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Abstract 

Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of 
millions of years, which can provide bio-inspiration for robotic fish design. The premise of designing an excellent 
robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy 
in robot domain. In this paper, the research development on fish swimming is presented, aiming to offer a refer-
ence for the later research. First, the research methods including experimental methods and simulation methods are 
detailed. Then the current research directions including fish locomotion mechanism, structure and function research 
and bionic robotic fish are outlined. Fish locomotion mechanism is discussed from three views: macroscopic view to 
find a unified principle, microscopic view to include muscle activity and intermediate view to study the behaviors of 
single fish and fish school. Structure and function research is mainly concentrated from three aspects: fin research, 
lateral line system and body stiffness. Bionic robotic fish research focuses on actuation, materials and motion control. 
The paper concludes with the future trend that curvature control, machine learning and multiple robotic fish system 
will play a more important role in this field. Overall, the intensive and comprehensive research on fish swimming will 
decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.
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1 Introduction
Considering the outstanding swimming performance 
like high speed, high efficiency and low noise, fishes have 
been the excellent reference for autonomous underwa-
ter vehicle (AUV) designers. Bionic robotic fish can be 
applied in many field as an underwater mobile platform, 
such as water quality monitoring and animal tracking 
[1–5].

The fish locomotion research can be tracked back to 
Aristotle. However, until in early 1900s, the qualitative 
research made significant progress under collaborations 
of zoologists and engineers. In this stage, Breder made a 
classification of fish species based on swimming modes, 
later Gray put forward the famous paradox that the drag 
power experienced by a dolphin is larger than the esti-
mated muscle power [6, 7]. The mathematically oriented 
scientists entered this field around 1950. They developed 

relevant theories and made it possible for quantitative 
studies of fish propulsion. Among these scientists, Light-
hill, Taylor and Wu made a great contribution to fish 
hydrodynamics [8]. Compared with the resistive drag 
model developed by Taylor and waving plate theory pro-
posed by Wu, Lighthill’s large-amplitude elongated-body 
theory (LAEBT) is more realistic, intuitive and elegant, 
thus contributing to its wide application. A rigid robotic 
tuna made by Triantafyllou led to a wave of bionic robot 
fish research [9]. Almost at the same time, the develop-
ment of computational fluid dynamics (CFD) made it 
easier for fish swimming simulation. In the year around 
2014, Autonomous soft-bodied robotic fish fabricated by 
Marchese marks the arrival of the era of soft robotic fish 
[10].

Fish locomotion research has increased exponentially 
in recent years. Some influential research teams and their 
main research directions are summarized and listed in 
Table  1. It can be found that the related research takes 
place mainly in the USA, China and Europe. In particu-
lar, MIT and Harvard University are still the sources of 
innovation. China has advantages in motion control and 
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stiffness adjustment mechanism, but needs to take effort 
in biomechanics of fish swimming. Although significant 
progress on understand ding fish locomotion mechanism 
has been made and a large number of robotic fish pro-
totypes aiming to improve locomotor performance has 
been fabricated, there remains a gap between robotic fish 
and real fish to be addressed. Therefore, it is necessary to 
review and summarize the recent research development 
of fish swimming, which can provide a reference for the 
further research.

For convenience of later description, some basic knowl-
edge about fish propulsion is added here. Generally, the 
propulsion modes can be divided into body/caudal fin 
(BCF) propulsion and median/paired fin (MPF) propul-
sion. About 85% of fish employ BCF propulsion for regu-
lar propulsion [11]. These fishes are further subdivided 
into three categories: anguilliform, carangiform, and 
thunniform modes [12].

This paper is organized as follows. Section 2 describes 
the research methods applied in fish locomotion. Sec-
tion  3 presents the research directions at present. Sec-
tion  4 discusses future trends. Finally, conclusions are 
summarized in Section 5.

2  Research Methods
Fish swimming is indeed a combination of active swim-
ming and passive swimming. Internal biomechanics 
dominate the active swimming and external flow field 
influence the passive swimming, resulting in a fluid 
structure coupling (FSI) problem and then determining 
the final swimming performance. The following part will 
be detailed around this center.

2.1  Experiments
The outline of experimental research on fish swimming is 
shown in Figure 1.

The swimming performance: For real fish, the most 
direct method to obtain swimming characteristics 
is video recording. Scientists can get abundant data 
through this observation and know better about the 
tail-beat frequencies, swimming speeds, turn rates, 
swimming motions and so on of different fish species. 
For the purpose of making full use of the kind of data, 
Feeny developed a complex modal analysis technique to 
describe the main modes of lateral displacement, and 
the associated frequency and wavelength [16].

The internal biomechanics: Vivo experiments are 
the most important way to comprehend muscle 
activity and neural activity of fish. By using electro-
myograms (EMGs), Hamlet analyzed the calcium kin-
ematics between muscle activity and neural activity 
[17]. Schwalbe studied the red muscle activity in blue-
gill sunfish [18]. Jayne found the red muscle motor pat-
tern [19]. So far, compared with anguilliform fish, the 
neuro-musculo-mechanical model of carangiform fish 
and thunniform fish is far from perfect owing to its 
complexity.

The external flow field: The techniques of particle image 
velocimetry (PIV), digital particle image velocimetry 
(DPIV) and volumetric imaging system allow the visu-
alization of flow field. F E Fish applied DPIV to get the 
vortex wake shed by fish tail [20]. Lauder used volumet-
ric imaging systems to get 3D instantaneous snapshots of 
wake flow patterns [13]. Thandiackal used a modified PIV 
technique to obtain flow fields around the zebrafish body 
[21].

Nonetheless, quantifying time-varying forces and 
moments along the fish body in an experiment is still a 
challenge at present [22]. In addition, some cases like 
altering individual parameters such as body shape, body 
stiffness cannot be achieved in real fish. To address these 
problems, three alternatives could be considered: foil 

Figure 1 Experimental research of fish swimming (The figures of external flow field and fish swimming are reproduced from Ref. [13]. The figures of 
internal biomechanics and foil research are reproduced from Refs. [14] and [15], respectively)
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research, simulation and robotic fish platform. The latter 
two will be presented in Sections 2.2 and 3.3, respectively.

