
Zhou et al. 
Chinese Journal of Mechanical Engineering          (2022) 35:111  
https://doi.org/10.1186/s10033-022-00787-0

ORIGINAL ARTICLE

Variational Wavelet Ensemble 
Empirical (VWEE) Denoising Method 
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Abstract 

Low excitation voltage for an electromagnetic acoustic transducer (EMAT) is necessary for the petrochemical equip-
ment and facilities inspection, which work at high-temperatures, to avoid potential explosion. However, low excitation 
voltage causes low signal-to-noise ratio (SNR) signals that are difficult to extract features, especially in a high-temper-
ature environment, which causes high noise. In this study, a denoising method called the variational wavelet ensem-
ble empirical (VWEE) method was proposed by combining the advantages of the variational modal decomposition 
(VMD), wavelet threshold (WT) denoising, and ensemble empirical mode decomposition (EEMD) methods. To validate 
the VWEE method, EMAT signals obtained in the temperature range of 25 to 700 °C were analyzed. The results show 
that, compared with VMD, WT and empirical mode decomposition denoising methods, the SNR of proposed method 
is improved more than two times. The VWEE method dramatically improved the SNR of a high-temperature EMAT 
signal and enhanced the accuracy of defect echos extraction.
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1  Introduction
Nondestructive testing technology is widely used in 
industry [1–3]. Corrosion caused by the environment 
and flowing media gradually reduces the thickness and 
weakens the strength of pressure pipeline and container, 
which eventually leads to a catastrophic accident [4]. 
Online monitoring of the wall thickness and internal 
damage using an electromagnetic acoustic transducer 
(EMAT) [5–7] is an effective way to avoid the above inci-
dents. In practice, high-voltage excitation is often used 
to improve the echo energy. However, for pipeline and 

container with flammable and explosive media, which 
usually works at high temperature and pressure, such as 
boiler or reactor, the excitation voltage should be low for 
safety. The low-voltage excitation results in a low signal-
to-noise ratio (SNR) and buries the valuable information 
in noise, which causes the failure of the wall thickness 
and the defect detection [8–10]. To solve the above prob-
lem, a new denoising method or theory is needed to 
effectively extract useful information in this high noise 
environment.

Given the low SNR in acoustic detection, many studies 
have been conducted to improve the useful signal qual-
ity. Kubinyi et  al. [11, 12] proposed a stationary wave-
let packet denoising method and proved that the SNR 
of EMAT signals was two time higher than that of the 
split-spectrum processing or standard wavelet filtering 
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algorithm through experiments. They also created a sig-
nal filtering method based on information fusion, and the 
method had a better effect on the studied acoustic signals 
compared with the digital filtering or wavelet denois-
ing method. Lei et al. [13] proposed an improved singu-
lar value decomposition (SVD) denoising method based 
on a fitted threshold and adopted the piecewise regres-
sion model to find the appropriate threshold, which had 
a good denoising effect on the EMAT signals. Legendre 
et al. [14] proposed a wavelet-based approach to enhance 
the acoustic signals received during composite material 
detection. Huang et al. [15] proposed an algorithm using 
envelope regulation technology and applied it to EMAT 
surface wave experimental data. The experimental results 
showed that the advanced  algorithm could significantly 
reduce the overall noise level of the signal, suppress the 
random fluctuation of the signal waveform, and maintain 
the main characteristics of the signal.

Different types of wavelet basis functions and decom-
position layers have a large influence on denoising when 
a wavelet transform was used in signal processing. 
Huang et  al. [16] proposed empirical mode decomposi-
tion (EMD) as an adaptive signal processing method. The 
signal was decomposed into a series of intrinsic mode 
function (IMF) components representing signal char-
acteristics from high to low frequency. Sun et  al. [17] 
proposed a method based on modified EMD to denoise 
signals with horn-type noise, which improved the SNR 
of the acoustic echo signals. However, the computa-
tional cost was too high. Wu and Huang [18] proposed 
ensemble empirical mode decomposition (EEMD), which 
selected the set with a white noise signal and took the 
mean value as the final result. Yu et al. [19] proposed an 
EEMD method to extract the characteristics of acoustic 
echo signals. The method reduced the modal mixture 
generated by the EMD to a certain extent. Dragomiret-
skiy et  al. [20] proposed a variable scale non-stationary 
signal analysis method, variational mode decomposition 
(VMD), which could decompose complex signals into 
the form of a multiple single-component AM-FM signal 
sum. The number of modes in the decomposition pro-
cess could be determined adaptively. Huang et  al. [21] 
proposed an improved shear horizontal guided wave pat-
tern recognition method based on the VMD algorithm 
and time-of-flight extraction method based on the syn-
chronous compression wavelet transform algorithm, 
which helped to improve the sensitivity and accuracy 
of shear horizontal wave defect detection. Si et  al. [22] 
proposed an improved VMD fusion wavelet method to 
suppress the high-frequency narrowband noise and nor-
mal noise in EMAT signals with a large lift-off detection 
condition. Wei et al. [23] proposed an improved empiri-
cal variational mode decomposition (EVMD) method 

