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Abstract 

The assembly process of aerospace products such as satellites and rockets has the characteristics of single- or small-
batch production, a long development period, high reliability, and frequent disturbances. How to predict and avoid 
quality abnormalities, quickly locate their causes, and improve product assembly quality and efficiency are urgent 
engineering issues. As the core technology to realize the integration of virtual and physical space, digital twin (DT) 
technology can make full use of the low cost, high efficiency, and predictable advantages of digital space to pro-
vide a feasible solution to such problems. Hence, a quality management method for the assembly process of aero-
space products based on DT is proposed. Given that traditional quality control methods for the assembly process of 
aerospace products are mostly post-inspection, the Grey-Markov model and T-K control chart are used with a small 
sample of assembly quality data to predict the value of quality data and the status of an assembly system. The Apriori 
algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assem-
bly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace. The 
implementation of the proposed approach is described, taking the collected centroid data of an aerospace product’s 
cabin, one of the key quality data in the assembly process of aerospace products, as an example. A DT-based quality 
management system for the assembly process of aerospace products is developed, which can effectively improve the 
efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities.
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algorithm
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1  Introduction
Aerospace products include satellites, missiles, and rock-
ets, which are complex in their customer requirements, 
product composition, manufacturing processes, and pro-
ject management. Assembly is the addition or connection 
of parts to form a complete product, which is important 
in the research and development (R&D) and production 

of aerospace products. As the assembly process is the 
most important link in the delivery of aerospace prod-
ucts, to improve assembly quality and achieve quality 
management of the process has important engineering 
significance [1].

Aerospace product assembly is a typical discrete assem-
bly, with the characteristics of single- or small-batch 
production and a long assembly cycle, involving many 
professional fields, scattered assembly data, and much 
rework and repair [2]. The assembly process generates 
much quality data, including indirect data such as the 
number of defective products, first pass rate, and repair 
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rate, and direct data such as product length, weight, 
and assembly errors. Assembly quality data include data 
that can reflect product quality, such as quality cost loss, 
production batch, inventory backlog, and invalid opera-
tion time [3]. These data are the basis for the evalua-
tion of assembly quality, which can be used to measure 
product quality and provide guidance for the continuous 
improvement of assembly quality.

Quality management is a process of organizing and 
coordinating related activities to meet certain quality 
requirements, i.e., to manage and control the above qual-
ity data. The complete quality management process aims 
to grasp the status of quality data, predict its future sta-
tus, and adjust the assembly process accordingly, so as 
to maintain quality within a reasonable range. Assembly 
quality data are collected, stored and managed through 
a manufacturing execution system (MES) [4]. However, 
assembly quality management adopts post-inspection, 
i.e., checking and controlling the quality of the final prod-
uct. If the data meet the standard, the product is ware-
housed or it enters the next process, and otherwise it 
is returned for repair or scrap. Assembly process qual-
ity management for aerospace products has issues to be 
resolved.

(1)	 Quality prediction when the sample volume of data 
is small. A large amount of quality data is generated 
in the assembly of aerospace products. Their vari-
ety is wide, and the volume of a particular type of 
data may be insufficient for forecasting. Accuracy 
of data forecasting and sample data volume show 
some positive correlation. Hence, it can be difficult 
to obtain accurate predictions.

(2)	 Quick location of abnormal causes when influ-
ence factors of quality data are complicated. The 
assembly quality of aerospace products is affected 
by the factors of man, machine, material, method, 
measurement, and environment (5M1E), each hav-
ing several influencing factors, making it difficult 
to directly determine specific causes of abnormal 
quality data.

(3)	 Quality control is time-consuming and has poor 
real-time performance. Assembly quality control 
is implemented based on the quality management 
process of post-optimization, including problem 
definition, investigation and measurement of rel-
evant factors, analysis and determination of key 
factors, and control and improvement of influence 
factors. This can take a long time, precluding the 
avoidance of imminent quality problems.

The concept of digital twin (DT) was first proposed 
by the Air Force Research Laboratory in 2011, and was 

first applied to industry [5]. Its purpose is to optimize the 
simulation through virtual environment before produc-
tion to avoid undesirable conditions. With the deepening 
of research, DT technology has been considered the key 
to realizing the interaction and fusion between the physi-
cal and information worlds [6, 7]. It provides a clear path 
for the implementation of a cyber-physical system (CPS) 
and introduces the idea of making full use of digital space 
to mirror, predict, guide and control the physical space 
[8]. Additionally, it provides a novel way to assist humans 
in understanding the physical world from a multi-time 
dimension including the past, present and future. Hence, 
the application of DT technology to the quality manage-
ment in the assembly process of aerospace products can 
realize quality status monitoring, prediction, and anom-
aly traceability in virtual spaces based on the collected 
real-time data and can enable adjustments in physical 
spaces. It conforms to the basic ideas of status monitor-
ing and prediction, anomaly traceability, and the timely 
regulation of quality data. Therefore, DT provides a fea-
sible approach to realize quality management of assembly 
process for aerospace products.

The rest of this paper is organized as follows. Section 2 
summarizes the state-of-the-art of quality data prediction, 
traceability technology, and DT applications in the manu-
facturing phase. In Section 3, the implementation frame-
work of quality management for the assembly process of 
aerospace products based on DT is established. Three key 
technologies are discussed in Section 4, including numeri-
cal prediction of quality data based on Grey Markov 
model, assembly system statues prediction based on T-K 
statistical control chart, and association rule mining for 
quality abnormalities based on the Apriori algorithm. In 
Section 5, taking the centroid data of an aerospace prod-
uct’s cabin, one of the key quality data in the assembly 
process of aerospace products, as an example, the appli-
cation process of the proposed method is elaborated in 
detail. Additionally, a DT-based assembly process quality 
management system for aerospace products is developed 
and verified. Finally, the main contributions of the paper 
and future work are summarized in Section 6.

2 � Related Work
This paper focuses on the use of DT technology to 
achieve quality management for the assembly process of 
aerospace products. We start by reviewing the quality 
management technology including quality data predic-
tion and traceability, and pointing out the future trend of 
taking full advantage of digital space, including low cost, 
high efficiency, multiple iterations, and predictability, to 
promote it. And then the state-of-the-art of DT applica-
tions in the production phase is overviewed.
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2.1 � Quality Data Prediction and Traceability Technology
The key to quality management is to forecast the future 
development trend of quality data, and even its specific 
value. Data prediction includes qualitative prediction, 
i.e., of change trends, and quantitative prediction, i.e., 
of specific values. We study quantitative prediction for 
assembly quality management of aerospace products. 
Quantitative data prediction includes time series analysis 
and causal analysis. Time series analysis methods include 
the simple sequential time mean, weighted sequential 
time mean, moving average, weighted moving average, 
exponential smoothing, seasonal trend prediction, and 
market life cycle prediction. Taylor et al. analyzed several 
time series algorithms based on intraday power demand 
data from 10 European countries and found the predic-
tion results of exponential smoothing to be best [9]. Guo 
et  al. presented a chaotic time series prediction algo-
rithm to predict wind speed, modified the model with 
the parallel rule algorithm, and verified the method with 
real wind data [10]. Time series analysis focuses on pre-
dicting large amounts of time series data, but the vol-
ume of assembly quality data for aerospace products is 
generally small and does not necessarily have strict time 
series. Causal analysis includes linear regression, sup-
port vector machines, neural network prediction, Grey 
prediction, and Markov prediction. To improve the data 
prediction accuracy, Zhou et al. investigated the fine tun-
ing approach for the parameters of least-squares support 
vector machines to predict one-step ahead short-term 
wind speed [11]. For the case of TFT–LCDs which is a 
small sample size prediction problem, Li et al. developed 
a new approach involves three-steps. They are K-means 
clustering, attribute extension using the fuzzy member-
ship function in each cluster, and put the data with new 
generate attributes into a backpropagation neural net-
work (BPNN) machine learning algorithm [12]. Addi-
tionally, grey prediction well also discovers the intrinsic 
correlation behind the hazy phenomenon and is suit-
able to predict small datasets. Li et  al. used trend price 
tracking to extract hidden information on the behavior of 
manufacturing sample data and constructed an adaptive 
Grey prediction model, AGM(1,1), to forecast industrial 
data [13]. Chang et  al. presented a modified grey fore-
casting model to forecast the short-term manufacturing 
demand [14]. Markov models can also be used to predict 
the trends of small datasets and analyze the future trends 
of discrete random processes, i.e., to predict the future 
state of a variable from its present state and change trend 
[15]. However, how to improve prediction accuracy based 
on small volumes of sample data is an issue.

