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Abstract 

Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challeng-
ing problem for mobile robots inspecting hazardous gases. Consideration of personal space is important, especially in 
a relatively narrow man–machine dynamic environments such as warehouses and laboratories. In this study, human 
and robot behaviors in man–machine environments are analyzed, and a man–machine social force model is estab-
lished to study the robot obstacle avoidance speed. Four typical man–machine behavior patterns are investigated to 
design the robot behavior strategy. Based on the social force model and man–machine behavior patterns, the fuzzy-
PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile 
robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to 
determine the optimal robot speed for obstacle avoidance. The simulation analysis results show that compared with 
the traditional PID control method, the proposed controller has a position error of less than 0.098 m, an angle error 
of less than 0.088 rad, a smaller steady-state error, and a shorter convergence time. The crossing and encountering 
pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance 
from humans while performing trajectory tracking. This research proposes a combination autonomous behavior strat-
egy for mobile robots inspecting hazardous gases, ensuring that the robot maintains the optimal speed to achieve 
dynamic obstacle avoidance, reducing human anxiety and increasing comfort in a relatively narrow man–machine 
environment.
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1  Introduction
In chemical plants, laboratories, warehouses, and other 
indoor environments, inspection spaces are relatively 
narrow. A gas leak can cause human, equipment, and 
property losses. Use of mobile robots for autonomous 
detection of dangerous gases in indoor environments 
allows digitization of the production process, reduces 
accident risk, protects human life and property, and 
has broad application prospects. The detection range 

of a fixed detector is limited; a handheld detector can-
not ensure inspector safety. Mobile robots have become 
a worldwide research focus [1–3]. Using mobile robots 
instead of handheld sensors to detect hazardous gases 
can reduce operator risk and ensure efficient real-time 
gas leak detection in unmanned conditions. Typical 
mobile robots for hazardous-gas inspection are large, 
and untested areas are likely. Robots generally adjust 
their direction and speed for dynamic obstacle avoid-
ance, which is challenging in narrow spaces shared with 
humans. The robots may cause human discomfort and 
affect work efficiency.

Dynamic obstacle avoidance technology is essential 
for inspection robots [4, 5]. The standard algorithms 
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of traditional obstacle avoidance include the artificial 
potential field (APF) [6], essential visibility graph (EVG) 
[7], vector field histogram (VFH) [8], and fuzzy logic 
control [9–11] algorithms. In the 1980s, Khatib [12] pro-
posed an artificial potential-field method based on a vir-
tual force field that generated a relatively smooth path 
with good obstacle avoidance. However, when gravita-
tion and repulsion are equal, it falls into an optimal local 
solution and produces a concussion route [13]. The vec-
tor field histogram proposed by Janet et  al. [14] in the 
1990s required large data storage and sensors to collect 
data in advance. The reliability of obstacle avoidance 
is strongly affected by sensor performance [15, 16]. To 
avoid the original defects of the artificial potential field 
method, Ulrich et al. [17] proposed the VFH vector field 
histogram method and verified that a specific direction 
could successfully guide the robot in avoiding the local 
optimal solution in the pure local obstacle avoidance 
algorithm. However, their application was restricted [18]. 
Fuzzy logic can achieve dynamic obstacle avoidance in 
an unstructured environment [19, 20] without construc-
tion of complex motion models and environmental data 
models, effectively reducing the pressure of data calcu-
lation, and improving obstacle avoidance efficiency [21]. 
Thus, this study used fuzzy logic to achieve dynamic 
obstacle avoidance. The main advantage of the proposed 
design is that it allows flexible movements and compre-
hensive detection in a relatively narrow man–machine 
space. Based on the social force model and typical man–
machine behavior patterns, a combination autonomous 
behavior strategy is proposed that includes a fuzzy-PID 
trajectory tracking method and a robot autonomous 
obstacle-avoidance strategy to choose the optimal robot 
speed to ensure sufficient human space. A control system 
is designed to improve controller information transmis-
sion accuracy and timeliness.