for acoustic echo signal processing that could effectively 
identify the coal-rock interface. So far, VMD algorithm 
has been widely applied in various fields [24–27]. For the 
reviewed denoising methods above, the filtering effect 
can easily produce waveform distortion in EMD. The 
IMF decomposed by the EEMD is affected by noise and 
cannot express the real physical meaning when the signal 
noise is severe. The VMD algorithm requires the value of 
K to be set beforehand, and the smaller or larger value of 
K will result in the modal component information losting 
or over-decomposition.

Based on the above shortcomings, this study proposes a 
new denoising method called variational wavelet ensem-
ble empirical (VWEE) denoising. The theory and princi-
ple of this method are first introduced. An experimental 
system was developed to acquire signals at different exci-
tation voltages and temperatures. Lastly, the comparison 
among the VMD, wavelet threshold (WT), EMD, and 
VWEE denoising methods for the measured signal for 
different excitation voltage and temperatures were given 
to verify the feasibility and effectiveness of the proposed 
method.

2 � Basic Theory
2.1 � Principle of EMAT Detection
Figure  1 shows the structure of an EMAT, which con-
sists of three parts: a coil, a magnetic field provided by a 
permanent magnet, and a tested sample which should be 
conductive or magnetic.

The magnet creates a magnetic field BS that acts on the 
coil. Then the excitation current density Jc is conducted 
in the coil and induces a vortex Je on the surface of the 
sample. The moving eddies in the vortex produce Lor-
entz forces in the magnetic fields BS . When the tested 
sample  is ferromagnetic, with the joint action of the 
Lorentz force f (L) , magnetostrictive force f (fms) , and 

Figure 1  Basic principles and components of EMAT
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magnetization force f (M) , a mass point within the skin 
depth of the specimen surface will vibrate and form 
acoustic waves [28]. The acoustic reception is based on 
the reverse process.

2.2 � Development of High‑temperature EMAT
As shown in Figure  2, the high-temperature EMAT 
mainly included a high-temperature-resistant bayonet 
nut connector (BNC) joint, stainless steel house, samar-
ium cobalt magnet, built-in heat insulation layer, cop-
per foil, coil, and heat insulation layer. First, samarium 
cobalt magnets were used as permanent magnets, which 
had a high Curie point and could be used for a long 
time at high-temperatures  environment. Second, the 
coil adopted a spiral coil structure. The inner diameter 
of the coil was 2.25 mm. The outer diameter was 18.25 
mm. The coil was wound 25 times. The wire diameter 
was 0.12 mm, and the magnet and the coil were sepa-
rated by 2 mm thick copper foil, which was conducive 
to electromagnetic shielding. To eliminate any effect of 
the heated sample on the coil, the coil was raised 2 mm 
and protected in a ceramic sleeve. Finally, the structure 
design of the double insulation layer effectively reduced 
the influence of the heat source on the internal coil and 
the permanent magnet, ensuring that the EMAT could 
work at a high temperature for a long time. The highest 
temperature detected by a high-temperature EMAT was 
up to 800  °C  through testing, ensuring the effectiveness 
of the experimental data.

3 � VWEE Denoising Method
In an EMAT measurement experiment, the echo carries 
useful information. Because the echo is an unsteady sig-
nal, the traditional Fourier transform and other methods 
cannot be used. In this method, the signal detected by the 
high-temperature EMAT is decomposed using VMD first 
to filter out the low- and high-frequency noise signals. 
Then, WT is used to enhance the denoising effect and 
filter out the same frequency noise. Finally, the denois-
ing signal is decomposed by EEMD to extract the echo 
signal.