The most commonly used approach for quality data 
tracing, the relational data model, builds the correspond-
ing management model and database in the assembly 

process to trace abnormal quality data. Materials are 
marked to trace quality data. Zhuang et al. realized mate-
rial traceability and management in the assembly process 
based on workflow technology [16]. Besides, pictures 
and videos data are collected to initiatively discover the 
existing quality problems and trace the causes of qual-
ity abnormities. On this basis, vision-based recognition 
methods from a feature perspective are applied to dis-
cover the defect [17]. Such methods achieve traceability 
of quality data through correlation but do not mine the 
complicated association between multi-source heteroge-
neous scattered data, so the efficiency of quality problem 
traceability is low.

However, due to the unstable process, long assembly 
and adjustment period, and strict quality control in the 
R&D stage, quality management still has problems such 
as much rework and repair, and difficulty tracing quality 
issues. With the rapid development of new-generation 
information technology such as the Internet of Things, 
big data, and artificial intelligence, the deep integration 
of digital and physical space has become a common bot-
tleneck in various countries’ industrial strategies, includ-
ing Industrial 4.0, the Industrial Internet, and “Made in 
China 2025.” Therefore, to fully utilize the advantages 
of digital space to improve the quality management of 
the assembly process for aerospace products will be the 
development trend [18–20].

2.2 � Overview of DT Applications in the Production Phase
DT technology has been widely applied in all stages of 
the product lifecycle [21, 22], including design [23], man-
ufacture [24], and service [25]. In the production stage, 
Tao et al. introduced the digital twin shop-floor (DTS), a 
paradigm for shop-floor instances of cyber-physical pro-
duction systems (CPPSs) [26]. Leng et  al. incorporated 
DT in the parallel control of automated manufacturing 
systems [27]. Park et  al. built a DT-based CPPS archi-
tectural framework for personalized production [28]. 
Bao et  al. investigated an ontology-based modeling and 
evolution method of DT for the assembly shop-floor to 
deal with for the issues such as discreteness of assembly 
process, diversity of assembly resource, and complex-
ity of dataflow in the assembly task execution [29]. Son 
et al. presented a DT-based CPS for abnormal scenarios 
involving automotive body production lines, which can 
forecast whether a product can be manufactured where 
abnormal scenarios occur [30]. Zhang et al. presented an 
information modeling method for a CPPS based on DT 
and AutomationML, which integrated various physical 
resources into CPPS to support information interaction 
between resources [31]. Yildiz et al. discussed the demon-
stration and evaluation of a DT-based virtual factory [32]. 
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Additionally, Sun et  al. investigated DT-based assem-
bly commission approach for high precision prod-
ucts to solve the issues of low assembly efficiency and 
poor-quality consistency caused by traditional manual 
method [33]. Zhang et al. discussed the hybrid prediction 
approach of physical model and data to achieve quality 
assurance for composite components [34]. DT technol-
ogy is the key in the realization of the virtual-physical 
fusion of CPS, which makes full use of the digital and 
physical spaces, and can improve the assembly quality 
control of aerospace products. In the assembly process of 
aerospace products, not only the DT model can truly and 
dynamically mirror the quality status and process of the 
physical counterpart, but also can be applied to achieve 
quality anomaly traceability and quality status prediction. 
Hence, the DT can be used to assist shop-floor manag-
ers in physical space to carry out quality optimization 
to effectively avoid some quality anomalies and reduce 
quality problem processing time. The above research 
uses DT in the production phase but does not address its 
application to assembly process quality management and 
control.

3 � Framework of DT‑based Quality Management 
for the Assembly Process of Aerospace Products

There are two main quality abnormalities in the assembly 
process of aerospace products: abnormal product quality 
data and uncontrolled assembly systems. The first case 
indicates quality problems in the assembly process. The 
latter is a hidden quality problem. If the assembly sys-
tem is uncontrolled, quality anomalies are more likely in 
the subsequent assembly process. Considering these two 
anomalies, we propose a framework of quality manage-
ment for the assembly process of aerospace products 
based on DT, as shown in Figure 1.

On the physical assembly shop-floor, a shop-floor 
Internet of Things (IoT), including RFIDs, sensors, bar-
codes, industrial Ethernet and wireless network, is con-
structed to realize real-time perception of manufacturing 
resources, quality data collection and transmission.

On the shop-floor data layer, real-time quality data are 
dynamically collected based on the built shop-floor IoT 
and managed based on product assembly BOM, which 
include inspection data, measurement data, assembly 
process parameters, environmental data, equipment 
operation data, material usage data, process completion 
data, and technical problem data. To ensure the real-
time quality data, the inspection data and measurement 
data, such as centroid, moment of inertia, and weight, 
are automatically collected and transmitted using the 
corresponding inspection and inspection equipment. 
The assembly process parameters, environmental data 
and equipment operation data are obtained using the 

corresponding sensors such as displacement, speed, 
temperature and humidity sensors. The material usage 
data are acquired through RFID (Radio Frequency Iden-
tification) and scanning the barcode corresponding to 
the material. The process completion data and techni-
cal problem data are collected with human computer 
interaction.

On the virtual assembly shop-floor, a DT model of qual-
ity management for the assembly process of aerospace 
products is constructed. The DT model is composed of 
two parts: one is the shop-floor visualization model, which 
can be used for quality monitoring, and the other is the 
quality prediction and traceability model, which can be 
used for calculation and decision-making. Therefore, the 
virtual shop-floor contains two levels.

At the DT-based monitoring level, based on the shop-
floor visualization model, data and model visualization are 
applied to mirror and monitor the product quality status 
based on the built DT model of the shop-floor, and warn-
ings are issued if abnormalities occur.

At the DT-based quality prediction and traceability level, 
a Grey-Markov model forecasts the future value of quality 
data according to historical and current data. An abnormal 
predicted value indicates quality abnormality in the cur-
rent assembly process, triggering cause traceability; if the 
predicted value is normal, verification will continue. Then, 
according to the Grey-Markov forecasting results and his-
torical quality data values, observation samples are selected 
from different batches, a T-K statistical control chart is 
established according to the sample data, changes of the 
mean and standard deviation of quality sample data are 
observed, and it is predicted whether the assembly system 
will be within the control range at the next moment. If an 
uncontrolled assembly system is forecast, quality anoma-
lies are highly likely during subsequent assembly, triggering 
the cause traceability process of quality abnormality; if the 
assembly system is forecast to be in control, the process is 
repeated until no products are available. When the cause 
tracing process of quality abnormality is triggered, it is nec-
essary to analyze factors that may affect the quality data on 
the assembly shop-floor according to 5M1E. The values of 
these factors, together with quality data values and assembly 
system status, form a project set. We then use the Apriori 
algorithm to mine the strong association rules related to 
quality data abnormalities and an uncontrolled assembly 
system. Through these strong association rules, the influ-
encing factors related to quality anomalies are traced and 
stored in the quality management knowledge base.