Foil research: Because of the similarity between fish 
body and airfoil, fish can be simplified to periodically 
heaving and pitching foils in a steady free stream veloc-
ity [23]. Triantafyllou concluded that the Strouhal num-
ber St (St = fA/U, where f is the tail-beat frequency, A 
is the peak-to-peak tail amplitude and U is the mean 
swimming speed) of optimal fish propulsion should be 
in the narrow range 0.2−0.4 [8]. A further experiment 
carried about by Anderson validated the maximum effi-
ciency can be reached in this interval [24]. Lauder used a 
robotic flapping foil platform to explore relevant param-
eter effects [25]. Alben found resonant-like peaks in the 
swimming speed as a function of foil rigidity [15]. Paraz 
showed thrust generation mechanism by a heaving flex-
ible foil [26]. Van Buren analyzed the effect of flow speed 
on oscillating foils [27]. To some extent, foil research can 
be regarded as a pilot study for fish swimming research.

2.2  Simulations
Traditional theories like LAEBT are incompetent in a 
precise analysis. Nowadays, simulation methods are of 
two kinds in general: the dynamic model based on tra-
ditional theory and CFD method. The former focuses on 
the fish body and applies the traditional theory to sim-
plify the forces exerted by external fluids, which is an 

improvement of traditional theories. The latter simplifies 
the internal body dynamics and highlights hydrodynam-
ics, which treats fish swimming as a FSI problem. In view 
of the advantages and disadvantages of dynamic model 
and CFD method (shown in Figure 2), some researchers 
have combined the two methods together to study the 
integrated system with both undulatory body and flexible 
fins systematically [28, 29].

Dynamic model: The premise of applying this method 
is to obtain the approximation of hydrodynamic force 
distribution along fish body. Once hydrodynamic force 
formulas are determined, calculations of dynamic mod-
els can be then carried out. When fish swims, the pres-
sure field leads to a form drag in the forward direction 
and a resistive force in the lateral direction. The reversed 
Kaman vortex street generates a reactive force at tail and 
momentum transfer between fish surface and flow pro-
duces a skin friction. The sum of skin friction and form 
drag is the total drag force acting on the fish body. Ehren-
stein analyzed the skin friction theoretically [33]. Lucas 
estimated the form drag in undulatory fish [34]. Zhang 
studied the total drag and Verma computed the force dis-
tribution on fish surface [35, 36].

There are two major approaches to the dynamic 
model: beam model and multi-body dynamic model. 
Cheng developed the continuous beam model based on 
waving plate theory [37]. Alvarado and Govindarajan 

Figure 2 Simulation methods outline (The top left figure, top middle figure, top right figure and bottom figures are reproduced from Refs. [30], 
[31], [32] and [29], respectively)
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established the Timoshenko beam model based on 
LAEBT [38, 39]. Piñeirua used the Euler–Bernoulli beam 
model to quantify the reactive and resistive contribu-
tions to the thrust [40]. Boyer built the Cosserat beam 
model based on LAEBT [31]. These models have four-
order governing equations, which is hard to solve and 
limit the further application. Under such circumstances, 
a reduced dynamic model is usually used by introducing 
some approximation treatments. As for the multi-body 
dynamic model, Boyer has done much fruitful work in 
this field [41, 42]. Hongzhou Jiang and Zhao developed 
multi-body systems by capitalizing on decoupled natu-
ral orthogonal complement matrices and the Udwadia-
Kalaba theory, respectively [43–45]. Bhalla incorporated 
a forced damped oscillation framework and resistive drag 
theory into a chain-link model to study undulatory pro-
pulsion [46]. Multi-body dynamic models have an active 
role in control and motion planning of robotic fish.

CFD method: Some main CFD methods applied in 
fish locomotion are listed in Table  2. Koumoutsakos, 
Patankar, Battista, Borazjani and Weymouth made plenty 
of achievements in this area. Besides, the immersed 
boundary method (IBM) has become the main stream. 
Conventionally, the body-fitted mesh approach based on 
unstructured grids is used to cope with such FSI prob-
lem, which can achieve a sharp resolution of solid-fluid 
interface. However, it usually requires frequent remesh-
ing, complex mesh techniques and high computational 

cost. IBM, first proposed by Peskin to study the heart 
valves, can overcome these difficulties by using a fixed 
Cartesian grid to discretize fluid domain and describing 
elastic body via a Lagrangian mesh [47]. The drawback 
of this method is that it cannot resolve the solid-fluid 
interface sharply. To address this problem, the adaptive 
mesh refinement (AMR) approach is used to deploy these 
localized regions of high resolution. Different methods 
like Level-set immersed boundary method (LS-IBM) and 
sharp-interface IBM are developed to deal with complex 
immersed surface problems.

3  Research Directions
3.1  Fish Locomotion Mechanism
The outline of research on fish locomotion mechanism is 
shown in Figure 3.

3.1.1  Macroscopic View
Researchers hope to find a unified principle like the 
Strouhal number St to reveal the intrinsic mechanism of 
fish locomotion. Gazzola uncovered a power law Re~Swα 
through existing observation data and numerical meth-
ods, in which Re is Reynolds numbers and Sw is a dimen-
sionless swimming number (see Eqs. (1) and (2)) [82]. α 
equals 4/3 for laminar flows and 1 for turbulent flows.

(1)Re = UL/ν,

Figure 3 Fish locomotion mechanism research (The figures of macroscopic view and microscopic view are produced from Refs. [81] and [82], 
respectively. The figures of intermediate view (up to down) are reproduced from Refs. [83, 84] and [85], respectively)



Page 5 of 21Liu and Jiang  Chinese Journal of Mechanical Engineering          (2022) 35:114  

where U is the swimming speed; L is the fish length; ν is 
the fluid kinematic viscosity; ω is the tail-beat angular 
frequency.

Wiens found that efficient swimming kinematics can 
be characterized by a dimensionless variable (see Eq. (3)) 
[86]. The swimming efficiency peaks at Ψ = 0.87.

where β is the pitch angle.

3.1.2  Microscopic View
Scientists hope to use both muscle activity and neural 
activity to interpret fish locomotion mechanism. Wil-
liams and Tytell analyzed the neuromechanical model 
systematically by considering fully the nonlinear muscles, 
passive viscoelasticity and body stiffness [17, 81, 87, 88]. 
Patel established hydrodynamically resolved computa-
tional neuromechanics by combining the neuromechani-
cal model into the CFD method [89]. Ming and Zhao 
studied muscle activation patterns and muscle-contrac-
tion model of pre-strains, respectively [90, 91]. Tokić 
concluded the relationship between muscle efficiency 
and body size [92].

