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Extended DMPs Framework for Position 
and Decoupled Quaternion Learning 
and Generalization
Zhiwei Liao1,2, Fei Zhao1,2*, Gedong Jiang1,2 and Xuesong Mei1,2 

Abstract 

Dynamic movement primitives (DMPs) as a robust and efficient framework has been studied widely for robot learn-
ing from demonstration. Classical DMPs framework mainly focuses on the movement learning in Cartesian or joint 
space, and can’t properly represent end-effector orientation. In this paper, we present an extended DMPs framework 
(EDMPs) both in Cartesian space and 2-Dimensional (2D) sphere manifold for Quaternion-based orientation learn-
ing and generalization. Gaussian mixture model and Gaussian mixture regression (GMM-GMR) are adopted as the 
initialization phase of EDMPs to handle multi-demonstrations and obtain their mean and covariance. Additionally, 
some evaluation indicators including reachability and similarity are defined to characterize the learning and generali-
zation abilities of EDMPs. Finally, a real-world experiment was conducted with human demonstrations, the endpoint 
poses of human arm were recorded and successfully transferred from human to the robot. The experimental results 
show that the absolute errors of the Cartesian and Riemannian space skills are less than 3.5 mm and 1.0°, respectively. 
The Pearson’s correlation coefficients of the Cartesian and Riemannian space skills are mostly greater than 0.9. The 
developed EDMPs exhibits superior reachability and similarity for the multi-space skills’ learning and generalization. 
This research proposes a fused framework with EDMPs and GMM-GMR which has sufficient capability to handle the 
multi-space skills in multi-demonstrations.

Keywords:  Learning from demonstration, Dynamic movement primitives, 2D sphere manifold, Gaussian mixture 
model, Gaussian mixture regression, Quaternion-based orientation
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1  Introduction
Learning from Demonstration (LfD) has played a key role 
for robots to learn movement and manipulation skills 
from humans due to its high efficiency [1]. Conventional 
LfD methods, e.g., teach-pendant, joysticks, keyboard, 
etc. are used for fast programming that more focus on 
the endpoint movement trajectory planning and control. 
Such interfaces are only for some simple tasks, and it is 
powerless to the anthropomorphic skillful operations. In 
recent years, many LfD approaches have been developed 

for complicated tasks, of which DMPs [2], stable estima-
tor of dynamical systems (SEDS) [3], Gaussian mixture 
model/regression (GMM-GMR) [4], probabilistic move-
ment primitives (ProMP) [5], kernelized movement 
primitives (KMP) [6] and Hidden (Semi-) Markov model 
(H(s)MM) [7] are outstanding representatives.

As a widespread LfD approach, DMPs is proposed 
and developed by Ijspeert et  al. [8–10], to describe a 
trajectory by a series of action units. Such movement 
primitives are formalized as a stable attractor system to 
generate the trajectory either in task or joint space [11]. 
The classical DMPs framework composed of a canonical 
system module, a transformation system module, and a 
locally weighted regression (LWR) module, is developed 
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to encode movement, learn their characteristics, and 
generalize to other similar targets.

In recent years, many approaches based on the classi-
cal DMPs are presented to extend its functionality, such 
as obstacle avoidance [12–14], stiffness learning [15, 16], 
collaborative behavior imitation [17], etc. As one of the 
most commonly used skill learning frameworks, DMPs 
model exhibits many excellent performances such as 
robustness to perturbations, convergence to attractors, 
time independence, etc. The approach is extensively 
applied to learn some anthropomorphic skills such as the 
skillful sports [18]. Although the classical DMPs is widely 
used, it still has some drawbacks [19]. In this paper, we 
are committed to endowing the classical DMPs with the 
capability to handle multi-demonstrations and Riemann-
ian space skills such as orientations.

In LfD community, GMM-GMR provides a suitable 
option for multi-demonstrations to obtain more dem-
onstrated information, such as the probability distri-
bution of multi-trajectories. GMM-GMR encodes the 
human skills as a clustering problem by estimating the 
joint distribution over the state variables and perform-
ing regression with the conditional distribution. As a 
robust learning algorithm, GMM-GMR is widely used for 
learning and reproducing human skills in kinematics and 
dynamics. When dealing with multi-demonstrated tra-
jectories, the data is usually projected onto a latent space, 
and then encoded and reproduced by GMM and GMR 
successively [20]. Comparing with the DMPs approach, 
GMM-GMR can obtain mean and probability distribu-
tion simultaneously from multi-demonstrations. These 
parameters are beneficial to summarizing the demon-
strated law, even provide some guidance for variable 
impedance controllers [21]. Although GMM-GMR has 
many merits, this approach lacks generalization capacity 
when the target exceeds its distribution range. On that 
account, TP-GMM [22] is developed to adapt the con-
text by extracting the relevance between different tasks. 
Due to the mutual complementarity between DMPs and 
GMM-GMR, in Ref. [23], GMM-GMR is introduced 
into DMPs framework as the nonlinear terms for multi-
trajectories, but this approach was applied in joint space, 
only suitable for Cartesian space parameters, and ignored 
the probability distribution of multi-demonstrations. 
Similarly, we incorporate GMM-GMR into DMPs, but we 
more focus on the task space and Riemannian space skills 
like orientation, and effectively utilized the covariance 
characteristics.