The key technologies illustrated in Section  4 focus on 
relevant technologies included in the level of DT-based 
quality prediction and traceability, which contains numeri-
cal prediction of quality data using a Grey-Markov model, 
status prediction of the assembly system based on a T-K 
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control chart, and mining of association rules for quality 
abnormities based on the Apriori algorithm.

4 � Key Technologies
4.1 � Numerical Prediction of Quality Data Using 

Grey‑Markov Model
4.1.1 � Grey Model
When only part of the information in a system is 
known, the unknown information can be predicted 

using the Grey model (GM), i.e., a Grey system theory 
model. While appearing to be random, the quality data 
generated during the assembly process of aerospace 
products is actually ordered and time-dependent, so 
the Grey model can be used.

For the quality data of the assembly process of aero-
space products, a GM(1,1) model is established, i.e., a 
first-order linear differential equation.

The GM(1,1) modeling process for assembly quality 
data of aerospace products is as follows.

Figure 1  DT-based quality management framework for the assembly process of aerospace products
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Assume the original series of quality data is:

Calculate the scale ratio of the original series of quality 
data

If all scale ratios of quality data fall within the accept-
able coverage interval Y = (e

−2
n+1 , e

2
n+1 ) , the original series 

of quality data y(0) can be used to establish the GM(1,1) 
model. Otherwise, the data must be transformed, such as 
through a shift transformation

where c is a constant that can bring all scale ratios fall 
within acceptable coverage.

New series can be obtained by ratio validation and pro-
cessing of original data:

Accumulate the original quality data to weaken fluctua-
tion and randomness that may exist in the random series 
to obtain the quality data accumulation series

Because the solutions of first-order differential equa-
tion show an exponential growth trend, similar to that 
of the sequence x(1)(t) , the sequence x(1) is considered to 
satisfy the first-order differential equation.

where a is the development coefficient, the effective 
interval is (− 2, 2), and u is the Grey action, and both are 
undetermined factors. As long as the parameters a and u 
are obtained, x(1)(t) can be obtained, as can the predicted 
value of x(0).

According to the definition of derivative,

i.e.,

(1)
y(0) = (y(0)(1), y(0)(2), . . . , y(0)(n)), y(0)(t) ≥ 0,

t = 1, 2, . . . , n.

(2)�(t) =
y(0)(t − 1)

y(0)(t)
, t = 2, 3, . . . , n.

(3)x(0)(t) = y(0)(t)+ c, t = 1, 2, . . . , n,

(4)
x
(0)

= (x(0)(1), x(0)(2), . . . , x(0)(n)), x(0)(k) ≥ 0,

k = 1, 2, . . . , n.

(5)
{
x(1) = (x(1)(1), x(1)(2), . . . , x(1)(n)),

x(1)(t) =
∑t

i=1 x
(1)(i), t = 1, 2, . . . , n.

(6)dx(1)

dt
+ ax(1) = u,

(7)dx(1)

dt
= lim

�t→0

x(1)(t +�t)− x(1)(t)

�t
,

The following matrices are obtained:

Let

Solving the Grey parameters by the least squares 
method, we obtain

We substitute â into Eq. (6) to obtain

which is the time response function model of GM(1,1).
On this basis, the forecasting equation of the original 

quality data is obtained as

After establishing the Grey model, it is necessary to 
check whether it can be used to forecast the target data. 
Three test methods are selected: residual, correlation, 
and posterior.

(1) Residual Test
Residual test is relatively intuitive and only needs to 

compare the predicted and original values and observe 
whether the relative error can meet the requirements.

The residual of the original data column x(0)(t) and 
predicted data column x̂(0)(t) is

(8)x(0)(t) = −a×
1

2
[x(1)(t)+ x(1)(t − 1)].

(9)





x(0)(2)

x(0)(3)
. . .

x(0)(n)



 =





−0.5[x(1)(1)+ x(1)(2)] 1

−0.5[x(1)(2)+ x(1)(3)] 1
. . . 1

−0.5[x(1)(n− 1)+ x(1)(n)] 1



 ·

�
a

u

�

(10)






yn =





x(0)(2)

x(0)(3)
· · ·

x(0)(n)



,

B =





−0.5[x(1)(1)+ x(1)(2)] 1

−0.5[x(1)(2)+ x(1)(3)] 1
· · · 1

−0.5[x(1)(n− 1)+ x(1)(n)] 1



,

â =

�
a

u

�
.

(11)â =

[
a

u

]
= (BTB)

−1
BTYn.

(12)x̂
(1)(t + 1) = (x(0)(1)−

u

a
)e−at

+
u

a
,

(13)
x̂
(0)(t + 1) = x̂

(1)(t + 1)− x̂
(1)(t)

= (1− e
a)(x(0)(1)−

u

a
)e−at

.
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The relative error �t and average relative error � are 
calculated as

The fitting accuracy is

The Grey prediction model of quality data passes the 
residual test if p is greater than 80%.

(2) Correlation Degree Test
The correlation degree test is a geometric test to study 

the similarity of model curves of the original and pre-
dicted value. The more similar the geometry of the two 
curves, the more the values are correlated.

The correlation coefficient of the original quality data 
column x(0)(t) and predicted quality data column x̂(0)(t) 
is

where ρ is the resolution coefficient, usually taking a 
value in (0,1). A larger ρ indicates a smaller difference 
between correlation coefficients, and weaker discrimina-
tion ability.

The correlation degree between the original quality 
data column x(0)(t) and predicted quality data column 
x̂(0)(t) is

The closer r is to 1, the better the forecast accuracy. If 
r is greater than 0.6, then Grey prediction passes the cor-
relation degree test.

(3) Posterior Variance Test
A posterior variance test is based on the probability 

distribution of the residual predicted by quality data.
We calculate the variance of the original quality data 

s1
2 , and of the prediction residuals s22

(14)e(t) = x(0)(t)− x̂(0)(t).

(15)�t =

∣∣∣∣
e(t)

x(0)(t)

∣∣∣∣× 100%,

(16)� =
1

n

∑n

t=1
�t .

(17)p = 1−�.

(18)η(t) =
min14i=1

∣∣x̂(0)(i)− x(0)(i)
∣∣+ ρ ·max14i=1

∣∣x̂(0)(i)− x(0)(i)
∣∣

∣∣x̂(0)(t)− x(0)(t)
∣∣+ ρ ·max14i=1

∣∣x̂(0)(i)− x(0)(i)
∣∣ ,

(19)r =
1

n

∑n

t=1
η(t).

(20)s1
2
=

1

n

∑1

t=1
[x(0)(t)− x]

2
,

Then the ratio of the mean squared error (MSE) is

The residual probability is

As shown in Table 1, a smaller C and larger P indicate a 
more accurate Grey model. Grade I indicates the highest 
prediction accuracy, and Grade IV the lowest. Generally, 
if a prediction model is evaluated as Grade I, II, or III, it 
can be considered to pass the posterior variance test.