3.1.3  Intermediate View
Kinematics optimization: In face of massive observation 
data, researchers have limited information to determine 
which body movement is optimal. Numerical optimiza-
tion can be helpful to overcome the above limiting con-
straint once the swimming optimization objectives are 
set. Swimming speed and efficiency are commonly used 
as optimization objectives. Due to the fact that swimming 
efficiency of a self-propelled flexible body is ill-defined, 
there is not a unified measure at present although schol-
ars put forward different swimming efficiency measures 
respectively [93–95]. A further comparative research of 
different efficiency measures should be conducted like 
the work of Eguchi but it is beyond the scope of this 
paper [96].

Kern combined an ‘Evolution Strategy with Adapta-
tion of the Covariance Matrix’ (CMA-ES) algorithm with 
hydrodynamics to get efficient and high-speed swimming 
motions of an anguilliform swimmer [97]; Van Rees uti-
lized the same method to optimize kinematics and body 
shapes for undulatory swimmers [98]. Nevertheless, this 
technique fails to consider the internal dynamics and is 
not suitable for swimming at high Reynolds numbers. 
Eloy Optimized undulatory swimming at high Reynolds 
number based on an improved linear system [99]. Tokić 

(2)Sw = ωAL/ν,

(3)� = 1−
sin(β)− πSt cos(β)

β − πSt
,

obtained optimal shapes and motions of swimming ani-
mals by applying elongated-body theory and evolution-
ary optimization algorithms [84]. The disadvantage of 
this model is that it only function for small-amplitude 
motion. Eloy found two kinds of optimal body shapes by 
using a reduced dynamic model, one with good swim-
ming efficiency and the other with large stride lengths 
[100]. But the latter body shapes do not exist in nature, so 
the effectiveness of the model needs further verification. 
Patankar studied the optimal wave length in BCF swim-
mers and found that a rigid body attached to an undulat-
ing fin leads to an increased efficiency in MPF swimmers 
[101, 102].

On the other hand, optimality and resonance are 
closely inter-related with the hypothesis that fish can use 
resonance to lift swimming efficiency [103–105]. When 
the tail-bear frequency reached around the body’s natural 
frequency, fish consumes a minimal negative work. How-
ever, their relationship and influencing factors should be 
further studied because different scholars yielded incon-
sistent results [106, 107].

Unsteady locomotor behaviors: Except for steady 
swimming, there are also other locomotor behaviors 
for specific purposes: fast start, turning locomotion and 
burst-and-coast swimming [108–112]. C-start is a typi-
cal escape response of prey for predator. Fishes first bend 
their body to C-shape and then recoil their body quickly 
to accelerate. Gazzola identified the C-start pattern which 
minimize the escape distance and Currier designed a 
robotic fish that can generates fast-start accelerations of 
more than 20g by utilizing a dynamic snap-through buck-
ling mechanism [85, 113]. As for turning locomotion, a 
fundamental life function, fish can use it to change swim-
ming direction frequently and flexibly for finding food 
or mates. Thandiackal estimated pressure forces and the 
mechanical work along the body during turning [21]. Xin 
held that fish turn quickly on account of the directional 
control strategy of the swing of the head [114]. Dabiri 
analyzed rotational mechanics of turning maneuvers 
[115]. Feng revealed that thunniform fish have a poorer 
turning ability than anguilliform fish and carangiform fish 
[116]. The burst-and-coast swimming, as an intermittent 
form of locomotion, which can confer energetic benefits, 
has two successive stages: active undulation powered by 
fish muscles followed by a prolonged unpowered gliding. 
Li showed that fish adjust the bursting-to-coasting ratio 
to maintain the demanded speed [109]. Wang indicated 
that wake structures of burst-and-coast swimming are 
obviously different from these of continuous swimming 
[117]. Dan Xia explored the energy-saving advantages 
of this intermittent locomotion [118]. Verma discovered 
a range of intermittent-swimming patterns with multi-
objective optimization [54]. Akoz found the relationship 
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between efficiency and a dimensionless heave ratio in 
intermittent swimming [119].

Fish school: The key to understanding fish-schooling 
behavior lies in making clear the role of fluid medium or 
flow structures [120–123]. A single fish can be a good ana-
lytical entry point. F E Fish held that the active flow con-
trol mechanism of swimming animals is to generate wake 
flow structures actively [20]. Macias concluded that net 
thrust appears in reverse Von Kármán wakes [124]. Khalid 
and Zhang studied the wake structure in different Reyn-
olds numbers, respectively [125, 126]. However, Floryan 
deduced that wake structures are not a reliable method 
to study swimming performance [127]. The role of fluid 
medium for single fish still needs an in-depth study. On 
the other hand, with respect to the hypothesis that fish 
can exploit the neighbor–induced flow to save energy, dif-
ferent researches about fish school have been conducted. 
Li analyzed the interference of vorticity and pressure 
fields of a fish school [128]. If two fish are arranged in an 
in-line configuration, the follower can reduce up to 30% 
energy cost and the leader benefits energetically only for 
small distances by exploiting independent pitch control of 
its caudal fin [83, 129, 130]. Moreover, pitching motions 
can increase the group efficiency while heaving motions 
can lead to a slight increase in the swimming speed [122]. 
In this in-line configuration, Dai discussed the effect of 
the horizontal spacing and vertical spacing between two 
fish [131]; Verma improved coordinated patterns through 
deep reinforcement learning [132]; Li found that the fol-
lower can exhibit ‘vortex phase matching’ strategy [133]. 
In addition, Chao studied the tandem, parallel and stag-
gered arrangements of two fish [134]. Dai, Li and Ashraf 
simulated the tandem, the phalanx, the diamond and the 
rectangle configurations for three fish or four fish, respec-
tively [131, 135–137]. In spite of these achievements, 
scholars still do not reach a unified conclusion on the effi-
ciency of fish school.

