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Abstract 

Industrial robots are increasingly being used in machining tasks because of their high flexibility and intelligence. How-
ever, the low structural stiffness of a robot significantly affects its positional accuracy and the machining quality of its 
operation equipment. Studying robot stiffness characteristics and optimization methods is an effective method of 
improving the stiffness performance of a robot. Accordingly, aiming at the poor accuracy of stiffness modeling caused 
by approximating the stiffness of each joint as a constant, a variable stiffness identification method is proposed based 
on space gridding. Subsequently, a task-oriented axial stiffness evaluation index is proposed to quantitatively assess 
the stiffness performance in the machining direction. In addition, by analyzing the redundant kinematic characteris-
tics of the robot machining system, a configuration optimization method is further developed to maximize the index. 
For numerous points or trajectory-processing tasks, a configuration smoothing strategy is proposed to rapidly acquire 
optimized configurations. Finally, experiments on a KR500 robot were conducted to verify the feasibility and validity of 
the proposed stiffness identification and configuration optimization methods.
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1 Introduction
The application of industrial robots has significantly 
increased in automatic manufacturing owing to their 
remarkable advantages such as great operation flexibility, 
high intelligence, low cost, and low space requirement 
[1–3]. However, the stiffness of industrial robots is only 
2% to 5% of that of computer numerical control (CNC) 
machines because of the inherent characteristics of their 
series structures [4–6]. Such weak stiffnesses of industrial 
robots significantly affect their positional accuracy and 
processing quality of products, which severely limits their 
application in the manufacturing and assembly of high 
value-added products. Therefore, the stiffness charac-
teristics and strengthening methods must be extensively 

investigated to improve the operation performance of 
robot equipment.

Many researchers have investigated robot stiffness 
characteristics and modeling methods. Dumas and Caro 
proposed a fast identification method for joint stiff-
ness and established the Cartesian stiffness model of the 
KUKA KR240-2 robot through experimental results [7]. 
Zhou et al. identified geometric parameters to revise the 
robot kinematics model and the Jacobian matrix. Based 
on this, a more precise joint stiffness matrix and stiff-
ness model could be obtained [8]. Klimchik et al. adopted 
the method of a virtual axis to couple the connecting 
rod gravity and external load into the stiffness modeling 
process, which resulted in a higher accuracy of stiffness 
modeling [9]. The aforementioned stiffness identifica-
tion and modeling methods were established based on 
the assumptions of rigid connecting rods and an elastic 
rotation axis of the joint. However, the gravity center 
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of the connecting rod and the torsional stiffness of the 
motor and reducer vary with the operation configura-
tion. In addition, different sampling configurations result 
in different identification results because of the inherent 
nonlinearity of joint stiffness [10]. In other words, a set 
of joint stiffness identification results cannot satisfy the 
accuracy requirements of the stiffness model in the entire 
workspace.

Furthermore, the stiffness performance of the robot 
primarily depends on three factors: (1) the connecting 
rod structure and material properties, (2) stiffness of the 
actuator and transmission mechanism, and (3) working 
configuration. Compared with the first two factors, the 
optimization of the robot configuration has the advan-
tages of high technical feasibility, good task adaptability, 
and no need to change the structure and control system 
of the robot, which indicates a high application value in 
engineering applications.

Sabourin et  al. [11] developed a comprehensive opti-
mization objective function combining kinematic and 
stiffness performance to optimize the configuration of 
a robot machining system. Xiong et  al. [12] proposed a 
discrete search algorithm to configure the operation of a 
milling robot with optimal stiffness performance, and the 
optimization results significantly increased the trajectory 
accuracy. Guo et  al. [13] used a robot stiffness ellipsoid 
as the evaluation index to improve robot stiffness perfor-
mance through configuration optimization, and a higher 
drilling axial accuracy and countersink depth accuracy 
were obtained. However, these studies focused on con-
figuration optimization for processing tasks with dis-
crete positions. When many points or trajectory tasks are 
involved, such as thousands of target positions in drill-
ing tasks of aerospace components, the optimization of 
individual target points significantly restricts the process-
ing efficiency, which cannot satisfy the requirements of 
short-cycle manufacturing tasks.

Motivated by these observations, a variable stiffness 
identification method was investigated for an accurate 
modeling of industrial robots that overcomes the effects 
of configurations on stiffness modeling. In addition, a 
configuration smoothing method is proposed for the 
rapid acquisition of optimized configurations based on 
the geometric position features of target machining tasks.

The remainder of this paper is organized as follows. 
Section 2 presents a planning method for sampling points 
based on space gridding, and a variable stiffness identifi-
cation method is proposed. In Section 3, a task-oriented 
stiffness representation model is established to estimate 
the stiffness performance in a particular direction, and a 
configuration optimization strategy is proposed to maxi-
mize the performance. Aiming at numerous points or 
trajectory tasks, Section 4 proposes a robot configuration 

smoothing method to achieve a rapid acquisition of 
optimized configurations. In Section  5, verification 
experiments of the identification results and configura-
tion optimization methods are designed and discussed. 
Finally, Section 6 concludes the paper.