3.1 � Filter Low‑ and High‑frequency Signals
In the time and frequency domain diagrams, echo signals 
and some high-frequency electrical noise can be found 
from the EMAT signals. Since the transmitting signal fre-
quency is set in advance, the effective echo signal center 
frequency is distributed near the transmitting frequency. 
By analyzing the theory and principle of the existing 
denoising methods, the VMD method can be used to 
separate the signal in the frequency domain.

VMD is a non-recursive signal processing method that 
is different from obtaining components recursively with 
the traditional EMD algorithm [20], which can be used to 
separate low- and high-frequency signals. By construct-
ing a constrained variational model, the modal estima-
tion is transformed into a variational problem. The signal 
is decomposed into a series of modal components around 
the central frequency with good sparsity among each 
modal component.

The VMD method decomposes a signal f into a mode 
function uk with K  orders center frequency ωk accord-
ing to the preset scale parameter K  . Then the variational 
constraint problem can be obtained with the following 
equation [20]:

where ∂t is the partial derivative of the function at time t 
and δ(t) is the unit impulse function.

By introducing the augmented Lagrange function L , 
the constrained problem is transformed into an uncon-
strained problem:
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where α is the penalty factor that is used to ensure the 
signal reconstruction accuracy in the presence of Gauss-
ian noise, � is the Lagrange multiplier, and <> denotes the 
inner product of the vectors.

The above variational problem was solved with the alter-
nate direction multiplier algorithm, and the saddle point of 
the above augmented Lagrange function was obtained by 
alternately updating un+1

k  , ωn+1

k  , and �n+1

k  , which are the opti-
mal solutions of Eq. (2). In the expression, un+1

k  is the modal 
function at the n+1 cycle, ωn+1

k  is the center frequency of the 
power spectrum of the current modal function, and �n+1

k  is 
the multiplication operator at the n+1 cycle.

Then, the modal component uk and the central fre-
quency ωk that are obtained by

where ûn+1

k  , f̂  and �̂n+1

k  represent the corresponding Fou-
rier transforms of un+1

k  , f  and �n+1

k  , respectively, and α is 
the penalty factor.

For a given decision accuracy e>0, when Eq. (5) is sat-
isfied, the decomposition iteration stops, and the final 
modal component ûk and the corresponding central fre-
quency ûk are obtained by

With VMD, the choice of parameters was very impor-
tant. The traditional VMD algorithm required the value 
K  to be set in advance, which meant that the signal was 
decomposed into K  modes. When K=4, the spectrum 
corresponding to the eigenmode component was as 
shown in Figure  3, which could better distinguish the 
noise signals with different frequencies. As shown in 
Figure 3, the IMF2 was around the excitation frequency. 
The VMD algorithm could decompose the signal into 
independent modes and estimate the center frequency of 
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signal components. Then the corresponding components 
were reconstructed.

3.2 � Enhance Noise Reduction Effect
The WT was used to reduce the noise. The wavelet transform 
retained local useful information for the signal and removed 
noise. The phase distortion was guaranteed to affect the echo 
time accuracy. According to the characteristics of the wave-
let basis function and signal to be measured, the appropriate 
wavelet basis function is selected and the number of decom-
position layers N is determined. Therefore, the SymN wave-
let was selected, and the maximum value N = 8 was taken 
to ensure its optimal characteristics directly. In addition, the 
sqtwolog rule was used to adjust the noise level estimation of 
each layer of the wavelet decomposition. The adaptive thresh-
old value was expressed as shown in Eq. (6):

where Trj is the j-level threshold, σ is the standard devia-
tion of noise signal, and nj is the number of j-level wave-
let coefficients.

The hard threshold method could not only preserve the 
characteristics of the signal but also suppress the white 
noise. The mathematical expression of the hard threshold 
function is shown in Eq. (7):
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3.3 � Extraction Echo Signal
EEMD-Hilbert was used to extract the echo signal, and 
the denoised signal was processed with EEMD. The kur-
tosis factor was used as the index, and the IMF func-
tion with the largest kurtosis factor was selected as the 
final extracted echo signal. The envelope of the ultra-
sonic signal was extracted with the Hilbert transform. 
The kurtosis could reflect the signal mutation effectively. 
The kurtosis value of a signal xk ( k = 1,…, N) could be 
obtained with Eq. (8):

where E is the expected operator, and µ and σ are the 
mean and standard deviation of the signal.