In the 1970s, Saridis [22] divided the control system 
into organization, coordination, and execution layers, 
based on decreasing control accuracy [23]. With the 
rapid development of sensor systems and widespread 
application in robots, a classic three-tier structure 
of sense-panning-action (SPA) layered architecture 
has emerged [24, 25]. However, completing each task 
requires hierarchical calculation and transmission, 
resulting in control delays, with a lack of flexibility 
and real-time operation. The inclusive behavior-based 
architecture avoids long-link information transmission 
and improves the rapid response functions of the robot. 
The shortcomings include insensitivity to information 
accuracy, high error rate, and lack of initiative in tar-
get tasks due to a lack of task guidance and coordinator 
plans. This study uses a hybrid architecture in the con-
trol system design that can fully reflect the advantages 

of the two classic architectures and effectively solve sin-
gle-structure control limitations.

The research includes five main steps: (1) introducing 
the robot mechanical structure and composition; (2) 
establishing a man–machine social force model study-
ing four typical man–machine behavior patterns to 
help the robot achieve dynamic obstacle avoidance, and 
explaining the robot combination autonomous behav-
ior strategy; (3) designing the robot control system; (4) 
performing simulations and experiments; (5) analyz-
ing simulation and experimental results and drawing 
conclusions.

2 � Overall Design of Mobile Inspection Robot
The design of the mobile inspection robot is based 
on the robot behavior strategy. The robot is primar-
ily composed of a chassis, shell, two driving wheels, 
two driven wheels, and other electronic components. 
Figure  1 shows a schematic of the overall robot struc-
ture. The driving wheels use a hub motor and are fixed 
to the chassis by mounting seats, bolts, and nuts. The 
two front driving wheels control forward and back-
ward movement using a differential drive for steering. 
The rear wheel forms a universal wheel through the 
wheel shaft to complete passive movement. According 
to the least friction principle, installing a server helps 
the rear wheel turn through a gear to reduce pure slid-
ing between the rear wheels and the ground. A group 
of short and long support columns were installed above 
the chassis to mount the outer shell of the robot. The 
hub motor driver, controller, battery, and other com-
ponents were installed in the middle of the shell and 
chassis.

A grayscale sensor was installed below the chassis. 
Four ultrasonic sensors were placed in the robot, two 
in front of the shell, and one on each side of the shell. A 
PTZ double-head camera was attached to the robot by 
a gimbal support and gimbal shell.

Figure 1  Schematic of robot structure
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3 � Kinematics Analysis of Robot
3.1 � Forward Kinematics Model of Robot
To establish a robot motion model according to the appli-
cation environment and robot mechanical structure, the 
following assumptions are made for the robot system: 
(1) the robot chassis is a rigid structure; the planes of the 
four wheels are perpendicular to the ground; the center 
of mass and centroid of each wheel overlap and are in the 
same plane; (2) there is only relative rotation between the 
two driving wheels and the chassis, between the driven 
wheel shaft and the chassis, and between the driven 
wheel and driven wheel shaft; (3) each wheel has only 
one contact point with the ground, and the slight wheel 
and tire deformation are ignored; (4) wheel skidding on 
the ground is ignored.

The global reference coordinate system {XOY} and 
robot reference coordinate system {xoy} are defined, 
where a vector ξ = [x, y, θ]T represents the robot pose 
and considers the robot forward direction as the forward 
direction; o is at the midpoint of the two wheels, and x 
and y are the displacement of the robot on the X and Y 
axes, respectively; θ is the angle difference between the 
global reference coordinate system and the robot refer-
ence coordinate system. The rotation speed of the left 
driving wheels is ω1; the rotation speed of the right driv-
ing wheels is ω2, and the radius of the driving wheels is r. 
L denotes the vertical distance between the center of the 
drive wheel and the midpoint M of the shaft center line. 
The distance from the center of the two front wheels to 
the center of mass is L1. The distance between the rear 
wheel axis and the center of mass is L2. L3 is the distance 
from the rear axle to the rotating shaft. The rotation 
angle of the rear wheel is β. The speed at the midpoint of 
the two front wheels is v. Figure  2 shows the kinematic 
model of the robot.