4.1.2 � Revision of Predicted Residuals Using Markov Model
The assembly quality data of aerospace products are 
greatly affected by external information such as opera-
tors and the operating environment. This external infor-
mation is considered random, so the correlation between 
the changes of quality data is not strong. Therefore, the 
Markov method is used to forecast and correct the value 

residuals in the Grey model.
The residuals of Grey predicted values are divided into 

different states, and a state transition matrix is estab-
lished, which is composed of all one-step transition prob-
abilities of random processes,

where pij is the one-step transition probability from state 
i to state j.

It is worth noting that all elements in the state tran-
sition matrix are nonnegative, and they sum to 1. The 

(21)s2
2
=

1

n

∑1

t=1
[e(0)(t)− e]

2
.

(22)C =
s2

s1
.

(23)P = P
{∣∣∣e(0)(t)

∣∣∣ < 0.6745s1

}
.

(24)P =





p11 · · · p1n

...
. . .

...

pn1 · · · pnn



,

Table 1  Check table of Grey model accuracy

Grade Average relative 
error q

Ratio of MSE C Residual 
probability 
P

I <0.01 <0.35 >0.95

II <0.05 <0.50 <0.80

III <0.10 <0.65 <0.70

IV >0.20 >0.65 <0.60
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state transition matrix is an important part of the 
Markov prediction model. After calculating it, the sub-
sequent state of the residual value of quality data can be 
calculated according to the initial state of the residual 
value. The sketch diagram of the residual state transi-
tion, as shown in Figure 2, is convenient for observing 
the transition probability of each residual state of qual-
ity data.

Figure 3 shows the process of correcting residual val-
ues of Grey forecast results using a Markov prediction 
model.

After confirming that the variation of residuals of 
assembly quality data is a Markov process, it is neces-
sary to collect residual data and classify the residual 
state. The state transfer matrix is built dynamically 
according to the specific changes of quality residual 
data and is used to solve the prediction state of the 
assembly quality data residuals of aerospace products. 
On this basis, the quality data obtained by the Grey 
forecasting model are corrected.

4.2 � Assembly System Status Prediction Using T‑K 
Statistical Control Chart

The T-K control chart does not require a large sample 
and is independent of the standard deviation of the 
parent. It is applicable to predict the assembly system 
status.

4.2.1 � T‑control Chart for Monitoring the Mean of Quality 
Data

The T-statistic is used to monitor the fluctuation of the 
mean value of quality data and is suitable for small sam-
ples. In the actual assembly process of aerospace prod-
ucts, the mean value of certain quality data is usually 
uncertain and will change constantly. Therefore, when 
constructing T statistics, it is assumed that the mean 
value of quality data is unknown.
X is set as the quality data items. 15 observation 

samples are selected for each batch of products and 
{X

(r)
i,j,1, . . . ,X

(r)
i,j,n} as the group i sample, where i=1, 2, …; 

j indicates the serial number of the product type corre-
sponding to the batch sample, j=1, 2, …, P; n is the sam-
ple size; and the superscript r indicates the serial number 
of a batch of the same type of product.

Quality data within a batch and between batches are 
independent, sample data of the same variety obey the 
same normal distribution, and sample data of different 
varieties obey different normal distributions, i.e.,

(25)Xi,j,k ∼ N (µj , σj), i = 1, 2, . . . , j = 1, 2, . . . ; j = 1, 2, . . . ,P; k = 1, 2, . . . n.

Figure 2  Sketch diagram of residual state transition of quality data

Figure 3  Prediction process of Markov method
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where, µj and σj are the mean and standard deviation of 
the distribution of product j quality data under the con-
trolled state. The mean and standard deviation of group 
i samples are

The mean of the first r−1 batches of samples of differ-
ent product types are defined as

Then the T-statistic is

The control limits of the T-control chart are

 where G−1
t (·|n− 1) is the inverse function of the cumu-

lative T-distribution function with degree of freedom 
n−1, and α is the significance level. According to statisti-
cal process control theory, the upper and lower control 
limits correspond to the positions of ±3σ, so α is 0.0027.

During the assembly of aerospace products, if an 
assembly system is in a controlled state and the mean 
value of quality data does not deviate, for different 
kinds of products, as long as the sample size of each 
group is the same, T-statistics calculated from groups 
of sample data with the same sample size will be inde-
pendent of each other, subject to the same T-distribu-
tion, and with the same control limits. T-statistics and 
control limits calculated from each batch of quality 
data can be used to plot the T-control chart and moni-
tor assembly quality.

4.2.2 � K‑control Chart for Monitoring the Standard Deviation 
of Quality Data

The K-statistic is used to monitor the fluctuation of the 
standard deviation of quality data and is suitable for small 

(26)Xi,j =
1

n

n∑

k=1

Xi,j,k ,

(27)Si,j =

√√√√ 1

n− 1

n∑

k=1

(Xi,j,k − Xi,j)
2
.

(28)X
(r−1)

j =
1

r − 1

r−1∑

h=1

X̄
(h)
j , j = 1, 2; r = 2, 3, 4.

(29)






T
(1)
i,j = X̄

(h)
j ,

T
(r)
i,j =

X̄
(r)
i,j −

¯̄X
(r−1)

j

S
(r)
i,j

�
n(r−1)

r , j = 1, 2, r > 1.

(30)






UCL = G−1
t (1− α

2 |n− 1),
CL = 0,

LCL = −UCL,

samples. Similar to the process of calculating T-statistics, 
the mean of quality data is considered unknown.

The mean of the variance of sample quality data for the 
first r−1 batches of different product types is

The intermediate variable is defined as

The K statistic is

where Fν1, ν2 are cumulative distribution functions of the 
F distribution with first and second degrees of freedom 
ν1 and ν2, respectively.

Since the intermediate variable in Eq. (33) follows the 
F-distribution with first degree of freedom (n−1) and 
second degree of freedom (n−1) (r−1), the K-statistics 
are independent of each other and follow a normal distri-
bution, and the control limits of the K-control chart are:

4.3 � Association Rules Mining for Quality Exceptions Based 
on Apriori Algorithm

4.3.1 � Analysis of Quality Influencing Factors
Quality abnormalities occurring in the assembly pro-
cess of aerospace products may be caused by human, 
equipment, or environmental factors in the preassembly, 
assembly, or inspection stage, and the influencing factors 
of quality abnormalities differ by their type. We use the 
5M1E analysis method to classify the influencing factors 
of quality anomalies into six categories.

(a)	 Man. The operator or inspector’s knowledge of 
quality, health condition, technical proficiency, and 
other factors may cause abnormal quality.

(b)	 Machine. Precision and maintenance of equipment 
can affect quality. Because the volume of aerospace 
products is large, the equipment of each worksta-
tion is usually fixed, so machine factors relate to an 
assembly workstation.

(31)S2j
(r−1)

=
1

r − 1

r−1∑

h=1

S2j
(h)

, j = 1, 2; r = 2, 3, 4.

(32)�
(r)
i,j =

S
2(r)
i,j

S2j
(r−1)

, j = 1, 2; r = 2, 3, 4.

(33)
K

(1)
i,j = 1,K

(r)
i,j = �−1

[Fn−1,(n−1)(r−1)(�
(r)
i,j )], j = 1, 2, r > 1,

(34)






UCL = 3,
CL = 0,

LCL = −3.



Page 10 of 21Zhuang et al. Chinese Journal of Mechanical Engineering          (2022) 35:105 

(c)	 Material. The composition and physical and chemi-
cal properties of materials may cause abnormal 
quality.

