsB . T s is the sampling time. The discretized 
output matrix is Ck . The incremental of the control 
efforts is written as �u(k) that satisfies the condition 
�u(k) = u(k)− u(k − 1).

3.2 � Potential Fields
The autonomous vehicle has to cooperate with the nearby 
vehicle for collision avoidance in the lane-exchanging 
scenario. The nearby vehicle is thus regarded as a mov-
ing obstacle that needs to be avoided when the autono-
mous vehicle changes to the other lane. By predicting the 
nearby vehicle trajectory, the potential field of the nearby 
vehicle is constructed and considered in the controller 
design, in order to avoid possible collisions between the 
two vehicles. The potential field of the nearby vehicle can 
be written as [28]

where a is the intensity parameter, and b is the shape 
parameter of the potential field of the nearby vehicle. �X 
and �Y  are the relative distances between two vehicles 
in the longitudinal and the lateral directions, respectively. 
The term SD(•) represents the signed distance that repre-
sents the relative position between the two vehicles and 

A =



















0 1 0 0 −vy 0

0 0 0 0 0 vy
0 0 0 1 vx 0

0 0 0 −
Cf +Cr

mvx
0

Crlr−Cf lf
mvx

− vx
0 0 0 0 0 1

0 0 0
lrCr−lf Cf

Izvx
0 −

l2r Cr+l2f Cf

Izvx



















,

B =

[

0 1
m 0 0 0 0

0 0 0
Cf

m 0
lf Cf

m

]T

,

(27)C =





0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0



.

(28)
{

ξ(k + 1) = Akξ(k)+ Bku(k),
η(k) = Ckξ(k),

(29)Uo(X ,Y ) =
a

SD(�X
Xs

, �Y
Ys

)b
,
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is detailed in Ref. [29]. Xs is the safe distance in the lon-
gitudinal direction and Ys is that in the lateral direction, 
which are defined as

where vxn is the velocity of the nearby vehicle. �vx and 
�vy are the longitudinal and lateral approaching veloc-
ity, respectively. X0 is the minimum allowed longitudinal 
distance and Y0 is the minimum allowed lateral distance. 
an represents the vehicle acceleration. T0 is the safe time 
gap and θ is the heading angle between the two vehicles. 
Since the potential field increases as the autonomous 
approach to the nearby vehicle, the autonomous vehi-
cle is preferred to drive along the low potential area and 
avoid the high potential area, so that the autonomous 
vehicle can avoid the nearby vehicle in the lane-exchang-
ing scenarios.

Besides the potential field of the nearby vehicle, the 
potential field of the road boundary is defined to prevent 
the vehicle from leaving the lane. The potential field of 
the road boundary is written as

where SDR(•) is the singed distance between the auton-
omous vehicle and the road boundary. Da is the safety 
distance from the lane boundary. aR is the intensity 
parameter. With the potential field defined for the lane 
boundary, the autonomous vehicle is prevented from 
leaving the lane.

The functions of the potential fields are nonlinear and 
nonconvex, so as the problem of controller design. Its 
solution is thus time-consuming and computationally 
expensive. In order to reduce the computational cost, the 
potential fields are approximated by convex functions via 
coordinate transformation. The controller design prob-
lem can thus be converted into a convex quadratic opti-
mization problem. The convex processes are detailed in 
Ref. [30] and thus omitted here.

3.3 � Cost Function and Constraints
The control objective is to avoid the nearby vehicle while 
performing the lane-change maneuver at the same time. 
The lateral and longitudinal motion of the autonomous 
vehicle have to be manipulated simultaneously. As the 
autonomous will change to the adjacent lane where the 

(30)Xs = X0 + vxT0 +
�v2x
2an

,

(31)Ys = Y0 + (vx sin θ + vnx sin θ)T0 +
�v2y

2an
,

(32)

UR(X ,Y ) =

{

aR(SDR(X ,Y )− Da)
2

0

SDR(X ,Y ) < Da,

SDR(X ,Y ) > Da,

nearby vehicle drives, the desired trajectory is set as the 
centerline of the adjacent lane. Therefore, the cost func-
tion considering the nearby vehicle, the road boundaries, 
and the trajectory tracking errors is written as

where U0(t + k|t) is the potential fields of the nearby 
vehicle of time step (t + k) which is computed at time 
step t , similar to the potential filed of the road bound-
ary UR(t + k|t) . The control effort is uc(t + k|t) and its 
corresponding weighting matrix is R . ηdes(t + k|t) is the 
desired system outputs that contains the lateral position 
and the yaw angle of the centerline of the target lane, as 
well as the desired velocity. Q is the weighting matrix of 
the trajectory tracking error.