Position and orientation are important for robots to 
accurately learn movement skills. Many existing works 
have addressed the position learning based on the clas-
sical DMPs framework in Cartesian space. Since the 
orientation is the skill on manifolds, the classical DMPs 

framework is unable to precisely handle such skills. 
Therefore, in recent years, many researches have repre-
sented the distance between orientations with the geo-
desics on the Riemannian manifolds. Such approaches 
provide the possibility to properly represent end-effec-
tor orientations. In Ref. [24], several concepts of Rie-
mannian manifolds such as geodesics and logarithm/
exponential maps are specifically discussed in robot-
ics, and four kinds of manifolds are listed including the 
sphere manifold Sd , special orthogonal group SO(d) , 
special Euclidean group SE(3) , and the manifold of SPD 
matrix Sd++ . In Refs. [25, 26], a modified DMPs frame-
work is proposed to learn orientations in Cartesian 
space based on the quaternion S3 and rotation matrix 
SO(3) with the logarithmic map. The approaches take 
an effective way for the robot end-effector orienta-
tions, but they lack the ability to handle multi-space 
skills, such as the poses including positions and ori-
entations, Moreover, the methods inherit the draw-
backs of the classical DMPs which are powerless to the 
multi-demonstrations. In Ref. [27], the skills on the Sd++ 
manifold are learned with their geometry of the SPD 
matrix space. Although the method successfully learns 
the end-point stiffness skills which have SPD property. 
But the rotation matrix always has not the positive 
definite and symmetric characteristics which limits its 
application.

To this end, we provide a new approach for learning 
Quaternion-based orientations based on the concepts of 
geodesics and exponential function on the Riemannian 
manifold. Different from the above-mentioned publica-
tions, our approach focuses on the 2D sphere manifold 
S2 . We decompose the quaternion S3 into a Cartesian 
term R and a Riemannian term S2 , i.e., the rotation angle 
and axis q = q + �v . Thus, our framework can handle the 
Cartesian term q ∈ R and the Riemannian term v ∈ S 2 
respectively. In brief, comparing with the state-of-the-
art researches [28], our framework can learn the multi-
space skills in cartesian space and 2D sphere manifold. 
The demonstrated human arm endpoint poses including 
positions and orientations can be transferred to robots 
simultaneously.

The contributions of this paper can be summarized as 
follows:

(1)	 We proposed an EDMPs framework to learn and 
generalize quaternion-based orientations from 
human to robots by extending the classical DMPs 
to the 2D sphere manifold.

(2)	 We combined the GMM-GMR and EDMPs frame-
work according to their mutual complementarity. 
The fused framework can not only handle multi-
ple demonstrations to obtain more demonstrated 
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information, but also has a good generalization abil-
ity.

(3)	 We proposed several evaluation indicators includ-
ing reachability and similarity to evaluate the learn-
ing results of EDMPs under the determined RBFs 
and time constants of the algorithms.

The remaining of this paper is organized as follows. 
Section  2 presents the methodology of data preproc-
essing, EDMPs framework, GMM-GMR algorithm and 
evaluation indicators. In Section 3, a real-world experi-
ment has been performed to evaluate its effectiveness. 
Discussion is carried out in Section  4. Section  5 pro-
vides the conclusion of this paper

2 � Methodology
Aiming at the orientation learning from human to 
robots, and helping them acquire multi-space skills 
conveniently and autonomously, as shown in Figure  1, 
the architecture mainly consists of four layers, i.e., 
human demonstrations (green), data preprocessing 
(blue), skills learning (yellow) and robot control (red). 
We will provide a specific description of data preproc-
essing and EDMPs framework in Sections  2.1 and 2.2. 
And then, the methodology of GMM-GMR for multi-
space parameters under multi-demonstrations will be 
introduced in Section 2.3. Additionally, we design sev-
eral evaluation indicators in Section 2.4 to evaluate our 
learning and generalization results. For a better under-
standing, we summarize the key notations and abbre-
viations in Table 1.Figure 1  Fused framework of EDMPs and GMM-GMR

Table 1  Description of key notations and abbreviations

{·} Trajectory from one demonstration {{·}} Multi-trajectories from multi-demonstrations

p Position q Quaternion

θ Angle-quaternion v Axis-quaternion

T Time s Phase variable

Ψ RBFs W Weights of RBFs

ci Center of i-th RBFs hi Width of i-th RBFs

RÔ
O

Rotation matrix from O to Ô γ Vectors from v i to v i+1

f (s) Nonlinear term τ Temporal scaling factor

d(x , y) Geodesics between x and y M Number of points in a demonstration

K Number of demonstrations N Number of Gaussian distributions

ξ I Inputs of GMR ξO Outputs of GMR

P(∗) Probability distribution π Probability of Gaussian distributions

µ Mean of Gaussian distributions
∑

Covariance of Gaussian distributions

ec Absolute error of Cartesian skills �ec Relative error of Cartesian skills

er Absolute error of Riemannian skills ρc PCCc of Cartesian skills

ρr PCCr of Riemannian skills σ Standard deviation

DMPs Dynamic movement primitives GMM/R Gaussian mixture model/ regression

TS Transformation system EM Expectation-maximization

RBFs Radial basis functions LWR Locally weighted regression

PCCc Pearson’s correlation coefficient in Cartesian 
space

PCCr Pearson’s correlation coefficient on 2D sphere manifold

R Reproduced curve G1−3 Generalized curve 1-3
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2.1 � Data Processing
2.1.1 � Orthogonal Processing
As described in Figure 1, several trajectories of the refer-
ence points are recorded from human demonstrations 
with the VICON motion capture system, thus, we can 
calculate the positions {{p}} ∈ R