2  Identifying Variable Stiffness Based on Space 
Gridding

The Cartesian stiffness of a robot is directly dependent 
on the joint stiffness and robot configuration according 
to the traditional static stiffness model. However, joint 
stiffness identification and robot configuration are inter-
related. The stiffness of each joint varies with the robot 
configuration because of the complex transmission struc-
ture, which primarily consists of a motor and a reducer 
[14]. However, different configurations result in changes 
in structural gravity centers and deformations in the kine-
matic parameters, which affect the identification accuracy 
of joint stiffness [15]. Thus, variable stiffness identification 
is an effective method of overcoming the effect of configu-
ration on the stiffness identification results.

2.1  Stiffness Identification Principle
Based on the elastic deformation assumption, the rela-
tionship between the displacement of the end effec-
tor (EE) and the corresponding operating load can be 
expressed as

where F is the generalized force vector acting on the EE, 
D is the displacement vector, C is the inverse matrix of 
the stiffness matrix K, i.e., the robot compliance matrix, 
and J is the robot Jacobian matrix. Kθ is a diagonal matrix 
composed of the joint stiffness:

where θ1 to θ6 represent the six joints of the industrial 
robot, and kθ1 to kθ6 denote the stiffness of each joint.

The deformation caused by the working load is nonlin-
ear with the stiffness of each joint. Thus, when identify-
ing the joint stiffness in experiments, numerous sampling 
experiments are required. Multiple groups of static loads 
under different robot configurations should be applied, 
and the displacements at the end of the robot can be sub-
sequently measured. Simplifying the right-hand side of 
Eq. (1), the relationship between D and joint compliance 
can be expressed as

where F, A, and Cθ can be defined as follows:

(1)F = KD ⇒ D = K−1F = CF = JK−1
θ JTF ,

(2)K θ = diag
(

kθ1 , kθ2 , kθ3 , kθ4 , kθ5 , kθ6
)

,

(3)D = A(J ,F )Cθ ,
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where fx, fy, and fz represent the three forces applied on 
the EE in different directions, and mx, my, and mz are the 
torques in the three directions. These six elements can be 
expressed as F1 to F6:

where J11 to J66 are elements of the robot Jacobian matrix.

where k−1
θ1

 to k−1
θ6

 denote the compliance coefficient of 
each joint.

Based on the concept of a generalized inverse 
matrix, the robot compliance (Cθ) can be calculated as 
follows:

According to the identification method described 
above, the quantity and distribution of the selected 
sampling points, which relate to the robot configura-
tions, directly affect the accuracy of the identification 
results [16, 17]. Hence, the fitting result of the joint 
stiffness in the entire workspace cannot accurately 
reflect the performance of robots in different subspaces 
[18]. Therefore, joint stiffness parameters suitable for 
different workspaces must be determined to increase 
the stiffness identification accuracy.

(4)
F =

[

fx fy fz mx my mz

]T

=
[

F1 F2 F3 F4 F5 F6
]T
,

(5)A =
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(6)Cθ =

[

k−1
θ1

k−1
θ2

k−1
θ3

k−1
θ4

k−1
θ5

k−1
θ6

]T
,

(7)Cθ =

(

ATA−1
)

ATD.

2.2  Space Gridding Principle Analysis
If the rotation angle and corresponding stiffness of each 
joint are determined, a robotic stiffness model can be 
established. If Kc1 is the joint stiffness in a particular con-
figuration (C1) and Kc2 is the joint stiffness in a closed 
configuration (C2), then

where k11 to k16 are the joint stiffnesses in C1, k21 to k26 
are the joint stiffnesses in C2, and E is the 2-norm of the 
difference between Kc1 and Kc2. A positive number ξ 
approaching zero always exists, which satisfies E<ξ, with 
the angle variation △θ approaching zero. Therefore, the 
corresponding joint stiffnesses of the two close configu-
rations can be considered highly similar [19, 20].

Through the above analysis, the workspace of the robot 
can be divided, and the joint stiffness corresponding to 
each subspace can be considered to be approximately 
fixed values. Owing to the advantage of higher processing 
efficiency, the reachable space of the robot can be divided 
into a set of cubic grids (Figure 1(a)).

Eight vertices of a particular grid can be selected as 
sampling points to envelop a single grid. In addition, 
the center point of the grid can be selected as a sam-
pling point to ensure that the stiffness parameter in the 
grid is closer to the actual value. Thus, nine target points 
(Tags 1 to 9) are used as sample positions to identify the 
joint stiffness corresponding to a particular grid space 
(Figure  1(b)). In the initial sampling posture of a target 
position, the three axes of the tool coordinate system are 
consistent with the directions of the three intersecting 
edges of the grid, such as the sampling posture of Tag 5. 