The Hilbert transform could reflect the instantane-
ous amplitude and frequency of the signal. The input 
signal of the Hilbert transform was required to be in 
a linear steady-state condition. However, in practice, 
most of the signals were linearly unsteady or even non-
linearly unsteady, and the linear steady-state condition 
strictly limited the application of the Hilbert transform. 
The EEMD algorithm could obtain the linear steady sig-
nal, and the decomposed IMF had better performance. 
Therefore, the decomposed signal was used as the input 
of the Hilbert transform to obtain the envelope.
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3.4 � Algorithm Implementation
The specific algorithm flow of the VWEE method is 
shown in Figures 4 and 5. The algorithm included the fol-
lowing three steps:

Step 1: The echo signal was decomposed, and the 
high-frequency and low-frequency noises were fil-
tered. The input signal was decomposed with VMD 
to obtain the IMFs. The center frequency of the IMF 
components was calculated with a Fourier transform, 
which was sequentially arranged from low frequency 
to high frequency. The appropriate IMF was selected 
for reconstruction according to the excitation center 
frequency.
Step 2: The noise with the same frequency in the 
useful signal was filtered out, improving the effect of 
noise reduction. The selected IMF components were 
denoised with the WT, in which the wavelet basis 
function and the decomposition level were the sym8 
wavelet and five-level decomposition, respectively.
Step 3: The echo signal was extracted and the echo 
information was obtained. After denoising, the sig-
nal was processed with EEMD. The kurtosis factor 
was used as the index, and the IMF function with 
the largest kurtosis factor was selected as the final 
extracted echo signal. The envelope of the acoustic 
signal was extracted with a Hilbert transform.

4 � Experiment Setup
The low voltage excitation system is shown in Figure  6. 
The system was composed of a computer, a self-devel-
oped pulsed electromagnetic acoustic detector, a self-
developed high-temperature EMAT, a furnace, and the 
temperature data acquisition equipment.

The computer controlled the EMAT to generate acous-
tic waves on the surface of the tested sample. The acous-
tic waves were received by the EMAT and amplified by 
the amplifier to record in the computer. The test sample 
was heated by a furnace, which was covered with high-
temperature asbestos for thermal isolation. The upper 
surface of the high-temperature asbestos opened for 
EMAT placement. Three K-type thermocouples were 
inserted into the front, middle, and bottom of the test 
block, crossing the high-temperature asbestos. The 
three point temperatures were measured to ensure that 
the samples were heated at a uniform temperature. The 
EMAT was in direct contact with the front surface of the 
testing sample. The high-temperature EMAT was self-
developed by adding two ceramic thermal insulation lay-
ers to the bottom of a normal EMAT [29].

In this study, the excitation voltages were 250 V and 
35 V for three cycles, and the center frequency was 3.25 
MHz. The furnace heated the sample from 25 to 700 °C. 
The sample were Cr25Mo3Ti, 12CrMo, and Fe.

In the data analysis process, the choice of parameters 
was critical. In this research, for VMD, to determine the 
value of the α, a simple test was conducted and it was 
found that when α was 1500, the noise reduction effect 
was the best, at 56.5 dB. Because the noise was intense, 
the Lagrange multiplier was set to zero. The convergence 
precision ε was 1×10−6. The traditional VMD algorithm 
required the value of K  to be set beforehand, which 
meant that the signal was decomposed into K  modes. 
After repeated tests, it was found that when K=4, the 
decomposition effect of the signal was the best. For WT, 
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(b) Experiment setup

Figure 6  High-temperature experimental system
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the SymN wavelet needed to be selected and the maxi-
mum value N = 8 was taken to ensure its optimal char-
acteristics directly. The ’sym8’ wavelet was selected and 
the decomposition level was set to 5, which showed the 
best noise reduction effect with the SNR of 56.1 dB in the 
test. These choices were based on many repeated experi-
ments. In addition, the sqtwolog rule was used to adjust 
the noise level estimation of each layer of the wavelet 
decomposition.

5 � Results Analysis and Discussions

5.1 � Data Processing
Figure 7 shows the time and frequency domain diagrams 
of the original signal of 12CrMo at 625  °C. Through 
acquiring and analyzing data, it was determined that 

pulsating noise was mainly focused in the low-frequency 
domain. The resonance phenomenon for EMAT was 
inevitable, which led to a noise signal and the generation 
of random fluctuations. This resulted in a deviation of 
the extreme value point in the envelope extracting pro-
cess. It was necessary to filter out the noise. Based on the 
original signal in the time and the frequency domain dia-
gram, the echo signal and some high-frequency electrical 
noise could be found, as shown in Figure 7(a, b). As the 
emission signal frequency was presented, the effective 
echo signal center frequency was distributed around the 
emission frequency. The high-frequency part was invalid 
white noise, which did not have any useful information. 
This caused the SNR of the echo signal to deteriorate, 
which resulted in the need for filtering.