(d)	 Method. The assembly process, fixture selection, 
and operating procedures can affect quality. Assem-
bly processes vary by product.

(e)	 Measurement. The measurement method adopted 
for use with inspection equipment can cause a qual-
ity exception.

(f )	 Environment. Temperature, humidity, lighting, and 
cleaning conditions in the workplace are possible 
factors affecting quality abnormalities.

4.3.2 � Principle of Apriori Algorithm
An association rules algorithm is used to mine the hid-
den correlation behind complex data, the classic being 
the Apriori algorithm, which is used as follows. Filter 
all items in a transaction dataset that are greater than 
or equal to the minimum support degree. Then, asso-
ciation rules are generated based on the most frequent 
item set and filtered according to the minimum confi-
dence level to obtain strong association rules. Accord-
ing to shop-floor assembly data, Apriori was selected to 
determine the relationships between influencing factors 
and assembly quality data values and system status.

An association rule is evaluated by support, confidence, 
and lift. Support is the probability that items X and Y occur 
simultaneously in a project set, i.e., the ratio of the number 
of items including X and Y to the number of all items. It 
describes the universality of association rules and is calcu-
lated as

Confidence is the probability that item Y will occur 
when item X occurs, i.e., the ratio of the number of items 
containing X and Y to the number of items containing X. 
It describes the authenticity of association rules and is 
calculated as

Lift is a parameter that describes the probability change 
of item Y occurrence due to the emergence of item X, i.e., 
the ratio of confidence to support of item X → Y ,

If the lift is 1, then there is no correlation between the 
two events; if it is less than 1, then events X and Y are 
incompatible.

(35)support(X&Y ) = T (X&Y )/T .

(36)confidence(X → Y ) = T (X&Y )/T (X).

(37)
lift(X → Y ) = confidence(X → Y )/support(X&Y ).

5 � Case Study and System Implementation
5.1 � Numerical Prediction Results of Quality Data
5.1.1 � Data Selection
Taking the assembly process of an aerospace product as an 
example, the centroid offset data of cabin A of model S1 
are collected to verify the proposed key technologies and 
method. It is known that cabin A of model S1 has com-
pleted three batches of assembly since the last production 
environment change. In each batch 15 products are assem-
bled, and the assembly of the 15th product in the fourth 
batch is currently underway. If the assembly time of each 
product is the same, the allowable error of the centroid off-
set of cabin A is 15 mm. The collected centroid offset data 
of cabin A of the fourth batch are shown in Table 2.

From the above data, we use 13 centroid offset data 
items, from A4-1 to A4-13 as raw data, A4-14 as valida-
tion data, and A4-15 as predicted data. The original series 
of centroid offset are obtained:

The scale ratio of the original series x(0) for centroid 
offset is calculated as

According to the Grey prediction model, the tolerant 
coverage interval of the ratio is obtained as

By observing the scale ratio of the centroid offset, it is 
found that each item of the ratio series falls within the admis-
sible coverage interval, which indicates that the GM(1,1) 
model is applicable for the original series of centroid offsets.

(38)

x
(0)

= (x(0)(1), x(0)(2) . . . x(0)(13))

= (5.918, 5.205, 4.393, 4.520, 5.105, 5.818, 6.647,

7.560, 8.467, 9.642, 10.811, 11.898, 13.548).

(39)
�(t) =(1.137, 1.185, 0.972, 0.885, 0.878, 0.875,

0.879, 0.893, 0.878, 0.892, 0.909, 0.878).

(40)Y = (e
−2
n+1 , e

2
n+1 ) = (0.867, 1.154).

Table 2  Centroid offset data of fourth batch of cabin A

Product code Centroid 
offset(mm)

Product code Centroid 
offset(mm)

A4-1 5.918 A4-8 7.560

A4-2 5.205 A4-9 8.467

A4-3 4.393 A4-10 9.642

A4-4 4.520 A4-11 10.811

A4-5 5.105 A4-12 11.898

A4-6 5.818 A4-13 13.548

A4-7 6.647 A4-14 14.537
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5.1.2 � Establishment of Grey Forecasting Model
The original sequence of the centroid offset is accumu-
lated to weaken the volatility and randomness that may 
exist in the random sequence, and the accumulated 
sequence of centroid offsets is obtained as

According to the Grey model, the cumulative sequence 
of centroid offsets is processed, and the matrix B and 
constant vector yn are obtained:

The Grey parameter matrix â is calculated as

Substituting â into the prediction model of the centroid 
offset, the prediction function of X̂ (1)(t) is obtained as

(41)
x
(1)

=(5.918, 11.123, 15.515, 20.036, 25.141,

30.959, 37.605, 45.165, 53.633, 63.275,

74.086, 85.984, 99.532).

(42)

B =





−0.5(X (1)(1)+ x(1)(2)) 1

−0.5(x(1)(2)+ x(1)(3)) 1
. . . 1

−0.5(x(1)(12)+ x(1)(13)) 1





=





−0.5(5.918+ 11.123) 1
−0.5(11.123+ 15.515) 1

. . . 1
−0.5(85.984 + 99.532) 1





=





−8.520 1
−13.319 1
−17.776 1
−22.588 1
−28.050 1
−34.282 1
−41.385 1
−49.399 1
−58.454 1
−68.681 1
−80.035 1
−92.758 1





(43)yn =





x(0)(2)

x(0)(3)
. . .

x(0)(13)



 =





5.205
4.393
4.520
5.105
5.818
6.647
7.560
8.467
9.642
10.811
11.898
13.548





.

(44)â =

[
a
u

]
= (BTB)−1BTXn =

[
−0.112644
3.009679

]
.

Expressions x̂(1)(t + 1) and x̂(1)(t) are discretized and 
restored to the original sequence of centroid offsets, 
whose prediction sequence is

The predicted serial value of centroid offsets is obtained 
as

5.1.3 � Grey Prediction Model Test
(1) Residual Test

The predicted and original series of centroid offsets are 
put together, and the residual and relative error of each 
data item is calculated to obtain the fitting results in 
Table 3.

The fitting curve of centroid offsets drawn from the 
above fitting results is shown in Figure 4.

The calculated average relative error is 4.16%, and the 
fitting accuracy is 95.84%. Because the fitting accuracy 
is more than 80%, the forecast result passes the residual 
test.

(45)
x̂(1)(t + 1) =

(
y(0)(1)−

u

a

)
e−at

+
u

a

= 32.637e
0.112644t

− 26.719.

(46)
x̂
(0)(t + 1) = x̂

(1)(t + 1)− x̂
(1)(t)

= 32.637(e0.112644t − e
0.112644(t−1)).

(47)
x̂
(0)

=(5.918, 3.891, 4.355, 4.875, 5.456, 6.106,

6.835, 7.649, 8.562, 9.582, 10.725,

12.004, 13.435, 15.037, 16.830).

Table 3  Fitting results using GM(1,1) model

Product code Original 
value 
(mm)

Predicted 
value (mm)

Residual (mm) Relative 
error 
(%)

A4-1 5.918 5.918 0 0

A4-2 5.205 3.891 1.314 25.24

A4-3 4.393 4.355 0.037 0.85

A4-4 4.520 4.875 − 0.354 7.84

A4-5 5.105 5.456 − 0.351 6.87

A4-6 5.818 6.106 − 0.289 4.96

A4-7 6.647 6.835 − 0.188 2.83

A4-8 7.560 7.649 − 0.089 1.18

A4-9 8.467 8.562 − 0.094 1.11

A4-10 9.642 9.582 0.060 0.62

A4-11 10.811 10.725 0.086 0.79

A4-12 11.898 12.004 − 0.106 0.89

A4-13 13.548 13.435 0.113 0.84
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(2) Correlation Degree Test
According to the above fitting curve, 

min
14
i=1

|ŷ
(0)(i)− y

(0)(i)| = 0,max
14
i=1

|ŷ
(0)(i)− y

(0)(i)| = 1.314 , and 
ρ = 0.5 . According to Eq. (18), the corresponding corre-
lation coefficients are

The correlation degree between the two sets is 0.794, 
which is greater than 0.6; hence, the prediction result 
passes the correlation degree test.