3.2  Structure and Function Research
IT has to be admitted that fish are such a fascinating 
aquatic animal that almost every part of the body has 
been studied more or less. For example, the research team 
of Li Wen fabricated an underwater robot with of strong 
adhesion capability by fully understanding the function of 
adhesive discs in remoras [138, 139]. They also studied the 
function of shark skin denticles and designed an artificial 
shark skin that reduces the cost of transport by 5% [140]. 
Weymouth designed a size-changing robotic swimmer by 
using the jet pulsing mechanism in octopuses [141]. Long 
Jr, Chao and Nesteruk analyzed the evolution, asymmetric 
geometry and the effect on efficiency for fish shape pro-
file independently [142–144]. Thus, it is difficult to give an 
overall review in this aspect. Nevertheless, we attempt to 

classify this research into the following three categories 
roughly. Note that structure and function research is defi-
nitely not confined to the following types.

3.2.1  Fin Research
Among fish fins (shown in Figure  4), the most effective 
fin should be the caudal fin, which plays a key role in self-
propelled locomotion. Besides, other soft appendages 
of fish, such as anal fin, dorsal fin and pectoral fins, also 
play an important role in precise fish swimming research, 
although they are usually ignored in past studies for the 
purpose of simplicity. Scholars expect to study the fins 
to improve swimming performance to some extent. The 
main fin research types are summarized and listed in 
Table 3. It shows that researches are more concentrated 
on the computational model and the integral study of 
body-fin system.

3.2.2  Lateral Line System
Biologists have discovered that fish can obtain surround-
ing fluid environment information by lateral line system 
(LLS) to achieve some basic activities including hunting, 
swarming and obstacle avoidance. LLS has two percep-
tual functions: one is the identification of the flow direc-
tion and flow speed by surface nerve mound, and the 
other is pressure gradient sensation by duct nerve mound 
[167]. More details about the flow-sensing mechanism of 
these two mounds can be referred to Ref. [168]. Inspired 
by the nature, different artificial LLS systems that are 
equipped with a pressure sensor array have been devel-
oped to sense the fluid environment (shown in Figure 5). 
Guijie Liu investigated the effect of speed and flow angle 
and studied not only near-field detection but also the 
AUV’s pitch motion parameters perception [169, 170]. 
Although the sensing capability has been achieved, the 
sensitivity and stability of these current systems need to 
be further improved. The sensor configuration, the flow 
field perception algorithm and state recognition are the 
keys to be addressed. Verma studied the optimal spatial 
placement of these sensors and found that a high density 
of sensors should be located in the head and other sen-
sors only need to be distributed along with the body uni-
formly [171]. Guijie Liu used pressure difference matrix 
to identify the flow field, Tang utilized the free surface 
wave equation to percept the vibrating sphere and Mae-
rtens combined potential flow model with a linear analy-
sis of the boundary layer to improve the existing object 
identification algorithm [172–174]. As for state recog-
nition, a back propagation neural network and convo-
lutional neural network are applied to predict the flow 
information quickly [169, 170], respectively. In addition, 
Gao held that vorticity control can be conducted pre-
cisely based on LLS when fish swim in schools [175].
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3.2.3  Body Stiffness
Fish can modulates body stiffness actively to adjust its 
swimming performance through muscles, tendons and 
other biological tissues [179–181]. Through testing bio-
logical structures, Long Jr supported the biological 

hypothesis that fish swimming behaviors are controlled 
by the body stiffness and the stiffness can be altered by 
the vertebral column [182]. Ardian Jusufi built a plat-
form to modulate the whole body stiffness by changing 
the pressure of soft pneumatic actuators (SPA) that are 

Figure 4 Foil research: (a) Different fins of fish [145]; (b) Different shapes of caudal fin [146]; (c) Conformations of pectoral fin at different time [147]; 
(d) 3D model of elongated fin [102]; (e) Finlet motion during the right-to-left stroke [148]; (f) The robotic swimmer with multi-fin [149]

Table 1 Some research teams on fish swimming

Representative Research direction Affiliation Representative Research direction Affiliation

Triantafyllou, MS Comprehensive research MIT, USA Jiang HZ Variable stiffness mecha-
nism

HIT, China

Daniela, Rus Soft robotic fish MIT, USA Chen WS; Xia Dan CFD; Multi-joint propul-
sion

HIT, China

Lauder, GV Comprehensive research Harvard University, USA Li TF Smart materials Zhejiang University, China

Frank E Fish Biomechanics West Chester University, 
USA

Du RX; Li Zheng Motion control; Compliant 
robotic fish

CUHK, China

Patankar, NA CFD Northwestern University, 
USA

Hu HS Multi-joint robotic fish Essex University, UK

AJ. Smits Fish locomotion mecha-
nism

Princeton University, USA GD. Weymouth CFD; Size-changing 
swimmer

Soton,UK

Tyler McMillen Biomechanics; Neural 
control

Princeton University, USA Boyer Dynamic model IMT Atlantique, France

Long, JH Reconfigure; Body stiffness Vassar College, USA Eloy Fish hydrodynamics IRPHE institute, France

Iman Borazjani CFD Texas A&M University, USA Benjamin Thiria CFD; Dynamic model IRBI, France

ED. Tytell Biomechanics; Neural 
control

Tufts University, USA Petros K CFD; Optimization ETH Zurich, Switzerland

Xiaobo Tan Dynamic model MSU, USA EL Daou Compliant robotic fish TalTech, Estonia

Su YM Smart material, CFD HEU, China Ikuo Yamamoto Oscillating fin propulsion Nagasaki University, Japan

Li wen; Wang TM Comprehensive research Beihang University, China DQ Nguyen Compliant robotic fish JAIST, Japan

Pan Guang CFD; Foil research NPU, China Xu JX Montion control NUS, Singapore

Yu JZ; Tan Min Motion control strategy CAS, China ZH Akpolat Multi-joint propulsion University of Firat, Turkey

Xie GM Motion control; CFD Peking University, China Atul Sharma CFD IIT Bombay, India
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attached to a flexible panel [183–185]. These experimen-
tal results shows that there exist complicated interactive 
effects of both the frequency and stiffness on fish swim-
ming performance. Tytell utilized a neuromechanical 
model to examine the role of body stiffness and found 
that fish can tune its body stiffness by appropriately 

timed muscle contractions to achieve maximum speed 
[186]. Furtherly, he put forward a nondimensional effec-
tive flexibility (see Eq. (4)) to study the comprehensive 
effect of scaling flexibility and consequently to estimate 
the relevant resonant frequency.