3 and orientations {{ox}} , 
{{

oy
}}

 , {{oz}} ∈ S2 with these reference points. Thus, the 
pose matrices can be constructed with multi-dimensional 
orientations R ∈ SO(3) , R =

[

oTx , o
T
y , o

T
z

]

 . To guarantee 
the orthogonality of the columns in pose matrices, we 
should firstly adopt the Gram-Schmidt orthogonalization 
approach to fine-tune the demonstrated multi-dimen-
sional orientations.

where 〈o, ξ〉 represents the inner product between o and 
ξ , i.e., �o, ξ� = oTξ . Thus, we can obtain a set of orthogo-
nal basis 

{

ξx, ξ y, ξ z

}

 as well as their standard form 
{

ηx, ηy, ηz
}

 , wherein ηx = ξ x/
∥

∥ξx
∥

∥ , ηy = ξ y/

∥

∥

∥
ξ y

∥

∥

∥
 and 

ηz = ξ z/
∥

∥ξ z
∥

∥ . The pose matrices are constructed of the 
axes with orthogonal constraints R̂ ∈ SO(3) , 
R̂ =

[

ηTx , η
T
y , η

T
z

]

.

2.1.2 � Continuous Quaternion Solution and Decomposition
In screw theory, every transformation of robot end-effec-
tor with respect to the base coordinate system can be 
expressed by a screw displacement, which is a translation 
along a axis v ∈ S2 and a rotation with an angle θ ∈ R 
about the axis. Quaternion-based representation of robot 
end-effector poses has been widely used with its high 
efficiency and non-singularity. Due to a specific pose can 
be represented in two different ways of quaternions, i.e., 
(θ , v) and (−θ ,−v) , we introduced a constraint rule for 
adjacent quaternions to ensure the quaternion-based tra-
jectories continuously.

where the sign of qi is determined by qi−1 . On this 
basis, we decomposed quaternion into a Cartesian term 
q = cos(θ/2) and a Riemannian term v= [x,y,z] . And 
then, the multi-space parameters θ and v can be learned 
with the presented EDMPs framework respectively.

(1)



















ξx = ox,

ξ y = oy −
�oy,ξx�
�ξx ,ξx�

ξx,

ξ z = oz −
�oz ,ξx�
�ξx ,ξx�

ξ x −

�

oz ,ξ y

�

�

ξ y,ξ y

�ξ y,

(2)qi = sgn <qi, qi−1>qi,

(3)q = [q, �v] =

[

cos
θ

2
, sin

θ

2
x�i, sin

θ

2
y�j, sin

θ

2
z�k

]

.

2.1.3 � Quaternion Dimension Reduction before GMM‑GMR
In the initial stage, to get the mean and covariance from 
multi-demonstrations, the dimension of quaternion-
based orientations should be reduced firstly before 
GMM-GMR initialization. As depicted in Eq. (4), qua-
ternions can be written in exponential form.

Thus, the dimension of quaternion can be reduced 
through logarithmic map.

Based on the above conversion, we can handle the 
quaternion-based orientations with GMM and GMR in 
Cartesian space, and finally obtain the mean and covar-
iance in all decoupling dimensions. Hereinafter, we will 
use DR-quaternion to represent the quaternion after 
dimensionality reduction.

2.2 � Methodology of EDMPs
For notational simplicity, in the rest of this paper, we 
denote the rotation angle and the rotation axis of qua-
ternion as angle-quaternion θ and axis-quaternion v.

As described in Figure 1, EDMPs framework is com-
bined with a transformation system module, an LWR 
updating module, and a canonical system module, 
wherein the transformation system module includes 
two components, i.e., the transformation system in 
Cartesian space and 2D sphere manifold. We use the 
transformation system in Cartesian space to learn the 
angle-quaternions and positions, and the extended 
transformation system on the 2D sphere manifold is 
developed for the axis-quaternions. LWR is applied for 
updating nonlinear terms, the canonical system is used 
to avoid the explicit time dependency.