(3) Posterior Deviation Test
The column of residuals extracted from the test results 

is

We calculate that the variance of the original series 
y(0)(t) of the centroid offset is s12 = 8.284 , the variance 
of the residuals is s22 = 0.165 , and the ratio of the mean 
variance is C = 0.141 . According to the definition, the 
probability of small error is P = 1.

Referring to Table 1, we can see that the mean variance 
and small probability error calculated above are in the 
range of Level I, but the average relative error is in the 
range of Level II.

5.1.4 � Case of Grey‑Markov Model
Based on the Grey prediction results, it can be found 
that the minimum residual error of the predicted and 

(48)
η(t) =(1, 0.333, 0.946, 0.650, 0.652, 0.695, 0.778,

0.880, 0.875, 0.916, 0.84, 0.861, 0.853).

(49)
e
(0)(t) =(0, 1.314, 0.037,−0.354,−0.351,

− 0.289,−0.188,−0.089,−0.094,

0.060, 0.086,−0.106, 0.113).

actual values is −0.354, and the maximum is 1.314, i.e., 
the values of residual error are within the range [−0.36, 
1.32].

According to the distribution of residual error values, 
the above large interval is divided into five subintervals: 
[−0.36, −0.24], [−0.24, −0.12], [−0.12, 0], [0, 0.12], [0.12, 
1.32]. Each interval corresponds to a residual error state 
of the centroid offset, as shown in Table 4.

It is assumed that the predicted result of centroid off-
set will transfer between States I and V with a certain 
probability. The state transition diagram of the predicted 
results is shown in Figure  5. If the current forecasting 
result is State I, then the next forecasting result has a Z11 
probability become State I, a Z12 probability become 
State II, a Z13 probability become State III, a Z14 prob-
ability become State IV, and a Z15 probability become 
State V.

From the column of residual error values of the cen-
troid offset, we can see that State I occurs three times, 

Figure 4  Fitting curve of centroid offset

Table 4  State division of residual error value

Interval State

[− 0.36, − 0.24] State I: too large

[− 0.24, − 0.12] State II: larger

[− 0.12, 0] State III: slightly larger

[0, 0.12] State IV: slightly smaller

[0.12, 1.32] State V: smaller

Figure 5  Diagram of state transition of residual error value of 
centroid offset
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twice transferred to State I and once to State II; State IV 
occurs five times, transferred once each to States I, III, IV, 
V, and the final State (the residual error of the predicted 
value at the moment of the final State is left of the inter-
val where State I is located, which we consider as State I). 
The state transition of residual error is shown in Table 5.

It is assumed that the time interval of the measurement 
for each two cabins’ centroid offset is one assembly cycle, 
i.e., the step size of the Markov model, which is the time 
required for state transition. According to the statistics 
above, the state transition matrix of the residual error can 
be obtained as

According to the state of residual error, the residual 
error of prediction values for A4–13 belongs to state IV, 
so the initial state can be considered to be (0, 0, 0, 1, 0). 
According to the state transition matrix of Eq. (50), the 
state after one-step transition is (2/5, 0, 1/5, 1/5, 1/5), so 
the residual error of the prediction value of A4-14 is state 
I.

We correct the predicted centroid offset value of A4-14 
from the Grey model:

(50)P =





Z11 Z12 Z13 Z14 Z15

Z21 Z22 Z23 Z24 Z25

Z31 Z32 Z33 Z34 Z35

Z41 Z42 Z43 Z44 Z45

Z51 Z52 Z53 Z54 Z55




=





P11
P1

P12
P1

P13
P1

P14
P1

P15
P1

P21
P2

P22
P2

P23
P2

P24
P2

P25
P2

P31
P3

P32
P3

P33
P3

P34
P3

P35
P3

P41
P4

P42
P4

P43
P4

P44
P4

P45
P4

P51
P5

P52
P5

P53
P5

P54
P5

P55
P5




=





2
3

1
3 0 0 0

0 0 1 0 0

0 0 1
3

2
3 0

2
5 0 1

5
1
5

1
5

0 0 0 1 0




.

The results are compared with those of the Grey pre-
diction model, as shown in Table 6.

It is found that, unlike the Grey prediction model, the 
Grey-Markov prediction model takes into account the 
fluctuation of data, and it reduces the relative error of 
centroid offset prediction from 3.44% to 1.38%, which 
improves the accuracy of prediction.

Similarly, we calculated the state after two steps of 
transfer of A4-13 (0, 0, 0, 0, 1, 0) as (0.347, 0.133, 0.107, 
0.373, 0.040), so the remaining error of A4-15 prediction 
is State IV.

We correct the Grey forecast value of A4-15:

Therefore, it forecasts that the value of the centroid off-
set for cabin A of the 15th product will be 16.890 mm, 
exceeding the allowable error of 15 mm, and abnormal 

quality will occur soon.

5.2 � Assembly System Status Prediction Results
5.2.1 � Raw Data Preprocessing
Based on 14 centroid offset data items of the fourth 
batch of cabin A of model S1 in Table  2 and the pre-
dicted data of product 15, we can obtain 15 data items 
for the fourth batch of cabin A. With the centroid offset 
data of the first three batches of cabin A of model S1, 
60 pieces of centroid offset data are obtained, as shown 
in Table 7, which are used as part of the sample data to 

(51)
A4 − 14 predicted value = 15.037+

1

2
∗ (0.24 + 0.36) = 14.737.

(52)
A4 − 15 predicted value = 16.830+

1

2
∗ (0+ 0.12) = 16.890.

Table 5  Statistical results of state transfer of residual error

Pij Next moment residual status Sum

State I State II State III State IV State V

Current
residual
status

State I 2 1 0 0 0 3

State II 0 0 1 0 0 1

State III 0 0 1 2 0 3

State IV 2 0 1 1 1 5

State V 0 0 0 1 0 1

Table 6  Comparison between Grey model and Grey-Markov 
model

Product 
code

Actual 
value 
(mm)

Grey model Grey-Markov model

Predicted 
value 
(mm)

Relative 
error (%)

Predicted 
value 
(mm)

Relative 
error 
(%)

A4-14 14.537 15.037 3.44 14.737 1.38
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forecast the status of the assembly system by means of 
statistical process control.

Drawing on the idea of group technology, we collect 
the data of cabin A of model S2 similarly to those of 
cabin A of model S1. The other half of the sample data, 
the centroid offset data of four batches of cabin A of 
model S2, are shown in Table 8.

All the sample data required by the statistical process 
are obtained so that T-K control charts can be used 
to monitor the mean and standard deviation of the 

centroid data and evaluate the stability of the assembly 
system.