Table 2 Main CFD methods applied in fish locomotion

Note: HCIB: Hybrid Cartesian/immersed boundary method; LS-IIM: A level-set function based immersed interface method; FuRMoRP: Fully resolved momentum 
redistribution for self-Propulsion algorithm; BDIM: Boundary Data Immersion Method; MPCDM: Multiparticle collision dynamics model.

CFD method Description Representative

Conventional method Finite volume approach for Navier-Stokes equa-
tion; Fluent use-defined function for Newton 
equation; Staggered integration algorithm for 
coupled system

Koumoutsakos [48]; Xia Dan [49−51]; Ningyu Li 
[52, 53]

Remeshed vortex method A penalization technique for the no-slip bound-
ary condition and a projection method for the 
action from fluid to body

Koumoutsakos [54, 55]

MPCDM Only for low Reynolds numbers Reid [56]

LS-IIM Level-set function for solid-fluid interface Thekkethil [57]

FuRMoRP Distributed Lagrange multipliers methods for 
rigid and flexible bodies

Patankar [58]

Delta-plus-SPH Delta-plus-SPH scheme for numerical accuracy 
and efficiency

Sun [59]

IBM

 Pure IBM For idealized object like jellyfish or rigid foil Battista [60−63]; Hemmati [64]

 IBAMR Cartesian grid adaptive mesh refinement (AMR) 
for motion equation discretization

Patankar [32, 65]; Pan Guang [66, 67]

 LS-IBM Level-set function for solid-fluid interface Atul Sharma [68, 69]; Cui Zuo [70−72]

 Sharp interface IBM A discrete-forcing scheme a ‘‘sharp” representa-
tion of the immersed boundary

Dong Haibo [73−75]

 BDIM The field equations of whole domain are com-
bined analytically

Weymouth [76, 77]

 HCIB Hybrid staggered/non-staggered mesh formula-
tion for boundary conditions

Borazjani [78]

Other methods A uniform Cartesian grid for Poisson equation 
and volume penalization method for deform-
able body

Ghaffari [79]; Bergmann [80]

Table 3 Fin research types and corresponding contents

Note: Finlets are some small non-retractable fins and locate on the body margins between the caudal fins and the dorsal/anal fins.

Fin research types Research contents

Caudal fins Computational model [150, 151]; Stiffness [50, 145, 152]; Leading edge [153]; Trailing-edge [154]; 
Sweep angle [155]; Motion Planning [156]; Effects of St and Re [157]; Optimal kinematics [158]

Non-caudal fins

 Pectoral fins Computational model at high Re and fin kinematics [147]; A structure design of pectoral fins [159, 
160]

 Median fins Linear Acceleration [161]; elongated fin and dorsal fins [102]

 Finlets The wake structures and the flow around the finlet [162]; The hydrodynamic performance and vortex 
dynamics [148]

 Comprehensive research Biorobotic models of multi-fin systems [163]; The propulsive forces produced by multiple fins [149]; 
Numerical approach [164]

Interactions Body-fin and fin-fin interactions [165]; The structure relationships between body and caudal fin [166]; 
Interactions between caudal fin and pectoral fin [146]
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where ρ is the fluid density, h is the average height of fish, 
l is the length, f is the tail-beat frequency and EI is the 
bending modulus.

Floryan obtained the optimal flexibility distribution 
along with the body of simmers through a linear inviscid 
model [187]. They discovered that significant thrust gain 
can be made and a resonance can be triggered by tuning 
the stiffness. The stiffness of their model are character-
ized by Eq. (5). Using this scaling stiffness, Luo studied 
the effect of stiffness of both fish body and caudal fin 
[188].

where E is the Young’s modulus and U is the swimming 
speed.

The biological principle and the effect of stiffness on 
swimming performance have been described above. 
Then, the stiffness adjustment mechanisms are intro-
duced (see Figure 6). Xu Dong proposed a variable stiff-
ness mechanism based on the negative work. He adopted 
a fuzzy controller to mimic this mechanism and describe 

(4)� =

(

ρhl2f 2

EI

)1/2

,

(5)S =
Eh3

ρU2l3
,

the relationship between stiffness and negative work 
[189]. The result shows that energy consumption during 
fish swimming is reduced and the propulsion efficiency 
is improved. Hongzhou Jiang applied a variant of redun-
dant planar rotational parallel mechanisms—a variable 
stiffness decoupled mechanism based on mechanically 
adjustable compliance and controllable equilibrium posi-
tion actuator (MACCEPA) to develop a robotic fish with 
large stiffness variation [190, 191]. Moreover, he fabri-
cated a tensegrity robotic fish, which is composed of a 
series of rigid segments connected with tensegrity joints. 
The stiffness of each segment of which can be altered in 
theory [192].

3.3  Bionic Robotic Fish
Some bionic robotic fishes for specific research pur-
poses have been mentioned above. Generally, robotic fish 
development has experienced three periods: rigid robotic 
fish, compliant robotic fish and soft robotic fish. This sec-
tion deals mainly with the actuation, material and motion 
control of robotic fish.

3.3.1  Actuations and Materials
Almost all the robotic fish can be tracked back to Robo-
Tuna designed by Triantafyllou. The development of rigid 

Figure 5 Different artificial LLS systems: (a) The carrier model equipped with artificial LLS system [172]; (b) The fish-shaped prototype inspired by 
artificial LLS system [173]; (c) Artificial LLS system with rigid body [176]; (d) Robotic fish with artificial LLS system [177]; (e) A diagram showing the 
fish-shaped model with artificial LLS system [178]
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robotic fish is shown in Table 4 and Figure 7. The main 
driving mode includes motor drive and hydraulic drive. 
The motor can be further divided into three types: steer-
ing engine, servomotor, DC (Direct current) motor. The 
advantages of motor drive are that it can achieve precise 

predefined motion and high-frequency oscillation and 
can provide high power, while this kind of drive has large 
noise, high power consumption and complex structure. 
Hydraulic drive can bring about large driving torque, but 
the shortcoming is that it needs a complete hydraulic 