In the frequency domain, the distribution of the two 
kinds of noise did not overlap with the effective sig-
nal, which provided a signal processing direction. In 
this research, VMD was used to select the medium and 
high-frequency IMF where the useful signal resided. This 
method could effectively filter out the low-frequency 
noise and the high-frequency noise.

Figures 8 and 3 show the time domain and frequency 
domain diagrams of the original signals after VMD, 
respectively. It can be found from Figure 8 that the time 
domain EMAT signals were successfully decomposed 
into four IMFs.

Since the pre-set excitation frequency was 3.25 MHz, 
the useful echo signal was located in IMF 2, which was 
selected to reconstruct the signal for the VMD, as shown 
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in Figure  9(a). Then WT denoising was carried out, as 
presented in Figure 9(b). The noise reduction method in 
this research applied to any condition, rather than a fixed 
excitation frequency. Different excitation frequencies 
resulted in different center frequencies of ultrasonic echo 
signals. As an effective time-frequency analysis method, 
the denoised signal had less interference in narrow-band 
IMF 2.

To eliminate the noise with a similar frequency to the 
effective signal, the wavelet denoising method was used. 
The wavelet can be analyzed in both time and frequency 
domain and can deal with the abrupt change in the thick-
ness measurement signal. Therefore, before using the sig-
nal, it was necessary to conduct further noise reduction 
processing and improve the SNR.

The signal noise was effectively suppressed after VMD-
WT processing. However, the noise in the signal could 
not be completely filtered out and the filtering process 
also suppressed the effective signal. Hence the noise sup-
pression in this link tended to be conservative. Then the 
EEMD was used for further signal processing. The IMF 
with the largest kurtosis factor was selected as the final 
extracted echo signal. Following this, the Hilbert trans-
form was used to extract the envelope of the final signal, 
as shown in Figure  10. The EEMD method showed an 
ability to decrease the cumulative errors of the WT and 
improve the resolution after the time-frequency analysis 
to eliminate white noise. Furthermore, the Hilbert trans-
form could present the instantaneous amplitude and 
frequency.

5.2 � Comparison of Noise Reduction Ability Among 
Different Methods

To verify the effectiveness and feasibility of the proposed 
VWEE method, the same received signal for 12CrMo 
at 625  °C was selected, with a 250 V excitation voltage, 
a 50 MHz sampling frequency, and the sampling num-
ber of 4096. The following methods were used for noise 
reduction.

1)	 VMD: The original signal was decomposed with 
VMD. The decomposition layer K  was set as 4, and 
the penalty factor α was set as 1500. This method 
could effectively deal with nonlinear and non-sta-
tionary signals. However, it was sensitive to noise. 
When there was noise, modal aliasing might occur in 
the decomposition, and the noise suppression ability 
was weak.
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Figure 9  (a) Reconstruction signal of VMD decomposition, (b) WT 
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2)	 WT denoising: The "sym8" wavelet was selected 
and the decomposition level was set to 5. The hard 
threshold function was adopted, and the "sqtwolog" 
rule was used.

3)	 EMD: The EMD has the disadvantages of mode alias-
ing and the endpoint effect. The filtering effect could 
easily produce waveform distortion and it could not 
retain the original characteristics of the signal to the 
maximum extent.

To evaluate the advantages and disadvantages of the 
various methods, the peak SNR was adopted as the eval-
uation index of the denoising effect. In general, the larger 
an SNR is, the better the signal denoising effect is.