(8)K c1=
[

k11 k12 k13 k14 k15 k16
]

,

(9)K c2=
[

k21 k22 k23 k24 k25 k26
]

,

(10)E = �K c1 − K c2� < ξ ,�θ → 0,

(a) Space griding (b) Nine sampling positions and their
corresponding postures in a grid space

(c) Generation of different sampling
postures in a target position

y

z

x

x

z

y

Initial Posture

New Posture

Taget
position

Grid edge

Tag 1

Tag 2

Tag 7

Tag 4

Tag 6 Tag 8

Tag 3

Tag 5

z
x

y z
x
y z

x
z

x

y z
x

y z
x

y z x

y
z

x

y z
x

Tag 9

Figure 1 Space gridding and sampling postures
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In addition, different sampling postures can be obtained 
by rotating a certain angle around any axis of the tool 
coordinate system. Figure 1(c) shows the generation of a 
new posture by rotating the y-axis of the tool coordinate 
system. Based on this, different sampling postures of the 
nine sampling positions can be obtained (Figure  1(b)) 
[21]. Moreover, the joint stiffness tends to be stable with 
more than ten groups of sampling configurations in a 
stiffness identification experiment [22–24]. Therefore, in 
each sampling position of a grid space, more than two 
configurations should be used to ensure the accuracy of 
the stiffness identification results.

2.3  Variable Stiffness Identification
By combining the static stiffness identification method 
and the space gridding principle, a variable stiffness iden-
tification method is innovatively developed. Sampling 
positions can be obtained based on space gridding, and 
the robot stiffness model, which is suitable for an entire 
workspace, can be built precisely and described as

where j is the grid serial number, and K θ (j) is the joint 
stiffness corresponding to the grid space in which the tar-
get position of the current robot is located. Eq. (12) can 
be described as the variable-stiffness model. Compared 
with the traditional static stiffness model, the variable 
stiffness model can more accurately reflect the stiffness 
characteristics in different robot position intervals; thus, 
an accurate evaluation of the stiffness performance and 
precise prediction of load-induced positional error can 
be achieved.

The steps of the variable stiffness identification method 
are shown in Figure 2.

According to the identification results, the joint stiff-
ness of the grid space in which the target position is 

(11)K (j) = J−TK θ (j)J
−1,

(12)K θ (j) = diag
(

kθ1(j) · · · kθ6(j)
)

,

located can be obtained. However, when the location 
of a target point occurs in some special positions (Fig-
ure 3), the selecting which sampling points to calculate 
joint stiffness is a complex problem.

When located in a vertex, side, or plane that belongs 
to only one grid, the joint stiffness in this grid space can 
be used. In addition, a target position may also appear in 
the following special locations: (1) in a common vertex of 
two, four, or eight grids; (2) in a common line of two or 
four grids; (3) in the contact plane of two grids. When the 
grid size is sufficiently small, the aforementioned scenar-
ios can be solved by averaging the stiffness of each joint 
corresponding to all grids containing the target point.

The proposed stiffness identification method is an 
innovation over improvement of the static stiffness 
model. Therefore, although this paper uses KUKA 
KR500 as a discussion case, the method can be utilized 
for other types of robots. Based on accurate joint stiff-
ness identification and modeling, the evaluation and 
optimization methods of robot stiffness performance 
can be studied for the practical application of the stiff-
ness model in engineering, such as machining stiffness 
enhancement and high-precision positioning control.

3  Stiffness Performance Index and Configuration 
Optimization

3.1  Task‑oriented Axial Stiffness Performance Index
In the robot machining process, the working load 
causes the deformation of the EE, where the deforma-
tion in the radial direction of the tool affects the cutting 
positional accuracy (drilling, boring, etc.) or the tra-
jectory accuracy (milling, grinding, etc.), and the tool 
axial deformation primarily affects the cutting surface 
quality (roughness, flatness, etc.). Therefore, the defini-
tion of the robot stiffness performance index should be 
adapted to the load distribution characteristics of the 
specific task of the robot.

Determine the calibration
space of a given robot

Divide calibration space
into a series of cubic grids

Select vertices and center
point of each cubic grid as

sampling positions

Obtain different sampling
configurations by rotating the tool

candidate around the processing axial

Measure the position
information without loading

Measure the position
information after loading

Identify the robot joint stiffness in
current grid space

Current grid is
the last one

Build the robot stiffness model
corresponding current grid space

Obtain the robot variable parameter stiffness
model in the whole calibration space

Space gridding
and sampling

Joint stiffness
identification
in a grid space
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No

Load-induced
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Figure 2 Flowchart of variable stiffness identification
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Figure 3 Special scenarios of the target position
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Based on the different dimensions of the elements, Eq. 
(1) can be transformed as follows:

where f and m indicate the force and torque matrices, 
respectively, d and δ represent the translational and 
rotational displacement matrices, respectively, Kfd and 
Kfδ are the force-translational and force-rotational stiff-
ness submatrices, respectively, and Kmd and Kmδ are the 
torque-translational and torque-translational stiffness 
submatrices, respectively. The posture error caused by 
the cutting load is very small, and tracking the working 
posture of EE using the online detection method is dif-
ficult; therefore, the error can be ignored. Subsequently,

In addition, the main key factor of machining quality 
is the linear displacement of the end of the robot caused 
by the cutting load, and the change in the end posture 
caused by the torque has a slight effect on the machining 
accuracy and quality [25, 26]. Therefore, Eq. (14) can be 
simplified similarly as

Applying a unit force f to the EE of a robot, we obtain

Eq. (16) describes an ellipsoid that changes with the 
robot operation configuration (Figure  4), whose direc-
tions of principal axes are eigenvectors of KT

fdK fd . The 
singular values of KT

fdK fd , denoted as λ1, λ2, and λ3, which 
reflect the lengths of the ellipsoid’s semi-axis, represent 
the square of the stiffness values in three directions, 
respectively.