Figure 6 Body stiffness research: (a) The biological principle test [182]; (b) The whole body stiffness research [184]; (c) The optimal distributed 
stiffness for maximum efficiency [187]; (d) The tensegrity robotic fish structure [192]; (e) The MACCEPA structure [190]

Table 4 A summary of rigid robotic fish

Year Name Speed (BL/s) f (Hz) Joints Actuators Turning radius 
(BL)

Turning 
rate 
((°)/s)

1994 Robotuna 0.65 − 6 DC servomotors − −
1999 VCUUV 0.61 1 4 Hydraulic piston 2 75

2000 PF-300 0.59 2.3 2 DC servomotors 0.8 36

2001 PF-700 1 10 2 DC motor+ DC servomotor − −
2005 SPC-II 1.2 2.5 2 DC servomotors − 30

2006 G9 1.96 − 3 DC servomotors 0.3 120

2010 SPC-III 1.17 2.5 2 DC servomotors 0.75 −
2014 AmphiBot III 0.67 − 8 DC motors 0.28 −
2014 CAS robotic fish 1.04 − 4 DC servomotors 0.23 670

2015 iSplash-II 11.6 20 4 Electric motor − −
2016 PKU robotic fish 2.6 12 2 DC motor − −
2020 Tunabot 4.64 8 4 DC motor − −
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system. Both of the above drive modes need large space. 
To mimic the body wave of real fish, rigid robotic fish 
always is composed of rigid links and rotation joints. Sin-
gle link is the simplest design that uses a single motor to 
drive the caudal fin. By contrast, multiple links can imi-
tate the fish skeletons better and gives the robotic fish a 
higher degree of freedom. However, this multiple-link 
structure is difficult to control. As for the material of 
rigid robotic fish, it does not have high elastic deforma-
tion capability due to high stiffness. There are three types 
of material usually used: metals like aluminum and steel, 
plastic like polystyrene, PVC and plexiglass and compos-
ite like carbon fiber.

Compliant robotic fish is a transitional stage between 
rigid robotic fish and soft robotic fish, which is typical 
featured by soft materials and traditional drive mode. 
Therefore, deformation can happen passively. Soft mate-
rials have a large elastic deformation and can recover to 
original shape. Rubber like silicone and latex and metals 
like spring steel and cables are usually applied in compli-
ant robotic fish. On the other hand, soft materials can 
be used to protect actuators and waterproof. There exist 
three kinds of research types on compliant robotic fish 
(see Figure  8): (1) robotic fish composed of rigid body 

and compliant tail [202–205]; (2) robotic fish composed 
of rigid tail and compliant body [206]; (3) a whole com-
pliant device [38, 207]. Zhong designed a novel robotic 
fish with wire-driven active body and compliant tail, 
which outperforms many rigid robotic fish [202]. The 
maximum swimming speed is up to 2.15 BL/s, the high-
est Froude efficiency to 97% and the average turning rate 
to 63°/s. Interestingly, some researchers found resonance 
phenomenon in swimming speed, thrust and efficiency 
[38, 203, 206].

Soft robotic fish with a continuously deformable body 
can exhibit continuum motions that conventional rigid-
bodied robotic fish cannot achieve, which has become 
a new hotspot. The soft materials have been introduced 
above. The biggest difference from the above two kinds of 
robotic fish is the soft actuation. Soft actuators applied in 
robotic fish are summarized and listed in Table 5 and Fig-
ure 9. All the actuators except FEA belong to functional 
material actuations. FEA plays a key role in soft robot-
ics field and was used to robotic fish first by Marchese 
[10]. The high complexity and nonlinearity of FEA make 
the dynamics modeling challenging. Zhou established a 
theoretical model to predict the bending angle of a bi-
directionally FEA [208]. Tao Wang developed a universal 

Figure 7 The rigid robotic fish motioned in Table 4: (a) Robotuna made by MIT [193]; (b) VCUUV made by Draper Laboratory [194]; (c) PF-300 and 
(d) PF-700 are designed by NMRI (The Japanese National Maritime Research Institute); (e) SPC-II made by Beihang University [195]; (f) G9 made by 
Essex University [196]; (g) SPC-III made by Beihang University [197]; (h) AmphiBot III designed by IMT Atlantique [30]; (i) CAS robotic fish designed 
by Chinese Academy of Sciences [198]; (j) iSplash-II designed by Essex University [199]; (k) PKU robotic fish designed by Peking University [200]; (l) 
Tunabot designed by Harvard University [201]
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model for FEA based on constant curvature assumption 
and Lagrangian approach and further proposed a non-
linear robust control model based on system identifica-
tion [209, 210]. Optimizations aiming to improve the 
FEA performance have also been made. Hu evaluated 
the effect of structure parameters such as input pressure, 
the wall thickness and the gap between chambers to opti-
mize the performance of FEA [211]. Yang adopted a new 
form of free bottom of FEA and thus improved the bend-
ing capacity of FEA [212]. Li proposed a fiber-reinforced 
FEA that can bear high pressure up to 400 kPa [213]. 
Consequently, some FEA variations are applied in robotic 
fishes. Feng used a fiber-reinforced FEA array to gener-
ate body wave of anguilliform fish [214]. Frame manufac-
tured jellyfish robot with eight FEAs extending radially 
from its center [215]. Joshi replaced FEAs of jellyfish 
robot with soft pneumatic composite actuators which 
consists of FEAs and thin steel springs [216].

3.3.2  Motion Control
Motion control can be roughly divided into two classes: 
open-loop control for body wave generation and close-
loop control based on dynamic models. Open-loop con-
trol always fits the body wave by designing predefined 
multiple-link kinematics or using functional material 
actuations. In another way, central pattern generator 
(CPG) method can generate periodic signals for joints 
directly without sensory feedback. Inspired by the bio-
logical neural network, CPGs are analogue to an array of 
coupled neurons that produce oscillatory signals [226]. 
Although it lacks enough theoretical basis, CPG control 
has been widely used in bionic engineering [227–231]. 
Due to no feedback in open-loop control, it cannot reach 
the desired motion compared with close-loop control. 
As for close-loop control, speed control, depth control, 
attitude control, path following and target tracking are 
emphatically introduced below (see Table 6).