5.2.2 � Case of T Control Chart
In the selected case, we know the allowable error range 
of the centroid offset of cabin A, but we do not know the 
mean value, which satisfies the condition for the use of 
the calculation formula of the T statistic in Section 4.2.1. 
According to the original data in Tables 7 and 8, we first 
calculate the mean and standard deviation of group i 

Table 7  Centroid offset data for batches 1–4 of cabin A of model S1

Batch A1 A2 A3 A4 A5 A6 A7 A8

1 8.691 9.571 4.126 4.515 6.336 8.937 9.819 10.021

2 4.366 7.135 3.126 3.725 4.210 7.979 9.190 9.322

3 7.978 4.715 5.226 6.687 7.804 8.045 8.159 9.188

4 5.918 5.205 4.393 4.520 5.105 5.818 6.647 7.560

Batch A9 A10 A11 A12 A13 A14 A15 Model

1 11.005 11.365 11.472 11.479 12.147 13.255 13.672 S1

2 10.083 10.124 10.864 11.081 11.677 12.781 12.973 S1

3 9.729 10.782 10.868 10.983 13.653 14.657 16.948 S1

4 8.467 9.642 10.811 11.898 13.548 14.537 16.890 S1

Table 8  Centroid offset data for batches 1–4 of cabin A of model S1

Batch A1 A2 A3 A4 A5 A6 A7 A8

1 5.310 7.491 7.949 8.365 8.524 9.299 9.417 9.757

2 6.066 6.595 7.975 8.008 8.349 9.148 9.873 10.051

3 4.178 7.442 7.571 8.960 9.793 9.934 10.292 10.467

4 6.866 7.177 7.336 7.453 8.121 8.557 8.928 9.636

Batch A9 A10 A11 A12 A13 A14 A15 Model

1 10.025 10.824 11.122 11.294 11.492 12.967 14.223 S2

2 10.785 10.910 12.261 12.340 13.484 13.948 15.688 S2

3 10.641 10.682 11.449 11.575 11.891 12.043 12.792 S2

4 9.791 9.966 11.192 11.394 11.395 11.445 11.604 S2

Table 9  Calculation results of T-statistic

Batch A1 A2 … A15 Model Mean Standard 
deviation

Xj
T

1 8.691 9.571 … 13.672 S1 9.761 2.880 – 0.000

2 4.366 7.135 … 12.973 S1 8.576 3.340 9.761 − 0.561

3 7.978 4.715 … 16.948 S1 9.695 3.410 9.168 0.282

4 5.918 5.205 … 16.890 S1 8.731 3.991 9.344 − 0.298

5 5.310 7.491 … 14.223 S2 9.871 2.244 – 0.000

6 6.066 6.595 … 15.688 S2 10.365 2.787 9.871 0.281

7 4.178 7.442 … 12.792 S2 9.981 2.216 10.118 − 0.113

8 6.866 7.177 … 11.604 S2 9.391 1.747 10.072 − 0.755
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samples, the mean Xj  of the first r-1 batches of samples, 
and then the T statistics, as shown in Table 9.

According to Eq. (30), we set n to 15, and the upper 
control limit of the T control chart is 3.636, the lower 
control limit is −3.636, and the center line is 0. We draw 
the T control chart of the centroid offset of cabin A, as 
shown in Figure 6, from which it can be found that the 
mean of the centroid offset for cabin A of models S1 and 
S2 is within the allowable range.

5.2.3 � Case of K‑control Chart
Similar to the calculation of the T-statistic, we only know 
the allowable range of the error of the centroid offset, and 
we do not know the average, which satisfies the condition 
of calculating the K-statistic as in Section  4.2.2. Based 
on the original data in Tables  7 and 8, we calculate the 
mean S2j  of the variance of the first r-1 batches of sample 
data for different product types, and then calculate the 
intermediate variable �(r)i,j  and the K statistic, as shown in 
Table 10.

According to Table 10 and Eq. (33), the K-control chart 
of the centroid offset is shown in Figure 7.

Observing the K-control chart, it can be found that 
the standard deviation of the centroid offset is within 
the allowable range. Combined with the results of the 

T-control chart in Section  5.2.2, the assembly system 
can be considered to be in a controlled state according 
to the sample data. Since the centroid offset data of the 
15th product of the fourth batch are a predicted value, 
the predicted results based on the T-K control chart indi-
cate that the status of the assembly system at the next 
moment is controlled.

5.3 � Mining Association Rules of Influence Factors 
for Abnormal Quality Data

Assuming that the assembly process of cabin A in this 
case has three processes, all kinds of materials required 
in each process are from the same batch, and all equip-
ment of each station is fixed. According to the six cat-
egories of quality influencing factors mentioned above, 
the fishbone diagram of the influencing factors for the 
centroid offset of cabin A is shown in Figure  8, which 
includes 28 factors.

Although 28 factors are identified from the analysis, 
how these are combined to cause an abnormal centroid 
offset still must be determined. We take 150 pieces of 
quality data collected from the assembly process of a cer-
tain cabin A as an example, as shown in Additional file 1: 
Appendix 1.

Figure 6  T-control chart of centroid offset of cabin A

Table 10  Calculation results of K statistic

Batch A1 A2 … A15 Model Variance S2
j

�
(r)
i,j

K

1 8.691 9.571 … 13.672 S1 8.295 – – 1.000

2 4.366 7.135 … 12.973 S1 11.157 8.295 1.345 0.544

3 7.978 4.715 … 16.948 S1 11.628 9.726 1.196 0.436

4 5.918 5.205 … 16.890 S1 15.927 10.360 1.537 1.081

5 5.310 7.491 … 14.223 S2 5.033 – – 1.000

6 6.066 6.595 … 15.688 S2 7.766 5.033 1.543 0.794

7 4.178 7.442 … 12.792 S2 4.912 6.400 0.768 − 0.504

8 6.866 7.177 … 11.604 S2 3.052 5.904 0.517 − 1.338

Figure 7  K-control chart of centroid offset
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To keep the centroid offset within the qualified range as 
much as possible, the ideal error range of centroid offset is 
determined as within 12 mm after the influencing factors are 
analyzed. Over 12 mm is considered to be abnormal, which 
requires attention. The data encoding is shown in Figure 9.

Each encoding consists of three bytes. Byte 1 repre-
sents the process to which it belongs, such as processes 
1–3. Byte 2 represents the attributes of influencing fac-
tors, such as operators and inspectors. Byte 3 represents 
the instantiation of influencing factors, such as operator 
A and inspector B. It is worth noting that when bytes 2 
and 3 of two encodings are the same, the correspond-
ing objects are the same regardless of whether byte 1 is 

the same. For example, 1OPE and 2OPE both represent 
operator E, who performs process 1 in the first case and 
process 2 in the second. A total of 108 codes appear in 
Additional file  1: Appendix  1, and their meanings are 
given in Additional file 2: Appendix 2.

According to the principle of the Apriori algorithm, 
association rules are mined from 150 pieces of assem-
bly quality data in Additional file  1: Appendix  1 by R 
system. We set the support degree to 0.16 and the mini-
mum length of item to 2, to obtain 7250 frequent item 
sets, from which 15 strong association rules with RHS 
item “AN” are mined, as shown in Figure 10. The depth of 
color indicates the degree of lifting, and the size of circle 
indicates the size of support degree.

Strong association rules with RHS item “AN” are 
arranged in descending order of lifting in Table 11.

Observing the above rules, the lifts of the top 14 rules 
are greater than 3, which means they are effective. It is 
found that the probability of abnormal centroid offset is 
relatively high when the material batch of process 3 is 
E. Also, when the material batch of process 1 is A, the 

Figure 8  Fishbone diagram of influencing factors for centroid offset of cabin A

Figure 9  Composition of assembly data encoding
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product model is S1, the material batch of process 2 is 
C, or the pressure in the cabin is A. Managers can try to 
avoid the combination of the above rules.