Velocities v and ω of the body can be calculated as [26]:

(1a)v(t) =
v1+v2

2
,

In the global reference coordinate system {XOY}, the 
M-point motion equation is

Eq. (3) presents each integral:

When w1 = w2, the driving wheel rotation speed is the 
same and the robot moves in a straight line. When w1 ≠ 
w2, the robot turns according to the differential speed. 
When w1 > w2, the robot turns left; when w1 < w2, the 
robot turns right. When w1 = −w2, the robot rotates in 
place; the robot turning radius is zero. As the rotation 
speeds of the left and right driving wheels can be set, the 
robot turning radius is calculated as

In Eq. (5), for this robot, the rotation angle β of the rear 
wheel is related to the rotation speed ratio of the left and 
right wheels, expressed as

The rotation angle β is

where r = 0.200  m, L = 0.438  m, L1 = 0.214  m, L2 = 
0.172  m, and L3 = 0.046  m. Accordingly, a greater rear 
wheel turning angle produces a smaller turning radius.

The robot-driven wheel is not a direct universal wheel 
but is used as a whole through the combination of two 
universal wheels. To reduce friction, two gears were 
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Figure 2  Kinematics model of robot
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installed with a server to assist in the rotation of the rear 
wheel. When the robot turns 90°, using the equations we 
can calculate that the rear wheel rotation angle is approx-
imately 20°. The rotation speed ratio of the left and right 
wheels is approximately 1.44, and the minimum turning 
radius R is approximately 1.17 m, as shown in Figure 3.

3.2 � Dynamic Obstacle Avoidance Strategy
When the robot performs inspection tasks in a narrow 
indoor space, it should maintain a reasonable safety dis-
tance to ensure it does not contact obstacles, especially 
humans, and prevent human anxiety. Thus, when for-
mulating robot inspection rules, humans are considered 
as interfering objects in the shared space. As the robot 
operates in relatively narrow man–machine environ-
ments, it may not have sufficient space to plan a new tra-
jectory. Adjusting the moving direction is not the best 
way to avoid obstacles. To improve safety, a behavior 
strategy should be developed based on human and robot 
force model patterns to obtain appropriate speed con-
trol parameters from social force models and fuzzy rules 
appropriate for the environment.

3.2.1 � Social Force Model
Generally, each person and robot has local motion tar-
gets, individual motion speeds, and accelerations in the 
man–machine behavior model. Three force items should 
be considered in the modeling process [27]: (1) the accel-
eration term is the trend to reach the desired speed, Facc; 
(2) the force term reflects the boundary condition, main-
taining a certain distance during human–robot inter-
action, Fint; (3) the attractive force term is the target to 
human/robot, Fatt.

Assuming that these three components simultaneously 
affect human decision-making, as shown in Figure  4, 
according to the traditional force superposition principle, 
we obtain the total effect force Ftotal:

The social force model can predict local human motion 
trends and guide robot behavior strategies to ensure a 
communication space between robots and humans. The 
social space is calculated as

where Rθ, avoid and Rr, avoid are the robot avoidance dis-
tance and human avoidance distance, respectively; m 
represents the robot mass (34 kg); v(t) is the robot mov-
ing speed.

In 1966, American anthropologist Dr. Edward Hall 
reported that humans need space to prevent interference 
and danger, especially in social situations; when space 
invasion occurs, it causes human discomfort, affecting 
work efficiency and emotional health. Interpersonal dis-
tance was divided into four types in the study [28]. (1) 
Intimate Distance: Within this range, the stimulus inten-
sity is extremely high, divided into 0–0.15  m and 0.15–
0.45  m ranges. (2) Personal Distance: This distance is 
suitable for harmonious acquaintances. Strangers enter-
ing this space constitute an invasion of space that causes 
discomfort, divided into 0.45–0.75  m and 0.75–1.20  m. 
(3) Social Distance: A commonly used distance in gen-
eral working conditions that is convenient for work tasks, 
divided into 1.20–2.10  m and 2.10–3.60  m. (4) Public 
Distance: This space is often used in formal conditions, 
divided into 3.60–7.50 m and greater than 7.50 m. As the 
robot is in a narrow indoor environment, a human avoid-
ance range of 1.50–3.0 m is considered to ensure human 
comfort.