Equation  (9) was used to calculate the SNR, where 
SNRdB is the SNR of the signal, Asignal is the maximum 
amplitude within a wave packet intercepted, and Anoise 

denotes the average noise amplitude within a selected 
region next to the echo:

To validate the denoising ability of the method pro-
posed in this paper, several popular denoising meth-
ods were compared. Figure  11 gives comparison of 
the original electromagnetic ultrasonic signal with the 
signal processed by VMD, WT denoising, and EMD 
method, respectively. The denoising effect of the other 
three denoising methods was not ideal, and there were 
still many noise components in the signal after denois-
ing. As shown in Figure 10, the proposed VWEE denois-
ing method could better preserve the useful part of the 
signal, and it could effectively remove most of the target 
signal noise. As adaptive multiresolution techniques, the 

(9)SNRdB = 20lg
Asignal

Anoise
.
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Figure 11  Ultrasonic signal of 12CrMo at 625 °C; (a) original signal, (b) VMD decomposition and reconstruction signal, (c) WT denoising signal, and 
(d) EMD denoising signal
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EMD and VMD could adjust to unknown signal charac-
teristics varying over time. Compared with the VMD, the 
EMD was more sensitive to noise. The WT-based thresh-
olding technique was better in combination with the 
VMD method than in use alone.

From Figure 11, the denoising ability of various meth-
ods can be seen directly. The SNR values were further 
compared  with the indicator for denoising ability, as 
shown in Table 1. The higher the SNR of the output sig-
nal was, the better the denoised effect was. From Table 1, 
it can be seen that the denoised effect of VWEE was sig-
nificantly better than those of the VMD, WT, and EMD 
methods. The denoising effects of VMD and EMD were 
similar, and these effects slightly better than those of the 
WT. Compared with the other methods, the SNR of the 
high-temperature EMAT signal was improved 2–3 times 
using the VWEE method.

5.3 � Applicability of VWEE Denoising Method for Different 
Materials at Different Temperatures

To verify the applicability of the denoising method pro-
posed in this study, experiments were conducted on 
Cr25Mo3Ti and Fe materials. Each specimen of the 
materials was in the shape of a cake and had a diameter 
of 100 mm and a thickness of 60 mm. Additionally, all the 
specimen surfaces were polished. The ultrasonic signal 
was detected with an excitation voltage of 250 V. All of 
the samples were heated from 25 to 700 °C. The electro-
magnetic ultrasonic signals measured at intervals of 50°C 
were selected for VWEE denoising, and good SNRs were 
obtained, as shown in Figure 12(a, b). The results demon-
strated that the proposed algorithm could be applied to 
conditions other than a fixed temperature.

As can be seen from Figure 12(a), the SNR of the origi-
nal electromagnetic ultrasonic signal, detected on the 
Cr25Mo3Ti specimen from 25 to 700  °C, was the low-
est, which  was maintained at about 20 dB. Compared 
with the original signal, the SNR of the signals pro-
cessed with the WT denoising method and the EMD 
method was  improved to some scale. But the SNR was 
still low  compared with the  VWEE  method, which was 
between 50 dB and 60 dB, up to 60.579 dB. The experi-
mental results showed that the VWEE method had a 
good noise reduction ability for the Cr25Mo3Ti electro-
magnetic ultrasonic signal, and the echo signal was more 

obvious, which was more conducive to the extraction of 
the echo signal information.

As shown in Figure 12(b), the SNR of the original elec-
tromagnetic ultrasonic signal that detected on a Fe speci-
men from 25 to 700 °C was the lowest, and the signal was 
maintained between 10 dB and 20 dB. Compared with 
the original signal, the SNR of the WT denoising method 
and the EMD method were improved to some extent, 
but the SNR was still lower than that of the proposed 
method. The SNR of the electromagnetic ultrasonic sig-
nals obtained with the VWEE denoising method was 
about 50 dB, up to 59.330 dB. The experimental results 
showed that the VWEE denoising method also had a 
good denoising effect on Fe, so the proposed method had 
certain advantages in high-temperature signal processing 

Table 1  Comparison of noise reduction performances of various 
methods

Denoising 
method

Original signal VMD WT EMD VWEE

SNR(dB) 17.6612 18.2363 16.6888 21.3534 55.4574

Figure 12  SNR at different temperatures of (a) Cr25Mo3Ti and (b) Fe
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compared with the EMD method and the WT denoising 
method.

5.4 � Low Voltage Detection Signal Noise Reduction
Figure  13 shows the original signal of the Cr25Mo3Ti 
excited at 250 V and 25 ℃. It can be seen from the dia-
gram that the echo signal with 250 V excitation was 
obvious. As shown in Figure 14, when 35 V low voltage 
excitation was used, the echo signal was almost buried 
in the noise signal and the noise level of the system had 
almost the same amplitude as the effective echoes, so the 
detection capability could not be provided. The echo sig-
nal was obvious after VWEE denoising, which was very 
important for the actual defect detection of the high-
temperature EMAT, both for the detection accuracy and 
the minimum detection capability. The original electro-
magnetic ultrasonic signal and the denoising signal for 35 
V low voltage detection are shown in Figure 14.