During the robot operation, the direction of the 
machining load at the end of the robot is not consist-
ent with the main axis of the robot stiffness ellipsoid. 
Therefore, the axial stiffness performance of robots 

(13)
[

f
m

]

=

[

K fd K f δ

Kmd Kmδ

][

d
δ

]

,

(14)f = K fdd + K f δδ.

(15)f = K fdd, δ = 0.

(16)
∥

∥f
∥

∥

2
= f Tf = dTKT

fdK fdd = 1.

must be studied to realize an accurate evaluation of 
machining performance. In Figure  4, λt1 and λt2 rep-
resent the two half axes of the elliptical section of the 
machining plane in the envelope space of the stiffness 
ellipsoid, and λd is the semi-axis, which is the normal 
vector of the elliptical section. The square roots of the 
three half-axis lengths represent the stiffness values of 
the three axes in the robot tool coordinate system [27, 
28].

The direction of λd in the stiffness ellipsoid coordi-
nate system can be defined as the unit vector [ex ey ez], 
and the mathematical formula of the line of its location 
is expressed as follows:

where t is the proportionality coefficient of the spatial 
line. Thus, the stiffness ellipsoid can be expressed accord-
ing to the definition formula of the ellipsoid as

where x, y and z represent the coordinates of the inter-
section point between the straight line shown in Eq. (17) 
and the stiffness ellipsoid. Combining Eqs. (17) and (18), t 
can be eliminated, and the coordinates of the intersection 
point can be obtained as follows:

Subsequently, λd and kx can be calculated as follows:

The method can also be extended to calculate ky and 
kz, which can be expressed as follows:

(17)
x

ex
=

y
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=

z

ez
= t,
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x2

�
2
1

+
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�
2
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+
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where [hx hy hz] and [lx ly lz] are the unit vectors of λt1 and 
λt2, respectively. Using these three formulas, the three-
dimensional stiffness in the robot tool coordinate system 
can be accurately calculated, which provides a theoretical 
basis and evaluation standard for precision control and 
quality improvement of machining tasks.

3.2  Stiffness‑Oriented Configuration Optimization Method
Redundant degrees of freedom (DOFs) increase the task 
adaptability of a robot operating system. Consequently, 
the tasks of the robot operating system can be divided 
into two subtask levels. The first-level subtask controls 
the EE to move to the initial position and posture to 
satisfy the requirements of the operation task. As a sec-
ond-level subtask, configuration optimization improves 
machining performance by using redundant DOFs [29].

The 6-DOF industrial robot has a functional redundant 
DOF in the direction of the tool axis, whether for posi-
tion processing tasks (drilling, boring, etc.) or trajectory 
processing tasks (milling, grinding, etc.). In other words, 
theoretically, an infinite number of poses of the EE can 
be used to execute machining tasks [30]. Therefore, the 
change step of the rotation angle of the EE can be set 
to reduce the amount of calculation in the optimization 
process and then promote the running speed of the opti-
mization method.

The feasible posture of the EE is described in the Car-
tesian coordinate system. However, the stiffness per-
formance index of the robot is evaluated in the joint 
space. Therefore, the inverse kinematics algorithm and 
the uniqueness principle must be used to solve the joint 
angles corresponding to the current robot configuration.

The specific steps of robot configuration optimization 
are as follows:

(1) Extract the position coordinates P (px, py, pz) of the 
target point from the process digital model, and 
plan the initial posture N(α, β, γ) in the offline pro-
gramming software. The current configuration C0 
of the robot can be obtained using an inverse kin-
ematics algorithm and the uniqueness principle of 
the inverse solution.

(2) Use the axial stiffness evaluation index to calculate 
the target stiffness value in the initial configuration, 
denoted as k.

(24)ky =
√

�t1 = 1

/

4

√

h2x

�
2
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+
h2y

�
2
2

+
h2z

�
2
3

,

(25)kz =
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�t2 = 1

/

4

√

l2x

�
2
1

+
l2y

�
2
2

+
l2z

�
2
3

,

(3) Rotate the EE along the tool axis with θx (Figure 5), 
where − 180° ≤ θx ≤ 180°, and define the variable 
step of θx as �θx = 10◦ . Thus, θx can be calculated 
as follows:

(4) Examine the safety and rationality of the new con-
figuration. If the posture of the EE is unreachable 
or interfered, the configuration is abandoned. Oth-
erwise, calculate the current configuration C ′ and 
corresponding stiffness performance index k ′ , and 
update k through the larger value of k and k ′.