To be specific, under the proposed EDMPs frame-
work, at the learning stage, positions and angle-quater-
nions 

{

(p, θ), (ṗ, θ̇ ), (p̈, θ̈ )
}

 and axis-quaternions 
{

v, v̇, v̈
}

 
are processed with the transformation system in Carte-
sian space and 2D sphere manifold, respectively. The 
target nonlinear terms of 

{

f p ∈ R
3, fθ ∈ R

}

 and fv ∈ R 

are calculated with the input parameters, and then 
encoded with the linear combination of several RBFs. 
The weights of RBFs in the nonlinear terms are finally 
updated with the LWR approach. In the generalization 
stage, the target position and angle-quaternion p̂g , θ̂g 

(4)q =

[

cos
θ

2
, sin

θ

2
v

]

= eθv .

(5)lnq = ln eθv = θv = (θx, θy, θz).
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and the target axis-quaternion v̂g are provided as the 
unique attractors of the second-order differential equa-
tions to calculate the corresponding generalized 
trajectories.

2.2.1 � Transformation System Module
In this section, we take the angle-quaternions θ ∈ R 
and the axis-quaternions v ∈ S2 as the research objects 
to describe the transformation system in Cartesian 
space and 2D sphere manifold, respectively.

As depicted in Figure 1, the transformation system in 
Cartesian space is composed of a simple dynamic and 
a nonlinear function, wherein the simple dynamics is 
developed to build the relationship among the position, 
velocity and acceleration of angle-quaternions 

{

θ , θ̇ , θ̈
}

 
by a second-order differential equation. The nonlinear 
term is formalized with several nonlinear radial basis 
functions to fit any curve. The mathematical model of 
the transformation system is defined as Eq. (6).

where θ , z and ż denote the position, velocity and accel-
eration of angle-quaternions, respectively. τ is used to 
adjust the duration of the task. αθ and βθ are time con-
stants for guaranteeing that the angle-quaternion θ will 
finally converge to the target θg . In this paper, we set 
α = 4β for position, angle-quaternion and axis-quater-
nion learning that the Eqs. (6) and (7) becomes critically 
damped, and the values are determined by the specific 
task.

The extended unit of the transformation system is 
developed on the 2D sphere manifold for the axis-qua-
ternions. The distance between two axis-quaternions is 
represented by geodesics on the 2D sphere manifold, 
and the modified mathematical model is described as 
Eq. (7).

where �i , �̇i ∈ R denote the velocity and acceleration term 
between vi and vi+1 . d(vi+1, vi) = arccos(vTi+1vi) ∈ R is 
the geodesic distance between vi and vi+1 . dt represents 
their interval time. vi represents the axis-quaternion in 
the i-th state of trajectories. τ , αv and βv are constants.

Taking into consideration of other situations where 
the initial and target axis-quaternions are changed, 
the rotation matrix RÔ

O ∈ R
3×3 should be introduced 

to update the mapping direction γ = logvivi+1 ∈ R
3×1 

between neighboring axis-quaternions.

(6)
{

τ ż = αθ
(

βθ
(

θg − θ
)

− z
)

+
(

θg − θ0
)

fθ (s),

τ θ̇ = z,

(7)

{

τ �̇i = αv
(

βv
(

d
(

vg, vi
)

− �i

))

+ d
(

vg , v0
)

fv(si),

τ v̇i = �i = τ
d(vi+1,vi)

dt ,

where RÔ

O
 is determined by the initial and target axis-

quaternions of the demonstrated and the generalized 
trajectory.

where o ∈ R
3×1 and ô ∈ R

3×1 represent the vectors from 
the initial to the target axis-quaternions of the demon-
strated and the generalized trajectory, respectively.

The rotation angle θ ôo ∈ R and the rotation axis ω ∈ R
3×1 

of o and ô can be calculated as Eq. (10).

RÔ
O can be deduced with the Rodrigues’ formula.

where I ∈ R
3×3 is the identity matrix, ω̂ ∈ R

3×3 is the 
anti-symmetric matrix. The vi+1 can be calculated by vi 
with the exponential function [24].

where the vector γ i , can be updated by the normalized 
γ̂ i and the arccos(vTi+1vi) , in which the geodesic distance 
between vi and  vi+1 is calculated with the Eq. (7). On this 
basis, the nonlinear sequence 

{

fθ
}

 and 
{

fv
}

 can be calcu-
lated with the Eqs. (6) and (7) successively.

2.2.2 � LWR Updating Module
In this paper, we used a linear combination of several 
nonlinear RBFs to successively fit the proposed nonlin-
ear terms. LWR approach is introduced to update their 
weighted distributions in the linear combinations.

where ci = exp(−α · i · T/N1) , hi = 1/(ci+1 − ci)
2 when 

i = 1, 2, · · · ,N  , and hN = hN−1 . Each RBFs �i(s) is 
weighted by Wi , which can be updated by the LWR 
approach.

(8)γ̂ =Rô
oγ ,

(9)
{

o = vg − v0,
ô = v̂g − v̂0,

(10)

{

θ ôo = arccos
(

oTô
)

,

ω =
[

ωx, ωy,ωz

]T
= o× ô.

(11)Rω̂(θ) = eω̂θ = I+ω̂ sin (θ)+ ω̂
2
(1− cos (θ)),

(12)







vi+1= expvi(γ i) = vi cos(
�

�γ i

�

�)+
γ i

�γ i�
sin(

�

�γ i

�

�),

γ i = arccos(vTi+1vi)
γ̂ i

�γ̂ i�
.