3.2.2 � Behavioral Pattern Analysis
According to the man–machine relative distance, rela-
tive motion direction, relative position, and relative 
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Figure 3  Schematic of robot turning motion Figure 4  Social force model
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speed factors in a shared space, empirical and heuristic 
methods are used to categorize the human (or interfer-
ing body) behavior into four typical types [29]: crossing 
pattern, encountering pattern, leading pattern, and con-
fronting pattern. Based on these patterns, the robot fol-
lows the corresponding rules to ensure safety and does 
not invade sensitive space.

(1) Crossing behavior: In man–machine interaction, 
crossing behavior usually appears at an intersection of 
passage, an interfering body that crosses in front of the 
robot, as shown in Figure  5a. (2) Encountering behav-
ior: In this passage, the robot and the interfering body 
meet face-to-face; their motion directions do not affect 
each other but may enter sensitive areas on both sides, 
as shown in Figure 5b. (3) Leading behavior: The interfer-
ing body appears directly in front of the robot and both 
sides move in the same direction, as shown in Figure 5c. 
(4) Confronting behavior: The interfering body appears 
directly in front of the robot, but the two sides move in 
opposite directions, as shown in Figure 5d.

To maintain the robot motion range without invad-
ing human sensitive areas, the four behavior rules are 
designed for no collision and no interference.

3.2.3 � Fuzzy Controller Design
The fuzzy logic control method is used to formulate 
behavioral movement rules for interfering objects and 
robot-specific strategies based on analysis of fundamen-
tal human behavior patterns. Three steps are required for 
the robot to have decision-making capabilities similar to 
those of humans through speed adjustment: fuzzification 
of input and output, fuzzy reasoning, and defuzzification 
of output variables.

(1)	 Fuzzification of input and output
	 The input variables include the distance between 

man and machine Rr, the linear velocity of inter-
fering objects Vj, and the pattern of interference 
behavior Bj. The output is the linear velocity incre-
ment of the robot ΔVrj. The hub encoder can lin-
early adjust the linear velocity of the robot. Except 
for behavioral patterns, these variables are continu-
ous as the domains of the input/output variables are 
continuous. The membership functions can be lin-
earized using Gaussian functions.

	 When the man–machine distance is less than the 
maximum avoidance distance of the robot, a control 
signal is generated. The minimum cannot be less 
than the distance to the sensitive human area. The 
man–machine distance Rr domain is divided into 
{DS, DE, DN, DF}, where DS represents sensitive 
human distance, DE represents 75% avoidance dis-
tance, DN represents 90% avoidance distance, and 
DF represents maximum robot avoidance distance. 
The membership function is shown in Figure  6a. 
The interfering object linear velocity Vj domain is 
divided into {VS, VF}, representing "fast" and "slow,” 
respectively. The division was determined according 
to average human walking speed. The membership 
function is shown in Figure  6b. The behavior pat-
terns Bj are divided into {BS, BE, BL, BF}, represent-
ing crossing behavior, encountering behavior, lead-
ing behavior, and confronting behavior, respectively. 
The membership function is shown in Figure  6c. 
The robot linear velocity increment ΔVrj is divided 
into {VD, VZ, VI, VR, VT}, which represents a stop 
in place. The inspection speeds of the original set 
were 25%, 50%, 75%, and 100%. The membership 
function is shown in Figure 6d.

(2)	 Fuzzy reasoning
	 Natural language based on expert experience and 

knowledge establish a fuzzy rule library for the four 
behavior rule patterns. Fuzzy reasoning uses the 
input language as the premise and searches for a 
rule-based optimal conclusion. Table  1 shows the 
formulated fuzzy control rules. The input variables 

(a) Crossing behavior 

(b) Encountering behavior 

(c) Leading behavior 

(d) Confronting behavior 

Figure 5  Four man–machine behavior patterns
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Rr, Vj, and Bj are connected with the logical symbol 
’and’.

(3)	 Defuzzification of output variables
	 The result obtained by fuzzy control rules is a fuzzy 

quantity; however, in actual fuzzy control, the 
fuzzy quantity cannot directly control the actuator 
and must be converted into a precise quantity. The 
Mandani reasoning method was used to obtain the 
mean value using Eq. (9):

where ΔVro is the calculated robot linear velocity 
increment, which is corresponding to the j element; 

(9)

v̂(t) = (1−�Vro)v(t)

=

(

1−
�n

j=1
µ(�Vrj)�Vrj

�n
j=1

µ(�Vrj)

)

v(t),

the fuzzy controller output robot moving speed is 
v̂(t).