(5) Repeat steps 3 and 4 to obtain the rotation angle 
with the best axial stiffness, and the corresponding 
optimal configuration can be determined.

The workflow of configuration optimization is shown 
in Figure 6.

4  Smooth Processing Strategy
In the aviation manufacturing industry, some parts 
require numerous drilling tasks. If the operation con-
figuration of each target machining position is optimized 
individually, the workload of the optimization processing 
is large and the efficiency is low. Therefore, for process-
ing tasks with numerous discrete positions, according to 
the geometric characteristics of the product or distribu-
tion of these positions, considering the typical operation 
positions as the optimization objective, the optimization 
efficiency of the robot configuration in other target posi-
tions can be significantly increased using the interpola-
tion smoothing method. Similarly, this method can be 
extended to milling and other trajectory processing tasks, 
which are controlled by interpolation points. The above 
optimization strategies are the extended applications of 
the configuration optimization method proposed in Sec-
tion 3. The typical operation points are shown in Figure 7.

(26)

θx =

{

j�θx, j = 1,2, . . . , n, n ≤ 18,

180◦ − j�θx, j = 19,20, . . . , n, n ≤ 36.
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z2
z1

Machining
direction
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Figure 5 Rotation angle of the EE
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In addition to the special scenario in which the work-
piece surface is a plane, the direction of each axis in 
the tool coordinate system of each machining position 
cannot be guaranteed to be in the same direction or 
plane. Therefore, all target positions must be unified to 
the same reference coordinate system. In this paper, the 
base coordinate system is selected as the reference.

The rotation matrix of the posture of the EE can be 
expressed as an RPY angle:

where Rot expresses the rotation matrix, γi,βi, and αi are 
the corresponding rotation angles of Basei R in three direc-
tions, respectively. Because Basei R is an identity invertible 
matrix,

(27)Base
i R(γi,βi,αi) = Rot(z,αi)Rot

(

y,βi
)

Rot(x, γi),

Expressing Basei R−1 as an RPY angle:

where γ ′
i ,β

′
i ,α

′
i are the corresponding RPY angles Basei R−1 

in three directions, respectively. Subsequently, unit vec-
tor I can be obtained as

Adjusting the structure of Eq. (30), the expression of 
Rot

(

x, γ ′
i

)

 can be obtained:

Base
i Rx represents a coordinate system obtained by rotat-

ing the robot base coordinate system around its x-axis at 
a certain angle γ ′′

i  , whose RPY angle can be expressed as 
Base
i Rx

(

γ ′′
i , 0, 0

)

 . The transformation of the rotation matrix 
from Basei R to Basei Rx can be obtained using

Figure 8 shows the transformation relationship between 
the starting and ending points of a machining range, where 
φx is the difference in the rotation angle around the x-axis 
of the position of the starting and ending points.

Thus, φx can be expressed as

Therefore, the corresponding posture of the target 
position can be solved according to the proportional 

(28)Base
i R−1(γi,βi,αi) =

Base
i RT(γi,βi,αi).

(29)
Base
i R−1(γi,βi,αi) =
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)

,
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Rot
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)

Rot
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i

)
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(31)
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[

Rot
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z,α′
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)

Rot
(

y,β ′
i

)]−1Base
i R−1(γi,βi,αi).

(32)
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i Rx = Rot−1

(

x, γ ′
i

)

=Base
i R(γi,βi,αi)

[

Rot
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z,α′
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)
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i

)]

.

(33)ϕx = γ ′′
1 − γ ′′

n .

Start

Extract initial posture information P and N

Calculate the initial configuration C0

Calculate the axial stiffness k in the initial configuration

Rotate the end effector with θx around the tool axis

Reachable and non-interferent

Calculate the axial stiffness k'in the current configuration

Compare k and k’ , then refresh by the bigger one

Optimal stiffness kx and corresponding rotation angle θx

j=j+1

θx=10°,θx=j θx j=1j 17

θx=180°-j θ

j 35

End

Yes

No

Yes

No

Yes

No

Calculate the initial configuration C'

Figure 6 Workflow of configuration optimization

Starting/end
position

Corner-point

Constraint
points of arc
trajectory

Figure 7 Several typical operation points

φx

x

y

z

x1

y1
z1

xn yn

zn

Base

y'1

x'1
x'n

y'n

Figure 8 Transformation relationship of endpoint locations



Page 8 of 16Jiao et al. Chinese Journal of Mechanical Engineering          (2022) 35:115 

coefficient of the distance from the beginning to the end 
positions to achieve posture smoothing.