Table  2 shows the SNR of the Cr25Mo3Ti speci-
men at different temperatures at low excitation voltage 
before and after VWEE denoising. The SNR of the origi-
nal signal detected from 25 to 700  °C was about 13 dB, 
and the echo signal was buried in the noise signal. The 
SNR after VWEE processing was about 40 dB, with the 
highest value of 49.878 dB. It can be seen from the table 
that the proposed method had better noise reduction 
performance for the Cr25Mo3Ti raw signals at different 
temperatures. Figure  14 shows the original electromag-
netic ultrasonic signal and the VWEE denoising signal 
of Cr25Mo3Ti for 35 V low-voltage detection from 25 to 
700 °C. It can be seen that the original signal was buried 
in the noise signal and it was difficult to read the echo 
signal information, which brought some difficulties to 
detection. The VWEE noise reduction method solved the 

above problems well, made the echo signal obvious, and 
preserved the local characteristics of ultrasonic waves.

In this research, the accuracy of the thickness meas-
urement was taken as a new indicator to verify the per-
formance of VWEE. The ultrasonic pulse emitted by the 
EMAT probe passed through the measured object to 
the material interface and then reflected to the EMAT 
probe. The amplitude of the ultrasonic wave gradually 
decreased. The time difference between the first and sec-
ond peak of the extracted echo signal could be used to 
calculate the material thickness, given in Eq. (10):

where v(T ) is the shear wave sound velocity of the mate-
rials at different temperatures T  , h is the thickness of the 
material, and t1 and t2 are the adjacent echo time.

It can be seen from Eq. (10) that the thickness meas-
urement error is mainly affected by the variation of the 
sound velocity of the material and the time difference 
between different echo packets. Table  3 shows that the 
sound velocity of materials changes with the shifting 
of temperature. In practice, errors caused by the sound 
velocity changing can be eliminated by calibrating the 
sound velocity or referring to the standard sound veloc-
ity library [30]. However, in electromagnetic ultrasonic 
detection under high-temperature environment, due to 
the influence of temperature, the low SNR of the detec-
tion signal often leads to the failure in accurately identi-
fying the wave packet. Therefore, the effectiveness of the 
algorithm can be evaluated by the accuracy of the mate-
rial thickness calculated by the denoised signal.

The actual thickness of the Cr25Mo3Ti specimen at 
room temperature was 60 mm. The electromagnetic 
ultrasonic signals of the Cr25Mo3Ti specimen from 25 to 
700  °C were processed with the VWEE noise reduction 
method in experiments, and the time difference between 
the first and second echo was calculated to obtain the 
thickness of the material. The comparison results are pre-
sented in Table 3, which shows the effective noise reduc-
tion and thickness feature extraction.

6 � Conclusions
The VWEE noise reduction method for low SNR elec-
tromagnetic acoustic detection was proposed and vali-
dated in this research. The following conclusions could 
be drawn:

(1)	 Compared with other methods, VWEE had the 
advantages of the adaptive adjustment of the center 
frequency of each mode, good noise reduction abil-

(10)h = v(T )×
t2 − t1
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Figure 14  35 V excited original electromagnetic ultrasonic signal and VVWE noise reduction signal at (a) 25 °C, (b) 150 °C, (c) 300 °C, (d) 450 °C, (e) 
550 °C, and (f) 700 °C

Table 2  Comparison of the noise reduction performance of Cr25Mo3Ti at different temperatures for low voltage detection

Temperature (℃) 25 150 300 450 550 700

Original signal SNR (dB) 14.8 13.2 14.0 14.5 13.4 13.5

Denoised signal SNR (dB) 49.9 34.6 38.8 43.8 38.3 36.9
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ity, and time-frequency analysis of the echo signal, 
and it could greatly improve the SNR of the EMAT 
test signal.

(2)	 Through the experimental analysis of different 
materials at different temperatures, the VWEE had 
a good noise reduction effect on the EMAT signals 
with low SNR when the temperature changed from 
25  to 700  °C, making the echo information more 
obvious.

(3)	 The VWEE algorithm could extract the echo signal 
from the strong background noise caused by low-
voltage and obtain a smoother envelope and a more 
accurate peak time. This was significant for ultra-
sonic detection based on time-of-flight, such as for 
a thickness gauge or flaw detector.
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