3.3 � Combination Autonomous Behavior Strategy
From the analysis and calculation, the fuzzy-PID control-
ler is designed to achieve autonomous robot movement 
with a fixed trajectory. We assume that the vector ξr=[xr, yr, 
θr]T is the target position vector of the robot and the vec-
tor ξe=[xe, ye, θe]T is the robot position error vector; [v w] 
denotes the velocity vector of the robot; [vr, ωr] and [vk, ωk] 
represent the target and auxiliary velocity vectors, respec-
tively; [ve, ωe] is the robot velocity error. The robot coordi-
nate error is represented as

The differential form of the position error is used to 
obtain the robot velocity error and angular velocity error.

To reduce system interference, the auxiliary kinematics 
controller is designed as

where a1, a2, and a3 are auxiliary control parameters set 
as a1 = − 1, a2 = − 1.2, a3 = − 0.5. By obtaining the linear 
and angular velocities of the robot, the angular speeds 
of the left and right driving wheels ω1 and ω2 can be 
determined.
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(a) Domain of Rr                   (b) Domain of Vj

(c) Domain of Bj (d) Domain of ΔVrj

Figure 6  Membership function graphs of input/output variables

Table 1  Fuzzy control rules

Man–machine distance
Rr (m)

Interfering object 
linear velocity
Vj (m/s)

Interference behavior pattern
Bj

Robot linear velocity increment
ΔVrj (m/s)

DS DE DN DF VS VF BS BE BL BF VD VZ VI VR VT

1 √ √ √ √

2 √ √ √ √

3 √ √ √ √

4 √ √ √ √

5 √ √ √ √

6 √ √ √ √

7 √ √ √ √

8 √ √ √ √
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To minimize error, the angular speed error of the driv-
ing wheel ωe = e(t). Using a PID controller, the controller 
output u(t) can be calculated [30]:

The fuzzy-PID controller determines the fuzzy relation-
ship between parameters kp, ki, and kd, which represent 
the proportional, integral, and differential coefficients of 
the PID controller, respectively, the deviation e, and devi-
ation change rate ec. The three parameters were adjusted 
according to the fuzzy control rules through continu-
ous detection of e and ec. The parameters were modi-
fied online so that the controlled object exhibited good 
dynamic and static performance.

where kp’, ki’, and kd’ are the initial values of the PID 
parameters; kpx, kix, and kdx are the fuzzy reasoning out-
put values. The three PID control parameter values were 
automatically adjusted according to the movement of the 
robot.

MATLAB/Simulink software was used to design the 
controller; e, ec, and output kpx, kix, kdx were divided 
into{NB, NM, NS, ZO, PS, PM, PB}, representing nega-
tive large, negative medium, negative small, zero, positive 
small, positive medium, and positive large, respectively. 
The domain was [−3, 3]; the membership function of e, 
ec was ’gaussmf ’; the membership function of kpx, kix, kdx 
was ’trimf ’. Forty-nine fuzzy control rules were presented.

The method of ’and’ is ’min’; the method of ’or’ is ’max’; 
the method of ’implication’ is ’min’; the method of ’aggre-
gation’ is max, and the method of ’defuzzification’ is ’cen-
troid’. Opening the ’surface’, the calculated values of kpx, 
kix, and kdx are shown in Figure 7.

The robot is a nonlinear system. To overcome the 
uncertainty of the system and improve the convergence 
response speed, the gain of e and ec were fixed as ke = 
0.9, kec = 0.1; the defuzzification factors were set as k1 = 
3, k2 = 1, and k3 = 1. The initial values of kp, ki, and kd, 
were kp’ = 9, ki’ = 2, and kd’ = 3, as shown in Figure 8a. 
The fuzzy-PID controller is shown in Figure 8b.

The robot combination autonomous behavior strategy 
controller is illustrated in Figure 9. The position vector ξr 

(13)











ω1 = (v +
1

2
ωL)/r,

ω2 = (v −
1

2
ωL)/r.