For point machining tasks, the appropriate reference 
coordinate axis (y-axis or z-axis direction) can be selected 
according to the position coordinate distribution law of 
the point, and the theoretical deflection angle of the rota-
tion matrix corresponding to any machining position can 
be obtained using Eq. (34):

The interpolation points are generally evenly distrib-
uted in the trajectory of the processing task. Similarly, 
the theoretical deflection angle γ ′′

i  corresponding to any 
interpolation position in the trajectory of the processing 
operation can be expressed as

Therefore, for any intermediate position, the adjust-
ment angle obtained from the smooth processing can be 
expressed as

Therefore, the optimized posture of the EE ( Basei Rnew ) 
can be expressed as

The corresponding RPY angle of Basei Rnew can be solved 
to complete the posture optimization of the current posi-
tion, and finally, the posture optimization of all positions 
can be completed by smooth processing. Through pos-
ture smoothing, the efficiency of the configuration opti-
mization is increased and the stable movement of the 
robot can be ensured, which has high engineering appli-
cation value.

5  Experiments
Figure 9 shows the experimental platform of the study. A 
KUKA KR500 industrial robot was used as the operation 
carrier in the identification and machining tasks. An ATI 
IP60 Omega160 force transducer, which was fixed on the 
flange, was used to measure the working loads. An API 
laser tracker was used to establish coordinate systems 
and measure the positional errors of the robot.

5.1  Experimental Verification of Variable Stiffness 
Identification

In the stiffness identification experiment, a 1200 
mm × 600 mm × 600 mm cuboid was planned as the 

(34)

γ ′′
i =

{

γ ′′
1 +

|yi−y1|
|yn−y1|

ϕx, take the y - axis as a reference,

γ ′′
1 +

|zi−z1|
|zn−z1|

ϕx, take the z - axis as a reference.

(35)γ ′′
i = γ ′′

1 +
i − 1

n− 1
ϕx.

(36)�γi = γ ′
i − γ ′′

i .

(37)Base
i Rnew = Base

i R · Rot(x,�γi).

calibration space, and 600 mm, 300 mm, and 150 mm 
were selected as the side lengths of the cubes to study 
the effects of different grid sizes. Therefore, the calibra-
tion space was divided into 2, 16, and 128 cubic grids, 
respectively. Based on this, the initial configuration 
of the samplings could be determined. When rotat-
ing the EE at ± 10° along the y-axis of the tool coordi-
nate system, a total of 27 sampling configurations were 
obtained in a cubic space.

The joint stiffness without space gridding was identi-
fied as

Dividing the calibration space into two symmetri-
cal cubic grids (Figure 10(a)), the joint stiffness in two 
grids, namely Grids 1 and 2, were identified as

By selecting a 300 mm cubic grid as a sampling 
unit, the calibration space was divided into 16 grids 
(Figure  10(b)). The entire space was observed as four 
cuboid spaces: Cuboids 1 to 4, whose longest sides were 
parallel to the y-axis of the base coordinate system. The 
joint stiffness of each grid space was identified, and the 

(38)

K θ = diag(1.58× 1010, 6.12× 109, 5.28× 109,

4.66× 108, 2.19× 108, 3.49× 108)N ·mm/rad.

(39)

K θG1 = diag(1.48× 1010, 5.57× 109, 6.80× 109,

3.38× 108, 1.20× 108, 2.17× 108)N ·mm/rad,

(40)

K θG2 = diag(1.50× 1010, 6.29× 109, 4.56× 109,

2.79× 108, 3.28× 108, 1.61× 108)N ·mm/rad.

Laser tracker

X Z
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Figure 9 Experimental system
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fluctuation of values was observed according to these 
four cuboid spaces (Figure 11).

A 150 mm cubic grid was selected as a sampling unit 
and the calibration space was divided into 128 grid 
spaces (Figure  10(c)). The entire space was divided into 
four cuboid spaces, i.e., Cuboids 1 to 4, which could be 
referred to as first-order cuboid spaces. Each first-order 
cuboid space was further split into four second-order 
cuboid spaces, such as Cuboids 1.1 to 1.4, which were 
formed with eight grid spaces. The joint stiffness of 
each grid space could be calculated, and the variation 

regularity of the stiffness value could be investigated 
based on the second-order cuboid spaces (Figures 12, 13, 
14, 15).

Analyzing the variation trend of the joint stiffness in 
Figures 11 and 12, 13, 14, 15, the stiffness of the second, 
third, and fifth joints largely maintained the same ten-
dency by dividing the robot calibration space into smaller 
grid spaces. However, the stiffness of the first, fourth, and 
sixth joints exhibited different change trends, compared 
with the tendency with larger grid spaces. Thus, the vari-
ation trend with larger grids cannot indicate the local 

(a) Space division with a 600 mm grid   (b) Space division with a 300 mm grid     (c) Space division with a 150 mm grid
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change in joint stiffness, which inevitably reduces the 
accuracy of the stiffness model of robots.

In addition, the joints whose axes were parallel to the 
y-direction of the base coordinate system, namely the 
second, third, and fifth joints, exhibited stable change 
trends of stiffness in the entire calibration space. How-
ever, the joints whose axes were perpendicular to the 
y-direction of the base coordinate system, namely the 
first, fourth, and sixth joints, had similar stiffness tenden-
cies in the calibration space. We can conclude that the 
axis direction of a robot joint is related to the stiffness 
distribution of the joint, which can be used to optimize 
the machining configuration of industrial robots.