After defining the cost function, the control efforts can 
be computed by solving the receding horizon optimiza-
tion problem. The vehicle system model and the control 
saturation are considered as the constraints of the opti-
mization problem. Meanwhile, the vehicle states needs 
to be confined in the reasonable ranges to ensure driving 
safety and ride comfort. Then, the optimization problem 
can be expressed as

where u(t + k|t) represents the control effort of the time 
step (t + k) computed at time step t . The ucmin and ucmax 
are the lower bound and the upper bound of the control 
effort. Considering the actuator saturation, the minimum 
and maximum steering angle are δmin and δmax , the mini-
mum and maximum driving torque are Tmin and Tmax . 
Then the constraints of the control efforts are

(33)

J =

N
∑

k=1

(Uo(t + k|t)+UR(t + k|t))+

N−1
∑

k=0

∥

∥uc(t + k|t)
∥

∥

R

+
N
∑

k=1

∥

∥η(t + k|t)− ηdes(t + k|t)
∥

∥

Q
,

min
u(t+k|t),...,u(t+k+N−1|t)

J (ξ(t + k|t),u(t + k|t)) ,

s.t. ξ(t + k + 1|t) = Akξ(t + k|t)+ Bkuc(t + k|t),

η(t + k|t) = Ckξ(t + k|t),

ucmin < uc(t + k|t) < ucmax,

�ucmin < �u(t + k|t) < �ucmax,

u(t + k + 1|t) = u(t + k|t)+�u(t + k|t),

(34)for k = 0, 2, 3, . . . ,N − 1,

(35)
ucmin =

[

δmin Tmin

]T
, ucmax =

[

δmax Tmax

]T
.
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Similarly, the constraints of the incremental of the con-
trol efforts are considered. The �u(t + k|t) is confined 
by its lower bound �ucmin and its upper bound �ucmax . 
Define the minimum and maximum steering angle 
between two steps as �δmin and �δmax , and the mini-
mum and maximum driving torque between two steps as 
�Tmin and �Tmax . Then the constraints of �u(t + k|t) 
are bounded as

Under the MPC scheme, a sequence of control efforts are 
computed, whereas only the first one is sent to drive the 
autonomous vehicle. More details about the MPC algo-
rithm can be found in Ref. [31].

4 � Driving Data and Simulation Validation
The on-road driving data from the Highway Drone Data-
set is used to verify the trajectory prediction method. The 
proposed method is used to anticipate the trajectory of 
the nearby vehicle. Based on the predicted trajectory, the 
potential-field-based MPC approach is then utilized to 
conduct the lane-exchanging maneuver and avoid possi-
ble collisions. The designed control method is validated 
through simulation studies.

4.1 � Trajectory Prediction Results
The developed vehicle trajectory prediction method is 
verified through the Highway Drone Dataset that con-
tains naturalistic vehicle trajectories recorded on Ger-
man Highway [32]. In the lead-lag driving condition 
studied in this paper, the effect of the autonomous vehicle 
on the nearby vehicle is assumed to be small. The vehicle 
trajectory, including vehicle type, size and maneuver, is 
collected using a drone from the aerial perspective. The 
vehicle positions are extracted via the state-of-the-art 

(36)

{

�ucmin =
[

�δmin �Tmin

]T
,

�ucmax =
[

�δmax �Tmax

]T
.

computer vision algorithms. By learning the on-road 
driving data, the vehicle trajectory can be anticipated by 
the proposed method.