(14)u(t) = kpe(t)+ ki

∫

e(t)dt + kd
de(t)

dt
.

(15)















kp = k
′

p + kpx,

ki = k
′

i + kix,

kd = k
′

d + kdx,

is input to the fuzzy-PID controller. The robot trajectory 
tracking speed [v, w] can be obtained using the auxiliary 
kinematics controller. The social force model fuzzy con-
troller adjusts the robot behavior strategy to control the 
robot moving speed using the man–machine position 
data from the sensors, achieving robot dynamic obstacle 
avoidance.

4 � Robot Control System Structure
This section introduces the robot control system within 
the overall structure, the kinematic model, and moving 
strategies.

(a) Membership function of kpx (b) Membership function of kix

(c) Membership function of kdx

Figure 7  Output surfaces of kpx, kix, and kdx

(a) Fuzzy controller of PID gain 

(b) PID controller design 

Figure 8  Design of fuzzy-PID controller
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The robot uses a hybrid architecture in the control 
system design, a hierarchical architecture as the basic 
framework [31], and subsystems with inclusive charac-
teristics to improve system responsiveness and produce 
overall coordination and decision-making abilities from 
an organic fusion that effectively overcomes single-
structure control limitations.

As shown in Figure  10, the robot control system 
contains perception, decision-making, and executive 
layers.

The Raspberry Pi and PC represent the client and 
server, respectively, in the robot decision-making layer. 
The Raspberry Pi can send and receive control commands 
and display them on the terminal interface through Wi-Fi 
established by a router. After the camera image data are 
collected, the image data must be hardcoded in H.264 
and compressed into an H.264-format video image. The 
output video image frame rate should be greater than 
ten frames per second. Thus, the UDP protocol was used 
to improve video transmission efficiency and the video 
delay in the transport layer. After receiving the informa-
tion, the decision-making layer processes it and sends it 
to the executive layer.

The STM32F103 microcontroller unit (MCU) runs the 
embedded system, sends the motion information includ-
ing rotation speed and displacement, and uploads the 
sensing-layer information to the upper computer through 

serial communication. After receiving the corresponding 
instructions, the hub motor and PTZ are driven to com-
plete the action. The MCU can obtain and analyze ultra-
sonic sensor distance information to prevent collision 
accidents using an internal obstacle avoidance strategy.

5 � Simulations and Experiments
5.1 � Dynamic Obstacle Avoidance Behavior Strategy
For robot dynamic obstacle avoidance and trajectory 
tracking, the robot speed and movement angle, and the 
distance between human and robot must be obtained 
by the robot sensors. The sensor accuracy experiment is 
shown in Figure 11.

The sampling time interval was t = 0.1 s; the speed of 
the driving wheel was 0.5  m/s; the robot angle was 90°, 
and the distance between the ultrasonic sensor and the 
wall was 1  m. The experimental results are shown in 
Table  2. The speed error of the hub motor is fed back 
through its current loop. The hub motor error, angle 
accuracy, and ultrasonic sensor error were ± 0.002 m/s, 
± 0.002 rad, and ± 0.03 m, respectively.

The simulation analysis mainly considers the two 
main behavior patterns of human (interfering object) 

Figure 9  Combination autonomous behavior strategy design

Figure 10  Structure of robot control system

Figure 11  Sensor accuracy experiment platform

Table 2  Sensor error measurement results (partial)

Critical point Hub motor (m/s) Angle (rad) Ultra (m)

1 0.500 1.02 1.573

2 0.498 0.98 1.572

3 0.502 1.02 1.573

4 0.499 1.00 1.573

5 0.502 0.98 1.572
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movement, crossing pattern and encountering pattern. 
The relative positions of the human and robot and the 
starting and ending movement points are randomly set 
according to the behavior pattern. The trajectory of the 
hollow circle represents the human walking route; the 
trajectory of the solid square represents the trajectory 
of the robot. The robot motion trajectory is preset as a 
straight line. Human path points were sampled at inter-
vals of t = 1 s. The experimental platform included a PC 
and a robot; the robot provided real-time measurement 
data to the PC, as shown in Figure 12.