(13)f (s) =

∑N1
i=1Wi�i(s)
∑N1

i=1�i(s)
s,

(14)�i(s)= exp(−hi(s − ci)
2),
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2.2.3 � Canonical System Module
To avoid the explicit time dependency during learning and 
generalization, the phase variables s ∈ R are introduced as 
the state parameters in the first-order linear dynamic sys-
tem, i.e., the canonical system.

where s ∈ [0, 1] , s(0) = 1 , ṡ denotes the derivative of s ; τ 
and αs are constants. When s converges to zero, the non-
linear term f (s) = 0 ; θ and v are finally converged to the 
target θg and vg . The whole system is dependent on the 
phase variables s , but not the time. Thus, the EDMPs 
framework can be generalized to other situations without 
changing the trajectories.

2.3 � GMM‑GMR Algorithm for Multi‑space Parameters
GMM-GMR is presented at the initialization stage to 
handle multi-trajectories from human demonstrations. 
As depicted in Figure 1, {{p}} and {{(θ , v)}} are obtained 
from multi-demonstrations of a human tutor. In the ini-
tialization stage, multi-demonstrated positions {{p}} , DR-
quaternions 

{{

(θx, θy, θz) ∈ R
3×1

}}

 and phase variables 
{s} are imported into the GMM unit in Cartesian space 
to learn the distribution of multi-trajectories, and the 
GMR unit is applied to generate a single trajectory and 
the corresponding probability distribution. After that, 
the output QR-quaternions 

{{

(θx, θy, θz)
}}

 is refactored 
back to the quaternion representation {{(θ , v)}} , and the 
obtained single generated trajectory including positions 
and orientations can be learned by the EDMPs. Moreo-
ver, the variable impedance control can be realized with 
the probability distribution of multi-trajectories. The 
specific process is depicted as follows.

The demonstrated data are collected as Eq. (16).

In this paper, we have K demonstrations, and each 
demonstration has M discrete points. 

{

ξ I
}

 is the phase 
variables {s} in EDMPs, and 

{

ξO
}

 is composed with posi-

tions {p} and DR-quaternions 
{

(θx, θy, θz)
}

.
As depicted in Eq. (16), we have K +M discrete data, 

and each data follows the probability distribution P(p(s)) , 

(15)τ ṡ= −αss,

(16)
{

{

ξ i,j

}M

i=1

}K

j=1

=

{

{

ξ I
i,j
, ξO

i,j

}M

i=1

}K

j=1

.

P(θ(s)) and P(v(s)) . Hereinafter, we take the position p(s) 
as example.

where d denotes the dimension of output parameters. 
The posterior probability π , mean u and covariance 
matrix Σ of N2 Gaussian distribution functions can be 
determined by the EM algorithm.

To avoid local optimal values, K-means algorithm is 
firstly introduced to initial the clustering centers. And 
then, the EM algorithm is applied to update the param-
eters. The whole process can be divided into E-step and 
M-step, and the former is used to optimize the expec-
tation function, i.e., the sum of posterior probabilities 
E =

∑M+K
k=1 P(µk Σk | ξ k) , in this phase, the parameters 

{π,µ,Σ} are seen as invariants. Oppositely, the purpose 
of M-step is to update the parameters {π,µ,Σ} , and the 
expectation function E is invariant. The detailed explana-
tion of EM algorithm, and the parameters’ updating pro-
cess, please refer to Ref. [29].

Based on the updated parameters 
{

π̂, µ̂, �̂
}

 of GMM, for 
positions, the GMR is applied to calculate the expectation 
E(P(p|s)) and the covariance cov(P(p|s)) of the conditional 
probability P(p|s) . In brief, the conditional probability 
P(ξO|ξ I ) with several Gaussian distribution functions can 
be calculated based on the updated mean and covariance 

matrix, i.e., ûk=
[

ûIk ûOk
]T , �̂k=

[

�̂O
k �̂OI

k

�̂IO
k �̂I

k

]

.

On this basis, the reconstructed data and the constraints 
are deduced as Eqs. (23) and (24).

(17)P(p(s)) =

N
∑

k=1

πk P(p(s) | µk ,
∑

k),

(18)N (p(s); u , Σ)=
1

√

(2π)d |Σ |
exp

(

−
1

2

[

(p(s)− u)TΣ−1(p(s)− u)
]

)

,

(19)P(ξO| ξ I )=

N
∑

k=1

hk(ξ
I )N (ûOk (ξ

I ), �̂I
k),

(20)ûOk (ξ
I )=ûOk +�OI

k (�I
k)

−1(ξ I − ûIk),

(21)�̂O
k = �O

k −�OI
k (�I

k)
−1�IO

k ,

(22)

hk(ξ
I ) = P(uk ,Σk | ξ

I ) =
πkN (ξ I | uIk ,�

I
k)

�N
i=1πiN (ξ I | uIi ,�

I
i )
.
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After initialization stage with GMM-GMR, a single tra-
jectory with covariance can be obtained, wherein the tra-
jectory can be used to train EDMPs framework, and the 
covariance can be applied to estimate the stiffness matrices 
K i ∈ R

6×6 of impedance control loop.

where 0 ∈ R
3×3 , KTi = diag(kpx, kpy, kpz) ∈ R

3×3 
and K Ri = diag(krx, kry, krz) ∈ R

3×3 respectively rep-
resent the translational and rotational stiffness. 
ki = kmin + (kmax − kmin)

φi−φmin
φmax−φmin

 , and φ are the stiff-
ness indicators determined by the inverse expected 
covariance matrices (�̂O)−1 in Eq. (24). kmin and kmax 
are the predetermined minimum and maximum stiffness 
according to the specific application scenarios.