The effectiveness of the variable stiffness identifi-
cation method was verified through compensation 
experiments of the load-induced positional error. In the 
calibration space, a sampling position was randomly 
selected in each 150 mm grid. Thus, 128 verification 
points were obtained. A load of 50 kg was fixed to the 
EE to produce position errors.

The load-induced positional errors were measured by 
executing control commands before and after loading. 
According to Eqs. (1) and (15), the load-induced posi-
tional errors were calculated as follows:
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where E is a matrix composed of the first three columns 
of the first three rows of the objective matrix. By com-
bining the working load and the identified joint stiffness, 
the load-induced positional errors were predicted, and 
the control commands were modified through reverse 
compensation. Subsequently, the compensation effect of 
load-induced errors was evaluated by executing the mod-
ified commands under the loaded state. Defining Ex(i), 
Ey(i), and Ez(i) as the load-induced positional errors of 

(41)d = K−1
fd f = E

(

JK−1
θ (j)JT

)

f ,
the ith position on the x-, y-, and z-axes of the base coor-
dinate system, the load-induced absolute errors E(i) were 
calculated using the following equation:

The absolute positional errors before and after com-
pensation with different grid sizes are shown in Figure 16, 
and Figure  17 shows the error distribution for different 
grids. The average absolute positional error induced by 
the working load was 0.2868 mm, and the maximum error 

(42)E(i) =

√

(Ex(i))
2 +

(

Ey(i)
)2

+ (Ez(i))
2.
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was 0.3587 mm. As the number of space grids increased 
from 1 to 128, the average value of load-induced posi-
tional errors after compensation decreased from 0.1201 
mm to 0.0570 mm, and the maximum error decreased 
from 0.1610 mm to 0.1134 mm. The compensation effect 
with a 150 mm grid improved by approximately 52.54%. 
In conclusion, the validity of the identification results was 
verified, and the variable parameter error could better 
characterize the error model of a robot and obtain better 
positional accuracy.

5.2  Configuration Optimization and Smooth Processing 
Experiments

The operation configuration optimization strategy and 
smooth processing method were verified through the 
simulation layout of a robot operation system in the 
DELMIA software. Using a workblank fixed on the 
tooling as the processing object, the machining path 
was planned in the software (Figure 18). The path from 
Tag 1 to Tag 2 was parallel to the y-axis of the base 

coordinate system, and the path from Tag 3 to Tag 4 
also satisfied this scenario. According to the require-
ments of not using singular and joint-limit configu-
rations, the rotation angle range of the robot EE was 
selected as − 90° ≤ θx ≤ 90°.

In the verification experiments, the normal stiffness 
of the robot motion trajectory in its work plane, defined 
as kv, and the tool axial stiffness kx, which were directly 
related to the trajectory accuracy and surface cutting 
quality, respectively, were considered as the evaluation 
indexes. The normal stiffness kv was calculated using the 
following equation:

Thus, the fluctuations of kx and kv with different rota-
tion angles (θx) in Tags 1 to 4 are shown in Figures  19, 
20, 21, 22. Specifically, all the rotation angles correspond-
ing to the configuration with optimal axial stiffness in 
Tags 1 to 4 were θx = 0°, that is, the initial robot config-
uration. The fluctuation of kv in Tags 1 and 4 formed a 
trough with θx = 0°, and two peaks were formed with θx 
= − 20° and θx = 10°. The optimal kv was observed at θx 

(43)kv =

√

(kzcosθx)
2
+

(

kysinθx
)2
.
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= − 20°. Similarly, two peaks formed in Tags 2 and 3 at θx 
= − 10° and θx = 20°, respectively, and the optimal kv was 
observed at θx =20°.

With the rotation angle farther from θx corresponding 
to the configuration with optimal stiffness performance, 
the stiffness in the target direction gradually decreased. 
Note that when the EE rotated away from the base coor-
dinate system, the stiffness value decreased gradually.

Figures 23 and 24 compare kx and kv at different posi-
tions, respectively. The four positions were symmetrically 
distributed along the y-axis of the robot base coordinate 
system, and the stiffness change curves at the correspond-
ing positions also exhibited spatial symmetry along the 
y-axis of the base coordinate system. In addition, the stiff-
ness value exhibited a downward trend along the positive 
x-axis direction of the base coordinate system. In other 
words, under the same operational posture of the EE, kx 
or kv in Tag 1 was lower than the corresponding direc-
tional stiffness in Tag 3, and kx or kv in Tag 2 was lower 
than the corresponding directional stiffness in Tag 4.

To increase the trajectory accuracy in the operation 
process, the operation configuration with optimal kv was 
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selected first. Based on the optimized configuration of 
Tags 1 to 4, the smoothing processing of the trajectory 
interpolation point was conducted to achieve the rapid 
acquisition of the optimal stiffness configuration of cor-
responding positions and smoothing results (Figure 25).