Figure 8 Some compliant robotic fishes: (a), (b), (c), (d) Rigid body and compliant fish; (e) Compliant body and rigid body; (f), (g) Two whole 
compliant devices ((a), (b), (c), (d), (e), (f) and (g) are reproduced from Refs. [202], [205], [204], [203], [206], [38], [207], respectively)

Table 5 A summary of soft actuations used in robotic fish

Note: (1) As a reference, the performance metric of mammalian muscle is listed here. Stress ≈ 0.1−0.35 MPa, strain ≈ 20%−40%, efficiency ≈ 40%, work density ≈ 
8−40 J/kg. (2) The relevant data in Table 5 are gathered from Refs. [223, 224].

Actuator Description Mechanism

FEA (Fluidic Elastomer Actuators) Pressure input leads to bending constrained by an inextensible layer;
Stress < 5 MPa, strain < 15%, typical frequency ≈ 2 Hz, efficiency < 20%, work density ≈ 0.5 J/
kg

See Figure 10

DEA (Dielectric Elastomer Actuators) Maxwell stress results in compression in one side and extension in the other;
Stress < 7.2 MPa, strain < 380% (area), typical frequency ≈ 1−10 Hz, efficiency < 90%, work 
density < 3.5 J/kg

SMA (shape memory alloy) Deformed at low temperatures and recovered to original shape at high temperatures; long 
time delays;
Stress > 300 MPa, strain > 4%, efficiency > 3.8%

IPMC (ionic polymer-metal composite) When an electric field is applied, swelling on the cathode side and shrinking on the anode side 
cause bending;
Stress < 5 MPa, typical frequency ≈ 5 Hz, efficiency < 3%, work density < 4 J/kg
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Figure 9 Some typical soft robotic fish: (a), (b) Actuated by FEA; (c), (d) Actuated by DEA; (e), (f) Driven by IPMC; (g), (h) Driven by SMA ((a)−(h) are 
reproduced from Refs. [3], [185], [217], [218], [219], [220], [221] and [222], respectively)

Figure 10 Soft actuator mechanisms (The figures of FEA mechanism, SMA mechanism, DEA mechanism and IPMC mechanism are reproduced 
from Refs. [10, 222, 225] and [219] respectively)
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Speed control: Precise speed control of robotic fish is 
essential for motion control and motion planning. Xu 
JX’s team of National University of Singapore has done 
much work on the speed control and has proposed sev-
eral control methods, including SMC, data-driven model 
and iterative learning method.

Depth control: Vertical movement is also important 
besides horizontal motion, which can help fulfill many 
tasks, such as seabed mapping, ocean exploration. As 
shown in Table 6, Zhang adopted fuzzy logic method to 
control depth by changing the angle of pectoral fin [232]. 
Shen applied fuzzy PID control to change the center of 
gravity for depth control [233]. In the work of Junzhi Yu, 
SMC and fuzzy control are combined to regulate the 
depth of robotic dolphin [234]. It can be seen that fuzzy 
control is often used in depth control.

Attitude control: Attitude includes three aspects: roll, 
pitch and yaw. Most relative studies researches focus 
on the single attitude control. Yuan and Cao designed 
SMO and self-tuning fuzzy strategy for heading control 
of robotic dolphin, respectively [235, 236]. Meurer used 
nonlinear PD controller for yaw control of compliant 
robotic fish [237]. Tian developed an ADRC strategy to 
track the target pose [238].

Path tracking: According to different targets, path 
tracking includes two aspects: way-point tracking, path 

following. Junzhi Yu’s team of Chinese Academy of Sci-
ences has made many efforts in this field. As for way-
point tracking, Yu successfully applied point-to-point 
control algorithm in four-link robotic fish [239]. Kop-
man implemented PID control for a two-link robotic fish 
[204]. As for path following, Yu’s team developed a series 
of methods successively, including BS technique, LOS 
method, ADRC and fuzzy-linear model.

Target tracking: Target tracking faces the challenges of 
complex fluid environments such as weak light, limited 
field of view and obstacles. Hu gave a decentralized con-
trol methods for two vision-based robotic fish to fulfill 
the tasks of target tracking and collision avoidance [240]. 
Chen used BS technique to develop a target tracking con-
trol framework and Yu designed a target tracking control 
scheme that combines sliding-mode fuzzy control and 
multiple-stage directional control [241, 242]

4  Research Trend
4.1  Curvature Control
Theory Basis: Past studies always attempted to develop a 
comprehensive swimming model including muscle activ-
ity, passive viscoelasticity and fluid mechanics. Although 
much progress on muscle model has been made by 
EMGs, the neuro-musculo-mechanical model, owing 
to its complexity, is still far from perfect especially for 

Table 6 Overview of close-loop motion control

Note: LOS means line-of-sight; PID means proportional integral derivative; ADRC means active disturbance rejection control; SMC is sliding mode control; TSOV-NMPC 
means two-stage orientation-velocity nonlinear model predictive controller; PD means proportional derivative; SMO means sliding mode observer; AoA means angle 
of attack; BS means backstepping

Control objective Representative Control description Control objective Representative Control description

Speed control Verma [243] SMC based on data-driven model Attitude control J Yuan [235] SMO-based heading control

X F Li [244] Iterative learning control method Path tracking J Pan [247];
S Du [248]

Target point is first obtained by LOS 
method and is then transformed to 
an offset rotation angle by fuzzy-
linear model

T Yuan [245] A Kalman filter based force-feed-
back control

J Z Yu [239] A point-to-point control algorithm 
and real-time visual feedback

Depth control F Shen [233] Fuzzy PID control Kopman [204] System input is the servomotor 
angle and a PID algorithm is imple-
mented

P F Zhang [246] TSOV-NMPC algorithm R Wang [249] ADRC strategy is used to reduce the 
system uncertainty

J Z Yu [234] Sliding-mode fuzzy control R Wang [250] BS technique and LOS method are 
integrated

L Zhang [232] Fuzzy logic control Target tracking Y H Hu [240] Proportional feedback control

Attitude control R Y Tian [238] ADRC strategy J Z Yu [242] A sliding-mode fuzzy control and a 
multiple-stage directional control 
are integrated

C Meurer [237] Nonlinear PD controller S L Chen [241] BS-based hybrid target tracking 
control

Z Q Cao [236] Self-tuning fuzzy strategy Leaping control J Z Yu [251] AoA-based speed control and the 
hybrid closed-loop control are 
integrated
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carangiform fish and thunniform fish. McMillen held 
that neuromuscular systems produce an intrinsic shape 
determined by its preferred curvature [14]. Therefore, the 
internal moment can be described in Eq. (6) based on lin-
ear constitutive relation. The hypothesis indeed treat fish 
swimming as a beam actuated by a preferred curvature. 
It is remarked that the curvature presented in swimming 
process does not equal the preferred curvature, which 
reflects the active/passive swimming mechanism.

where κ is preferred curvature that is the function of time 
t and arc-length along fish body centerline s. φ is the local 
incident angle between tangent of centerline and the 
horizontal axis. The subscript denotes the derivative with 
respect to s or/and t. δ is viscoelastic damping coefficient.