2.4 � Evaluation Indicators of Learning Results
Although the DMPs has the merit of convergence to the 
attractor, the effects in a limited execution time largely 
depend on the selection of the number of RBFs and the 
constants of α and β in Eqs. (6) and (7). In this section, to 
properly exhibit the reproducibility or generalization capa-
bility of our approach under the determined RBFs and con-
stants, we defined some evaluation indicators including 
reachability and similarity for the learning results. In Carte-
sian space, the reachability is determined with the absolute 
error in the Cartesian space ec between the target and 
actual position/angle-quaternion in the end state, and the 
relative error �ec calculated with the ec relative to the range 
of the trajectories. The similarity is determined by the 
PCCc ρc between the scaled demonstration and the actual 
generalized trajectories, wherein the scaling factor 
η=

∣

∣

∣
θ̂g − θ̂0

∣

∣

∣

/

∣

∣θg − θ0
∣

∣ is calculated according to the dif-
ference between the demonstrated target and the new tar-
gets. On the 2D sphere manifold, the reachability is 
determined with absolute error er between the target and 
actual axis-quaternions in the end state. The similarity is 
determined with the PCCr ρr between the rotated demon-
stration and the actual generalized axis-quaternions. The 
evaluation indicators of �ec , ρc and ρr are dimensionless.

(23)ûO(ξ I )=

N
∑

k=1

hk(ξ
I )ûOk (ξ

I ),

(24)

�̂O(ξ I ) =

N
∑

k=1

hk(ξ
I )(�̂O

k + ûOk (ξ
I )u(ξ I )T)− ûO(ξ I )ûO(ξ I )T.

(25)K i =

[

KTi 0

0 K Ri

]

,

(26)ec =
∣

∣

∣
θ̂g − θ̂end

∣

∣

∣
,

The acceptable reachability and similarity can be deter-
mined according to the actual application scenarios. In 
this paper, we defined the satisfactory generalized results 
when �ec is small than 0.005, ec range is between -5°–5°, 
and ρc , ρr are greater than 0.8. Under these criteria, the 
generalized trajectories will converge to the target poses 
with high accuracy and strong correlation compared with 
the demonstrated trajectory.

3 � Experiment
In this section, The Franka Panda robot was used as the 
experimental platform. A pick-up task with different 
poses was designed and illustrated to verify the learning 
and generalization ability of the proposed method both 
in Cartesian space and 2D sphere manifold.

3.1 � Multi‑space Skills Processing and Learning
Multi-demonstrations of the pick-up task were con-
ducted in Figure  2. The VICON motion capture sys-
tem composed of 10 cameras and 4 optical markers was 
used to record the trajectories of demonstrations. Three 
of these optical markers were respectively placed at the 
center of the palm, the radial and ulnar styloid, to ensure 
that the plane formed by these points is approximately 
parallel to the subject’s palm, and further determine the 
z-axis of the palm during movement. The last optical 
marker was selected between the radial and ulnar styloid, 

(27)�ec =

∣

∣

∣
θ̂g − θ̂end

∣

∣

∣

max
∣

∣

∣
θ̂i − θ̂j

∣

∣

∣

(i �= j),

(28)er = arccos
(

v̂Tg v̂end

)

,

(29)ρc =
cov(η{θ},

{

θ̂

}

)

ση{θ}σ
{

θ̂

}

,

(30)ρr =
cov(Rô

o{v},
{

v̂
}

)

σ
Rô
o{v}

σ{v̂}
.

(a) Initial pose     (b) Moving to the bottle  (c) Picking up the bottle
Figure 2  Human demonstrations for the pick-up task
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to facilitate the determination of the y-axis. The x-axis is 
determined with the right-hand rule. The trajectories of 
these points are processed to represent the positions and 
orientations of the palm.

After multi-demonstrations and data preprocessing, 
GMM is used to encode their distributed characteristics, 
and GMR is introduced to generate a single trajectory 
and the corresponding probability distribution according 
to the input phase variables. To properly characterize the 
distributions of multi-trajectories, and generate a suitable 
trajectory for EDMPs framework, we selected 5 Gaussian 
distribution functions for multi-space parameters’ learn-
ing in our experiment, i.e., N2 = 5. The learning results 
are depicted in Figure 3.