5.1.1 � Crossing Pattern Simulation and Experiment
Simulation experiment 1 considered typical crossing 
behavior at an intersection. With a sampling time inter-
val t = 0.1 s, the human moved along the set movement 
route at an initial speed of 0.5 m/s; the robot performed 
a constant speed inspection at an initial speed of 0.5 m/s. 
The initial distance between the robot and the human 
was approximately 5.5 m. At t = 4.6 s, the robot detected 
an interfering object entering the maximum avoidance 
distance area from the left side, as shown in the dot-
ted line graph. At t = 8.6  s, the robot entered a sensi-
tive human area and stopped, indicated in the solid line 
graph.

In the crossing behavior pattern experiment, the initial 
distance between the experimenter and the robot was 
approximately 5.5 m, as shown in Figure 13. The experi-
menter crossed from the front left to the front right of 
the robot and maintained an average speed of approxi-
mately 0.5 m/s. At approximately 5 s, the robot began to 
decelerate until approximately 9 s, when it waited. When 
a person passes and leaves, the ultrasonic sensors detect 
the distance between the person and the robot. When the 
distance was greater than the sensitive human distance, 
the robot accelerated. When the robot entered the inter-
ference area with the front wall, it detected a dangerous 
distance and stopped.

The experimenter crossed from the robot front left to 
front right and maintained an average speed of approxi-
mately 0.5 m/s, as shown in Figure 14. At approximately 
t = 5  s, the robot began to decelerate. When a person 
passed and left, the ultrasonic sensors detected the dis-
tance between the person and the robot. When the dis-
tance was greater than the sensitive human distance, the 
robot accelerated. When the robot entered the interfer-
ence area with the front wall at approximately t = 9 s, it 
began to decelerate until it stopped.

5.1.2 � Encountering Pattern Simulation and Experiment
Simulation experiment 2 considered the typical encoun-
tering behavior pattern in the aisle. We set the sampling 
time interval as t = 0.1  s, the human movement speed 
as 0.5  m/s, and the robot movement speed as 0.5  m/s. 
At t = 1.6 s, the robot detected an obstacle entering the 
maximum avoidance area from its moving direction and 
decelerated, as shown in Figure 15. At t = 3.4 s, the robot 
line velocity dropped to zero.

In the encountering behavior pattern experiment, the 
initial distance between the experimenter and robot 

Figure 12  Experimental robot platform

Figure 13  Crossing behavior pattern simulation

Figure 14  Crossing behavior pattern experiment: a approaching 
robot, b robot decelerates to avoid, c human departure
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was approximately 5.5  m. The experimenter maintained 
a speed of 0.5 m/s to approach the robot from its front. 
In Figure 16, the experimenter and robot become closer. 
At approximately 2  s, the robot began to decelerate; at 
approximately 4 s, the robot reached its lowest speed to 
wait for the person to pass. When the measured value 
was greater than the sensitive human distance, the robot 
speed gradually increased to the initial speed. In the 
two experiments, the robot smoothly achieved obstacle 
avoidance.

Crossing and encountering interference behavior 
experiments verified that the dynamic avoidance strat-
egy using the proposed fuzzy-PID controller allowed the 
robot to produce matching avoidance behaviors accord-
ing to the obstacle avoidance strategy in two interference 
conditions, successfully avoiding collisions with humans.

The experimental results show that the robot obstacle 
avoidance strategy is to react in time, and the small-scale 
time delay of the speed change does not affect obstacle 
avoidance. When the robot moves in a man–machine 
environment, it always maintains a safe distance from 
humans to reduce anxiety.

5.2 � Combination Autonomous Behavior Strategy
To verify the effectiveness of the proposed strategy, we 
set up the robot in an indoor man–machine environ-
ment. Based on the experimental accuracy of the sen-
sor, the sampling time interval in the trajectory tracking 
experiment was set as t = 0.01 s, and the accuracy of the 
position error and angle error reached three decimal 
places. A circular trajectory with a radius of approxi-
mately 3.5 m was used as the target trajectory to monitor 
robot movement. The starting point of the circle was set 

as (0, 0, 0); the robot was placed at this position. The ini-
tial position error and angle error were zero, as shown in 
Figure 17. Real-time robot position and the marking tra-
jectory of robot movement were measured and recorded 
using a grayscale sensor. The actual movement trajectory 
of the robot was obtained after analysis and processing 
on the PC.