5.4 � Mining Association Rules of Influence Factors 
for Assembly System Status

Because no strong association rule with RHS item 
“NCT” is found, 30 uncontrolled data items of the assem-
bly system are filtered in 150 collected pieces of data. 

Mining association rules from this data, we set the sup-
port to 0.66, and the minimum length of item set to 2, 
from which 7250 frequent item sets are obtained. From 
these, 31 association rules with RHS item “NCT” are 
mined, as shown in Figure 11.

5.5 � System Implementation
The proposed quality management method is achieved 
through data value prediction, assembly system status 
prediction, and association rule mining based on the 
constructed DT model, providing early warning for the 
assembly shop-floor and avoiding future quality abnor-
malities. According to the comparison of the results in 
Table  6, the Grey-Markov model considers the fluctua-
tion of data compared with the general Grey prediction 
model, thus improving the accuracy of data prediction. 
A DT-based quality management system for the assem-
bly process of aerospace products is developed, which 
achieves the monitoring of quality information and quick 
tracing of quality problems, thereby reducing the occur-
rence frequency and improving the processing efficiency 
of quality problems on the shop-floor. Currently, the sys-
tem has been applied in an aerospace enterprise, and the 
quality data value of more than seven types of key indica-
tors on a final assembly shop-floor and their trend for dif-
ferent products are monitored and predicted.

The interface for monitoring assembly shop-floor qual-
ity based on the DT is shown in Figure 12. The lower left 
quarter quadrant enables the monitoring of the operat-
ing status of the equipment, the bill of arrived materials, 
and the values of key quality indicators of the current 

Figure 10  Schematic diagram of strong association rules with RHS 
item as “AN”

Table 11  Strong Association Rule with RHS item “AN”

Left-hand-side (LHS) Right-hand-
side (RHS)

Support Confidence Lift

[1] {1BAA,3BAE} => {AN} 0.180 1 3.191

[2] {3BAE,S1} => {AN} 0.187 1 3.191

[3] {2BAC,3BAE} => {AN} 0.180 1 3.191

[4] {1BAA,3BAE,CA} => {AN} 0.173 1 3.191

[5] {3BAE,CA,S1} => {AN} 0.180 1 3.191

[6] {2BAC,3BAE,CA} => {AN} 0.173 1 3.191

[7] {1BAA,3BAE,S1} => {AN} 0.180 1 3.191

[8] {1BAA,2BAC,3BAE} => {AN} 0.173 1 3.191

[9] {2BAC,3BAE,S1} => {AN} 0.180 1 3.191

[10] {1BAA,3BAE,CA,S1} => {AN} 0.173 1 3.191

[11] {1BAA,2BAC,3BAE,CA} => {AN} 0.167 1 3.191

[12] {2BAC,3BAE,CA,S1} => {AN} 0.173 1 3.191

[13] {1BAA,2BAC,3BAE,S1} => {AN} 0.173 1 3.191

[14] {1BAA,2BAC,3BAE,CA,S1} => {AN} 0.167 1 3.191

[15] {3BAE,CA} => {AN} 0.180 0.931 2.971

Figure 11  Schematic diagram of strong association rules with RHS 
item as “NCT”
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station by clicking the corresponding button. The top-
left corner monitors quality data value and change trends 
for different indicators. The lower-right corner is a pop-
up window for early warning if an exception occurs or 
may occur. The upper-right corner shows the prediction 
results such as the utilization rate of each station and 
maximum load area.

The interface for monitoring all of the assembly quality 
data on the assembly shop-floor is as shown in Figure 13, 
including the prediction results at the next moment 
based on the built Grey-Markov model. On the left 
side, the assembly quality data monitoring for different 

stations on the shop-floor can be realized, including the 
loading preparation area, empty cylinder treatment area, 
and docking area. For a specific station, the quality data 
are monitored on the right side of the interface, and the 
warning prompt appears in a red font on the interface for 
monitoring shop-floor quality data on the left side, and 
on a red background on the right ride of the interface 
for monitoring station quality data. Quality abnormality 
records are automatically generated.

The interface for monitoring assembly shop-floor status 
is shown in Figure 14. The left side is an assembly quality 
data list for batches of aerospace product A. In the list, 
the values of key quality data of historical batches can be 
viewed, along with collected real-time data and predicted 
data of the current batch. Moreover, users also can moni-
tor the mean, standard deviation, and T and K statistics 
of quality data in each batch. Meanwhile, users can view 
the T-K statistical diagram on the right side to observe 
whether the current status of the assembly system is con-
trolled. If the T-K statistics of a batch exceed the upper 
or lower limits, then quality abnormality records will be 
automatically generated.

When dealing with quality problems, a craftsman or 
inspector can switch to the interface of managing strong 
association rules for quality exceptions, as shown in Fig-
ure  15. The left side is product BOM, through which 
quality data and rules are managed. The upper right is a 
search bar. Select product model, quality data, support, 

Figure 12  Assembly quality monitoring diagram of the assembly 
shop-floor based on the DT

Figure 13  Interface for monitoring assembly quality data on the shop-floor

Figure 14  Interface for monitoring assembly shop-floor status
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confidence, and other conditions to search and view 
these rules which are listed in the lower right of the 
interface, and then the reference methods of process-
ing quality problems can be provided. The list of strong 
association rules contains the combination of shop-floor 
resources that lead to abnormal quality data, which are 
obtained through the proposed approach and imported 
into the knowledge base in Excel format.

6 � Conclusions and Future Work
The assembly process of aerospace products has the 
characteristics of single- or small-batch production and 
many exceptions. How to control assembly quality and 
improve production efficiency has been an issue in engi-
neering applications. By introducing DT technology, the 
advantages of digital space, including low cost, high effi-
ciency, and predictability, can be fully utilized to improve 
the management and control capability of the quality in 
the assembly process of aerospace products. The main 
contributions of this article include the following:

(1)	 To obtain more accurate predictions in the small 
sample volume of aerospace product quality data, 
the fluctuations of data are considered and a Grey-
Markov model-based quality data prediction algo-
rithm was presented. Moreover, group technology 
was used to increase the sample size of quality data 
and a T-K control chart was applied to obtain the 
mean and standard deviation of quality data, real-

izing the prediction of assembly system status and 
avoiding quality problems caused by an uncon-
trolled assembly system.

(2)	 To improve the efficiency of quality problem tracing 
and handling in the assembly process of aerospace 
products, an Apriori algorithm-based traceability 
method of quality anomaly influencing factors was 
proposed. Strong association rules related to quality 
data anomalies and uncontrolled assembly systems 
were mined to trace the influencing factors of qual-
ity anomalies, which can assist related personnel in 
quickly locating abnormal causes and improving 
the efficiency of quality control.

(3)	 A DT-based quality management system for the 
assembly process of aerospace product is devel-
oped and has been applied in an aerospace enter-
prise, which promotes the application of DT in the 
assembly quality management.

This paper explores the application of DT to improve 
the quality management and problem tracing capability 
for the assembly process of aerospace products. Future 
research will focus on two areas: ① deeply studying the 
feedback link in quality control for the assembly pro-
cess of aerospace products, so as to make the feedback 
process in real time and more automatic and intelligent; 
② using text mining algorithms to obtain more quality 
problem processing knowledge, so as to assist in the rapid 
processing and decision-making of quality problems.

Figure 15  Strong association rules for quality anomalies
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