On this basis, the positions and quaternions of the gen-
erated trajectory are imported to the EDMPs framework, 
to learn their characteristics both in Cartesian space and 
2D sphere manifold. In this scenario, we selected three 
targets in different positions with different poses to test 
the generalization ability of the presented approach in 
multi-spaces. Moreover, to obtain a relatively higher 
learning accuracy, we set αθ = 4βθ = 25 for position and 
angle-quaternion, αv = 4βv = 25 for axis-quaternion, 
and selected 25 RBFs i.e., N1 = 25 to fit corresponding 
nonlinear terms. Therefore, the reproduced and gener-
alized trajectories including positions and quaternion-
based orientations for different targets are successfully 
obtained, as shown in Figure 4.

Figure  4(a) represents the generalization of the posi-
tions, and Figure  4(b) represents the generalization of 
decoupling quaternion-based orientations including 
angle-quaternion and axis-quaternion, respectively. To 
characterize the learning and generalizing capability of 

the EDMPs framework in multi-spaces, the reachability 
and similarity of the reproduced and generalized trajec-
tories are calculated, as shown in Tables 2 and 3.

In Tables 2 and 3, the average ec , �ec and ρc of the gen-
eralized positions on the x-, y-, and z-axis are 3.2943 
mm, 3.4869 mm, 2.4576 mm, 0.0081, 0.2574, 0.0114, and 
0.9984, 0.8353, 0.9998 respectively. The average ec , �ec 
and ρc of the generalized angle-quaternions are 0.0466°, 
0.0041, and 0.9981 respectively. The average er and ρr of 
the generalized axis-quaternions are 0.4675° and 0.9939. 
The absolute errors of the positions and the quaternion-
based orientations are less than 3.5 mm and 1°, respec-
tively. Except for the G1 and G3 of the position on the 
y-axis, the Pearson’s correlation coefficients of the dem-
onstrated and the generalized trajectories are mostly 
greater than 0.9. The phenomena of G1 on the y-axis is 
due to the sign of the target is opposite to the demon-
strated one, and the G3 is that its target is too close to the 
starting point. To solve these problems, please refer to 
Ref. [19]. Nevertheless, the experiment results reveal that 
the presented approach performs relatively good learning 
and generalization capabilities both in Cartesian space 
and 2D sphere manifold.

Based on the definition of the satisfactory region in 
Section  2.4, we calculate the satisfactory generalization 
region of axis-quaternions to further verify the generali-
zation capability of our approach on the 2D sphere mani-
fold, as shown in Figure 5.

As shown in Figure  5, the satisfactory generalized 
region with er ∈ [−5◦, 5◦] and ρr ∈ [0.8, 1] is determined. 
The region can cover nearly 1/3 of the spherical coordi-
nate. All reachable targets are located on the same hemi-
sphere with the demonstrated target. If the generalized 

Figure 3  GMM-GMR for multi-demonstrations
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target is too close to the starting point, the nonlinear 
terms may produce an unexpected influence on the gen-
eralized trajectories, and the reachability and similarity 
will be unsatisfactory. Moreover, if the vectors from the 
generalized targets to the starting point are opposite to 
the demonstration, or the generalized targets are located 
on the other hemisphere of the spherical coordinate, the 

generalized trajectories will also show an undesired cor-
relation with the demonstrated one, and the reachability 
is also unsatisfactory. The phenomena are consistent with 
our experimental results.

3.2 � Experimental Verification on Real Robot
To apply our approach in a real scenario, and further 
verify its effectiveness, we designed a pick-up task based 
on the above learning and generalization results with 
the panda robot. Firstly, the variable stiffness including 
translational and rotational stiffness profiles are obtained 
through GMM-GMR initialization, and the distribution-
based variable impedance control is realized, as shown in 
Figure 6. The whole control system is based on the ROS 
network. Figure  7 shows several typical results of this 
task, and the robot successfully completed the relative 

Figure 4  Generalization of positions and orientations

Table 2  Reachability and similarity of the generalized 
quaternion-based orientations

Angle-quaternion Axis-quaternion

ec(◦) �ec ρc er(◦) ρr

R 0.0466 0.0041 0.9995 0.5415 0.9999

G1 0.0467 0.0041 0.9986 0.3869 0.9959

G2 0.0466 0.0041 0.9979 0.4465 0.9927

G3 0.0465 0.0041 0.9963 0.4950 0.9870
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tasks with similar trajectory profiles compared with the 
demonstration.

As shown in Figure 6, the action is started at the ini-
tial phase variable s(t0) = 1 and finished at s(tend) = 0 . 
According to the probability distribution of multi-
trajectories, the diagonal element of translational and 
rotational stiffness matrices can be obtained from Eq. 
(25). For the translational stiffness, the stiffness along 
the x- and y-axis maintained a low stiffness in the ini-
tial stage and gradually increased with the execution of 
the task. The stiffness along the z-axis firstly decreased 
in the initial stage and then increased to a high level 
for the targets. A similar trend can be seen in the dif-
ferent dimensions of rotational stiffness. From these 

results, it can be concluded that the priority of each 
axis is that the x- and y-axis are greater than the z-axis 
in this task.