The smooth processing strategy simplified the configu-
ration optimization of all target positions into several geo-
metric feature positions, which significantly increased the 
configuration optimization efficiency. The optimization 
effect of smooth processing was evaluated by comparing 
it with the optimal stiffness performance obtained from 
the configuration optimization of the interpolation points. 
The interpolation positions of Tags 3 and 4 were selected, 
and the seven interpolation positions were defined as Tags 
5 to 11. The kv obtained using the configuration optimiza-
tion method and smooth processing are shown in Table 1, 
and Figure  26 shows a comparison between the smooth 
processing and configuration optimization.

As Table  1 shows, the stiffness index kv after smooth 
processing was highly similar to the result of configura-
tion optimization, and the stiffness loss after fairing was 
less than 0.409% (in Tag 8). The stiffness of the target 
direction in Tags 5 and 11 after smoothing was slightly 
higher than that of configuration optimization. This was 

because the step size of the rotation angle was larger in 
the process of optimization, which resulted in the opti-
mized configuration obtained by smoothing closer to the 
configuration with optimal stiffness.

In summary, smooth processing effectively increases 
the optimization efficiency of a robot operating con-
figuration and ensures that the improvement effect of 
the axial stiffness through smooth processing is not sig-
nificantly reduced compared with that of configuration 
optimization, which fully proves the effectiveness of the 
fairing method.

5.3  Machining Experiment
The effects of configuration optimization and smoothing 
on milling quality were studied using a robot machining 
system. In the verification experiment, the milling task 
was performed in the cylinder head of an automobile 
engine. The planned trajectory in the machining experi-
ment is shown in Figure 27, where Tags 1 and 2 represent 
the start and end positions of the trajectory, respectively.

By selecting the tool axial stiffness as the optimiza-
tion objective, the rotation angles corresponding to the 
start and end positions of the machining trajectory were 
obtained using the configuration optimization method; 
the optimized configurations of Tags 1 and 2 are shown 
in Table  2, and smooth processing of the interpolation 
positions was conducted to obtain optimal configura-
tions. Based on this, the trajectory control program of 
the robot was generated through offline programming 
software, and the robot could be driven to perform mill-
ing tasks. The process parameters of the robot milling 
experiment are listed in Table 3.

The comparison results of the milling process after con-
figuration optimization are shown in Figure 28. The milling 
surface quality before configuration optimization was rela-
tively poor, and the blades severely vibrated. The roughness 
of the surface was Ra 2.356, as measured using a roughness 
meter (Sanfeng SJ-210). After optimizing the operation con-
figuration of the robot to increase the end operation rigidity, 
the obtained milling surface of the workpiece was relatively 
smooth, the surface roughness was Ra 0.597, and the accu-
racy and quality of milling were significantly improved.

Tag1
(-20°)

Tag2
(20°)

Tag3
(20°)

Tag4
(-20°)

Figure 25 Smoothing results of interpolation positions

Table 1 Stiffness performance comparison between smoothing 
processing and configuration optimization

Position Smooth processing Configuration optimization

Rotation 
angle (°)

Stiffness (N/mm) Rotation 
angle (°)

Stiffness (N/mm)

Tag 5 15 5295.939 20 5295.692

Tag 6 10 5288.137 20 5297.567

Tag 7 5 5277.223 20 5294.692

Tag 8 0 5272.422 10 5294.062

Tag 9 − 5 5277.223 − 20 5294.696

Tag 10 − 10 5288.137 − 20 5297.567

Tag 11 − 15 5295.988 − 20 5295.692

Tag3 Tag5 Tag6 Tag7 Tag8 Tag9 Tag10 Tag11 Tag4

Configuration
smooth

processing

Configuration
optimization
one by one

Figure 26 Optimized posture comparison between smoothing 
processing and configuration optimization
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6  Conclusions

(1) A regular sampling point selection method is pro-
posed based on space gridding. On this foundation, 
considering joint stiffness as approximately con-
stant values in any grid space, a variable stiffness 
identification method is proposed.

(2) A task-oriented axial stiffness evaluation index is 
proposed to estimate the stiffness performance in a 
particular processing direction, and a configuration 
optimization strategy is developed to maximize the 

performance by utilizing the redundant DOF of the 
robot equipment.

(3) Aiming at many points or trajectory tasks, a robot 
configuration smoothing method is developed to 
achieve rapid acquisition of optimized configura-
tions, which effectively increases the efficiency of 
posture optimization.

(4) A stiffness identification experiment was completed 
using the KUKA KR500 system. The difference in 
joint stiffness in different spaces was verified by 
analyzing the identification results, and the stiff-
ness variation regularity of each joint was clearly 
obtained in the calibration space.

(5) The configuration optimization and smooth pro-
cessing methods were tested in a simulation envi-
ronment. The experimental results indicated that a 
smooth processing strategy increases the optimiza-
tion efficiency, while the stiffness loss is very small. 
According to the machining results in the cylinder 
head of an automobile engine, the milling quality 
improved after configuration optimization, and the 
validity of these methods was verified.
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