The target trajectory and actual robot trajectory in the 
tracking experiment are shown in Figure  18. The robot 
can move flexibly. The relative positions of the corre-
sponding points in the target trajectory were calculated 
from the eight light states of the grayscale sensor at each 
point. The actual trajectory of the robot was drawn; the 
coordinate position of the robot and the position and 
angle errors of the critical point were recorded.

As the robot moved along the target trajectory, it 
detected that a pedestrian had entered the avoidance 
distance, assessed as the encountering pattern, and 
decelerated on the predetermined trajectory, as shown 
in Figure  19. As the pedestrian gradually moved away 
from the robot to the avoidance distance, the robot 
gradually returned to its initial speed and continued to 
follow the target trajectory.

Figure 15  Encountering behavior pattern simulation

Figure 16  Encountering behavior pattern experiment: a 
approaching robot, b robot decelerates to avoid, c human departure

Figure 17  Target trajectory of robot
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Table  3 shows the robot motion data and position 
errors.

Using the fuzzy-PID controller, the maximum posi-
tion error was less than 0.098 m; the position error con-
verged at t =18.25 s, as shown in Figure 20a. With the 
PID controller, the maximum position error was 0.1 m 
until the position error converged at t = 25.76  s. The 
maximum angle error was less than 0.088 rad with the 
fuzzy-PID controller; the angle error converged at t = 
20.05  s. With the PID controller, the maximum angle 
error was 0.175 rad until the position error converged 
at t = 20.52 s, as shown in Figure 20b.

The experimental results show that the combination 
behavior strategy proposed in this study can protect 
humans and robots and ensure that human space is not 
invaded. The robot runs smoothly, and can complete 

indoor inspection of target tracking, with a position error 
reaching 0.098 m and an angle error reaching 0.088 rad. 
Compared with the PID controller, the proposed fuzzy-
PID controller is faster, more accurate, and more stable.

6 � Conclusions

(1)	 A mobile robot that can perform inspection tasks in 
a narrow man–machine environment was designed. 
This study built a robot kinematic model and estab-
lished a hybrid control system architecture to pro-
duce smooth motion in a narrow space, with overall 
coordination and decision-making ability.

(2)	 A robot dynamic behavior obstacle avoidance 
strategy was proposed based on fuzzy logic. In 
the narrow man–machine dynamic environment, 
the team analyzed human and robot behavior pat-
terns. A social force model for humans and robots 
was established; four typical man–machine behav-
ior patterns were introduced to build fuzzy con-
trol rules. The crossing and encountering behavior 
pattern simulation and experimental results were 
similar, indicating that the proposed robot behavior 
strategy maintains proper distance from humans 
during dynamic obstacle avoidance, and verifying 
its effectiveness.

(3)	 Combining the social force model and man–
machine behavior patterns, the trajectory track-
ing fuzzy-PID control method and combination 
autonomous behavior strategy were proposed for a 
mobile robot to inspect hazardous gases. The simu-

Figure 18  Target and actual robot trajectories

Figure 19  Robot trajectory tracking experiment

Table 3  Target and actual positions of critical points

Critical point xr (m) yr (m) x (m) y (m) Position
error (m)

Angle error (rad)

1 0 0 0 0 0 0

2 3.431 3.438 3.434 3.451 0.014 0.007

3 0.004 6.862 0.004 6.861 0.001 0

4 − 3.431 3.427 − 3.431 − 3.427 0 0

5 0.002 0 -0.002 0 0 0

 (a) Position error            (b) Angle error 

Figure 20  Robot trajectory tracking convergence errors
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lation analysis shows that the proposed behavior 
strategy has a position error less than 0.098 m and 
an angle error less than 0.088 rad. The proposed 
convergence method is faster and more steady than 
with the PID controller. The trajectory tracking 
simulation and experimental results were similar, 
indicating that the proposed behavior strategy can 
help robots and humans maintain a safe distance 
from each other to reduce anxiety.
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