As shown in Figure  7, four bottles were placed on 
the desk, one of them with the blue cap is the dem-
onstrated target, the others with yellow caps are the 
generalized targets which placed randomly. The robot 
was firstly regulated to the initial pose, as shown in 
Figure  7(a), which is similar to the demonstrated ini-
tial pose in Figure  2(a). The initial homogeneous 
matrix of the human tutor is transformed to the real 
initial pose of the robot in Figure 7(a) through a trans-
formation matrix, and the demonstrated trajectory is 
also changed accordingly. Figure  7(b), (c) represent 
the reproduced trajectory for the demonstrated tar-
get. On this basis, we manually adjusted the joint angle 
of the robot to reach the corresponding generalized 
targets with reasonable grasping poses. The obtained 
end poses were imported to the EDMPs framework, 
and three similar trajectories to the demonstrated 
curve can be deduced successively. Figure 7(d), (f ), (h) 
describes the intermediate process of the generalized 
movement, and Figure 7(e), (g), (i) represents the end 
poses of the robot for the generalized targets.

4 � Discussion
It is worth noting that the learning results of the exist-
ing DMPs-based frameworks heavily depend on the 
selected number and distribution of RBFs and the time 
constants of transformation system. These parameters 
are determined empirically with the specific tasks. To 
the best of our knowledge, there is still no literature 
on how to evaluate the algorithm under the selected 
RBFs and time constants. Therefore, we proposed sev-
eral evaluation indicators to characterize the perfor-
mance of EDMPs, and determined the satisfactory 
generalized region in our application scenario. As 
shown in Figure  5. If the generalized targets and the 
demonstrated one are similar or located in the satis-
factory generalized region, the EDMPs framework will 
perform superior characteristics. But when the differ-
ence is too large, especially if the target is located on 
the other hemisphere of the manifold, the results will 

Table 3  Reachability and similarity of the generalized positions

ec(mm) �ec ρc

x y x y z z x y z

R 3.2938 3.4881 2.4581 0.0081 0.2575 0.0110 0.9998 0.9996 0.9998

G1 3.2915 3.4960 2.4576 0.0081 0.2581 0.0110 0.9988 0.6962 0.9999

G2 3.2969 3.4844 2.4576 0.0081 0.2572 0.0110 0.9960 0.9231 0.9999

G3 3.2950 3.4791 2.4570 0.0081 0.2568 0.0110 0.9990 0.7224 0.9996

Figure 5  Satisfactory generalized region with er =
[

−5◦ , 5◦
]

 and 
ρr = [0.8 1]

Figure 6  Variable stiffness obtained from GMM-GMR
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be unsatisfactory. This limitation may be overcome by 
building a knowledge database for the robot, the data-
base including different skills for various tasks and cov-
ering the whole sphere on the manifold.

The proposed EDMPs framework can be applied for 
more complex tasks, such as the human-robot coopera-
tion scenarios, skillful manipulations, etc., where should 
consider positions and orientations simultaneously. The 
main difference between our contribution and the prede-
cessors is that our approach can handle the skills on the 
different kinds of manifolds, including the sphere mani-
fold Sd , special orthogonal group SO(d) , special Euclid-
ean group SE(3) , and the manifold of SPD matrix Sd

++ , 
by reducing the dimensions of these skills and combing 
with the classical transformation system and our extended 
transformation system on the 2D sphere manifold. We use 
quaternions to represent the Riemannian space skills, and 
decouple the quaternions into Euclidean space and Rie-
mannian space terms (θ ∈ R,v ∈ S2) . Thus, the decoupled 
quaternions, as well as the positions, can be learned with 
our EDMPs framework, simultaneously. The EDMPs pro-
vide a new way to learn and generalize multi-space skills.

5 � Conclusions

(1)	 An EDMPs framework both in Cartesian space and 
2D sphere manifold has been presented for trans-
ferring kinematic skills including positions and ori-
entations from human to robots. The quaternion-
based orientations could be successfully learned 
and generalized under the 2D-sphere-manifold-
based transformation system of the EDMPs frame-
work.

(2)	 GMM-GMR algorithms are combined into the pre-
sented EDMPs framework that allows us to obtain 
not only a smooth regression trajectory, but the cor-
responding probability distribution. The former could 
be learned with the EDMPs, and the latter could be 
applied as reference for designing variable impedance 
controllers.

(3)	 The reachability and similarity are defined as the 
evaluation indicators to characterize the learning 
and generalization capability of the EDMPs frame-
work under the determined RBFs and the constants 
of α and β.

Figure 7  Experimental results of the pick-up task with different poses
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(4)	 A real-world experiment was implemented with 
Panda robot. The experimental results show that 
the absolute errors of Cartesian and Riemannian 
space skills are less than 3.5 mm and 1.0°, respec-
tively. The Pearson’s correlation coefficients of the 
Cartesian and Riemannian space skills are mostly 
greater than 0.9. The developed EDMPs exhibits a 
relatively good learning ability for the multi-space 
skills.

The present study takes some references for transfer-
ring multi-space skills from human to robots. In the 
future, we will extend our framework to other industrial 
applications and various skillful tasks, where need to 
consider position, orientation, force and stiffness both in 
Cartesian space and Riemannian manifolds simultane-
ously, such as polishing, scraping, welding, human-robot 
cooperation, etc.
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