The vehicle trajectory is predicted at different time 
instance after the start of lane change. Since the nearby 
vehicle changes to the adjacent lane in the lane-exchang-
ing scenario, the start of lane-change is defined as the 
instance when the vehicle position is around the center-
line of its original lane. The historical trajectory is used to 
predict the future trajectory for 4 s ahead. The trajectory 
prediction results at the time instance 0.4 s, 1.4 s, and 2.4 
s after the start of lane-change are shown in Figures 5−7.

Figure 5 shows the vehicle trajectory that is predicted 
at 0.4 s after the start of lane-change. The trajectory pre-
diction is accurate at the beginning of the prediction. 
The prediction error increases with the prediction time 
and reaches to 0.2 at the longitudinal position 150 m. 
The final trajectory has smaller errors than the trajecto-
ries predicted either by the GMM method or the vehicle 
mode.

In Figure 6, the vehicle trajectory is predicted at 1.4 s 
after the start of lane-change. By combing the GMM 

Global X(m)

G
lo

ba
l Y

(m
)

Figure 5  Trajectory prediction at 0.4 s after the start of lane change
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Figure 6  Trajectory prediction at 1.4 s after the start of lane change
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Figure 7  Trajectory prediction at 2.4 s after the start of lane change
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method and the vehicle model, the prediction error of the 
final trajectory can be reduced.

Similarly, the trajectory predicted at 2.4 s after the start 
of lane-change is depicted in Figure  7. The trajectory 
prediction by the vehicle model is accurate in the short-
term, whereas the trajectory predicted by the GMM 
method performs better in the long-term. The final tra-
jectory takes advantage of the two prediction methods 
such that it matches the real trajectory with small predic-
tion errors.

By applying the proposed method, the nearby vehicle 
trajectory can be predicted with small prediction errors. 
The predicted trajectory is utilized in the potential-
field-based MPC approach for the motion control of the 
autonomous vehicle, which will be detailed in the next 
subsection.

4.2 � Lane‑exchanging Control Performance
Based on the predicted trajectory, the autonomous 
vehicle can cooperate with the nearby vehicle in the 
lane-exchanging scenarios. The potential fields are con-
structed along the predicted trajectory of the nearby 
vehicle. Then, the potential-field-based MPC is devel-
oped for the motion control of the autonomous vehicle 
to avoid possible collisions while changing to the adjacent 
lane. A full-vehicle model is built in CarSim® software 
and the vehicle parameters can be found in Ref. [16]. The 
nearby vehicle velocity is obtained from trajectory pre-
diction as 32 m/s, meanwhile, the desired velocity of the 
autonomous vehicle velocity is set as 28 m/s in the lane-
exchanging scenario.

Since the initial longitudinal distances between the two 
vehicles are varying in real driving conditions, the situ-
ations of different initial longitudinal distances are stud-
ied. When the initial longitudinal distance is 10  m, the 
trajectories of the two vehicles are shown in Figure 8. The 

vehicle trajectories when the initial longitudinal distance 
is 30 m can be found in Figure 9.

As shown in Figures 8 and 9, the autonomous vehicle 
changes to the adjacent lane by applying the proposed 
driving strategy. Although the initial longitudinal dis-
tances are different, the autonomous vehicle can avoid 
the nearby vehicle in the lane-exchanging scenario. The 
relative longitudinal distance increases with the traveling 
time to ensure driving safety. The driving trajectories of 
the autonomous vehicle are different when the initial lon-
gitudinal distances are 10 and 30 m. When the initial lon-
gitudinal distance is 10 m, the autonomous vehicle turns 
to the right-side to avoid the nearby vehicle at longitudi-
nal position 30  m. Then, the autonomous vehicle turns 
to the left-side at longitudinal position 80 m and reaches 
lateral position 2 m at the longitudinal position 100 m. If 
the initial longitudinal distance is 30 m, the autonomous 
vehicle directly changes to the target lane. Its lateral posi-
tion reaches 2  m at the longitudinal position 50  m and 
reaches the centerline of the target lane at the longitudi-
nal position 125 m. The effects of the nearby vehicle on 
the autonomous vehicle decreases, as the relative longi-
tudinal distance increases. Therefore, the autonomous 
vehicle switches to the adjacent lane at the earlier longi-
tudinal position.

To further illustrate the relative positions of the two 
vehicles in the lane-exchanging scenario, the vehicle 
positions at the trajectory crossing point are plotted in 
Figures 10 and 11.