The equations of fish locomotion can be thus obtained 
based on the conservation of linear and angular momen-
tum. The question then arises naturally: which preferred 
curvature is appropriate? The problem can be solved by 
optimization once the optimization objectives are set. 
The preferred curvature distribution along fish body can 
be determined finally.

Experimental Analysis: For simplicity, the preferred 
curvature distribution can be treated as approximate 
piecewise constant curvature (APCC). Cheng devel-
oped an APCC equivalent model: APCC 2L-5R model 
(L means links and R means rotation joints), which can 
be used in rigid robotic fish design [252]. In this way, the 
kinematics of rigid links is equivalent to the continuum 
robot. On the other hand, for soft robotic fish, we can 
utilize the idea of Luo Ming as a reference [253]. He first 
developed a dynamic model for soft robots actuated by 
FEA. The model contains soft bending segments and 
short rigid links. Second, he designed a variation of FEA, 
tested the relationship between curvature and pressure 
input and improved dynamic response. At last, he used a 
modular approach to fabricate each segment of soft robot 
and adopted open-loop control to achieve the desired 
motion. This framework has been applied in a pressure-
operated soft robotic snake successfully. Yet, when this 
framework is ported to soft robotic fish, the slow dynamic 
response highly up to 1−2 s consequently induces the 
low tail-beat frequency. It can be solved by changing the 
structure parameter to improve the dynamic response of 
FEA. Moreover, the close-loop control should be consid-
ered if precise motion is required.

4.2  Machine Learning
At present, machine learning (ML) is deeply chang-
ing every aspect of scientific and technical field and fish 
swimming research is no exception. The advantage of ML 
is to address problems for which the optimal theoretical 

(6)M = EI(ϕs − κ)+ δϕst ,

solution method is unknown. Even though ML is compu-
tationally costly, especially when it involves FSI models, 
it develops rapidly in the aspects of fluid mechanics and 
robots. The methods used in ML include deep learning 
(DL), reinforcement learning (RL) and deep reinforce-
ment learning (DRL). In the aspect of fluid mechanics, 
ML can extract information from a large amount of data 
and reveal the underlying mechanism of fluid mechan-
ics. Petros’s team of ETH Zurich used RL to study fish 
school problem in 2014 and gave an overview of research 
development and promising opportunities of ML for 
fluid mechanics [254, 255]. Raissi studied the applica-
tion of DL in vortex induced vibrations [256]. Rabault 
studied the application of DRL in active flow control and 
shape optimization and Xu utilized DRL to find out the 
optimal control strategy for rotating cylinders [257, 258]. 
Jiao trained fish to learn how to swim in potential flow 
based on RL [259]. Still, the research on fish locomotion 
mechanism based on ML is not near enough. There are 
vast prospects in waiting for us to explore. As for robots, 
Liu discussed the application of RL in robotic fish [260]. 
Thuruthel introduced ML-based motion control for soft 
robot and Cho applied RL to generate a CPG-based 
motion control of a robotic salamander [261, 262]. For 
soft robotic fish, ML can improve the survival possibili-
ties by adapting to complex underwater environment. 
In addition, robotic fish can learn various motion skills 
autonomously through ML.

4.3  Multiple Robotic Fish System
The coordinated planning and control of multiple robotic 
fish system has not been fully addressed in the past stud-
ies and still is a challenging task at present [226]. Com-
pared with single robotic fish, multiple robotic fish 
system can deal with complex underwater tasks and save 
work time. There are two difficulties to overcome: inter-
action mechanism of real fish school and cooperative 
communication of multiple robotic fish system. The for-
mer can give insights into the active flow control mech-
anism to save energy and the latter can help to share 
collected information. Artificial intelligence (AI) will play 
a more important role in these two areas in the future. 
Both attitude adjustment in fish school and swarm intel-
ligence strategy in coordinated control require the out-
standing learning ability of AI.

5  Conclusions
Researchers hope to design an AUV with excellent capa-
bilities like high speed, high efficiency and low noise 
through studying fish swimming mechanism. Thus, 
the relevant research can be generally divided into two 
classes: fish locomotion mechanism from a science per-
spective and bionic robotic fish from an engineering 
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perspective. Although much progress has been made, 
the gap between bionic robotic fish and real fish is still 
apparent. In this article, the research development on 
fish swimming is presented. Research methods, current 
research direction and future research trend are detailed. 
The internal biomechanics of fish is investigated by Vivo 
experiments and is treated as a beam or multi-body 
system in the mathematical model. The external fluid 
information is obtained by PIV or DPIV experiments 
and is simulated by CFD. The comprehensive study of 
fish swimming can be simplified to foil research that can 
provide qualitative analysis. For single fish, certainly, 
unsteady locomotor behaviors reflecting maneuver-
ability such as fast start, turning locomotion and burst-
and-coast swimming and steady swimming performance 
reflecting speed and efficiency are the focus of research. 
While the fish school research put emphasis on the 
active flow control and swarm energy saving. On the 
other hand, Robotic fish development has experienced 
three periods: rigid robotic fish, compliant robotic fish 
and soft robotic fish. Hence, the actuations and materi-
als have been greatly changed. As for the motion control 
of bionic fish, the overview of the speed control, depth 
control, attitude control, path following and target track-
ing are introduced. In the future, AI will help research-
ers to understand fish swimming mechanism and design 
intelligent motion control strategies. With the develop-
ment of soft robot on material and basic theory, curva-
ture control in bionic robotic fish based on the preferred 
curvature hypothesis can be realized. We hope that 
this review can help scholars to understand the recent 
research development of fish swimming and provide a 
reference for the further research.
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