In Figures  10 and 11, the relative distances between 
the autonomous vehicle and the nearby vehicle are large 
enough to prevent possible collisions. When the ini-
tial longitudinal distance is 10 m, the trajectories of the 
two vehicles cross around 4.9 s at the longitudinal posi-
tion 125  m. The longitudinal distance between the two 
vehicles is around 40 m as shown in Figure 10. As to the 

G
lo

ba
l Y

(m
)

Global X(m)

Figure 8  Vehicle trajectories in the lane-exchanging scenario when 
initial longitudinal distance is 10 m
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Figure 9  Vehicle trajectories in the lane-exchanging scenario when 
initial longitudinal distance is 30 m



Page 10 of 12Chen et al. Chinese Journal of Mechanical Engineering           (2022) 35:71 

driving situation when the initial longitudinal distance 
is 30 m, the trajectories of the two vehicles cross around 
3.7  s at the longitudinal position 100  m. The longitudi-
nal distance between the two vehicles at the cross point 
is 45  m, as shown in Figure  11. The vehicle positions 
indicate that the autonomous vehicle passes the trajec-
tory crossing point after the nearby vehicle leaves, which 
means the autonomous vehicle can avoid the nearby 
vehicle by applying the proposed driving strategy.

The autonomous vehicle decelerates to avoid the nearby 
vehicle in the lane-exchanging scenario. The velocity of 
the autonomous vehicle in the situations of different ini-
tial longitudinal distances are illustrated in Figure 12.

Figure 12 shows the longitudinal velocity of the autono-
mous vehicle decreases to avoid the nearby vehicle under 
different initial conditions. When the initial longitudinal 
distance is 30 m, the autonomous vehicle slightly reduces 
to 27  m/s at 4  s and then increases. If the initial longi-
tudinal distance is 10 m, the autonomous vehicle veloc-
ity decreases from 28 m/s to 26 m/s. Due to the smaller 

initial longitudinal distance, the effects of the nearby 
vehicle on the autonomous vehicle is larger. Therefore, 
the autonomous vehicle applies larger deceleration in the 
driving situation when the initial longitudinal distance is 
10 m.

The lateral velocity and yaw rate of the autonomous 
vehicle in the lane-exchanging scenario are depicted in 
Figure 13.

In Figure  13, the yaw rate and lateral velocity of the 
autonomous vehicle can converge by applying the pro-
posed driving strategy. When the initial longitudinal 
distance is 30  m, the yaw rate increases to 0.05  rad/s 
and decreases to −0.05 rad/s, and the lateral velocity 
decreases to −0.25  m/s and increases to 0.2  m/s in the 
lane-exchanging scenario. Both the yaw rate and lateral 
velocity converge at 6  s when the autonomous vehicle 
reaches the target lane. If the initial distance is 10 m, the 
autonomous vehicle needs more time to reach the target 
lane. Its yaw rate and lateral velocity have more oscilla-
tions and take more time to settle at 7 s.
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Figure 10  Vehicle positions at the trajectory crossing point when 
initial longitudinal distance is 10 m
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Figure 11  Vehicle positions at the trajectory crossing point when 
initial longitudinal distance is 10 m
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Figure 13  Yaw rate and lateral velocity of autonomous vehicle
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The driving data validation and simulation results show 
that the autonomous vehicle can avoid the nearby vehicle 
in the lane-exchanging scenario by applying the proposed 
driving strategy.

5 � Conclusions
This paper proposes a lane-exchanging driving strategy 
by combining the trajectory prediction of the nearby 
vehicle and the motion control of the autonomous vehi-
cle. The trajectory of the nearby vehicle is predicted by 
the GMM method and the vehicle kinematic model. The 
lane-exchange maneuver is performed to cooperate with 
the nearby vehicle using the potential-field-based MPC 
approach. The proposed driving strategy is validated 
through the on-road driving data and the simulations. 
The results show that the autonomous vehicle can avoid 
the nearby vehicle in the lane-exchanging scenarios. This 
study considers only one nearby vehicle for simplicity. 
In the following works, the complex driving situations 
involving multiple nearby vehicles will be investigated.
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