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Abstract 

With the continuous development of science and technology, electronic devices have begun to enter all aspects of 
human life, becoming increasingly closely related to human life. Users have higher quality requirements for electronic 
devices. Electronic device testing has gradually become an irreplaceable engineering process in modern manufac-
turing enterprises to guarantee the quality of products while preventing inferior products from entering the market. 
Considering the large output of electronic devices, improving the testing efficiency while reducing the testing cost 
has become an urgent problem to be solved. This study investigates the electronic device testing machine alloca-
tion problem (EDTMAP), aiming to improve the production of electronic devices and reduce the scheduling distance 
among testing machines through reasonable machine allocation. First, a mathematical model was formulated for the 
EDTMAP to maximize both production and the scheduling distance among testing machines. Second, we developed 
a discrete multi-objective artificial bee colony (DMOABC) algorithm to solve EDTMAP. A crossover operator and local 
search operator were designed to improve the exploration and exploitation of the algorithm, respectively. Numeri-
cal experiments were conducted to evaluate the performance of the proposed algorithm. The experimental results 
demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm 
II (NSGA-II) and strength Pareto evolutionary algorithm 2 (SPEA2). Finally, the mathematical model and DMOABC algo-
rithm were applied to a real-world factory that tests radio-frequency modules. The results verify that our method can 
significantly improve production and reduce the scheduling distance among testing machines.
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1  Introduction
The production process of an electronic device is as fol-
lows: (1) purchase raw materials and reshape the com-
ponents, (2) install electronic components on a printed 
circuit board using surface-mounted technology, (3) 
assemble the printed circuit board into parts of the elec-
tronic device, (4) assemble the pieces into a complete 
electronic device, and (5) test the finished electronic 
device. As the last step in electronic device production, 
testing determines any quality defects and prevents 

inferior products from entering the market [1]. A rea-
sonable allocation of testing machines can help improve 
production efficiency by reducing the blocking time 
associated with electronic devices at each testing stage. 
Consequently, the electronic device testing machine 
allocation problem (EDTMAP) plays a crucial role in 
improving the production efficiency of enterprises, 
thereby increasing their profits.

Existing studies on electronic device testing have 
focused more on developing new testing technologies 
and systems to improve productivity. However, few stud-
ies have considered the reasonable allocation of test-
ing machines to improve productivity. Singh et  al. [2] 
proposed a classification-based scanning technique for 
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testing electronic devices. The technology efficiently 
tested the electromagnetic compatibility of an electronic 
device by only testing its regions of interest. Orlov and 
Vasilchenko [3] presented an intelligent measurement 
system to test electronic devices. The system efficiently 
tested the electronic device by measuring its surface tem-
perature. Stoyanov et al. [4] developed a smart qualifica-
tion testing approach for electronic devices. The method 
combines data analytics and data-driven predictive mod-
eling to reduce the testing time and cost. Gallo et al. [5] 
designed an automated testing system for use in elec-
tronic devices. Metrology was introduced into the system 
to improve the testing efficiency. Most research improves 
productivity by developing new technologies, and this 
study focuses on the reasonable allocation of testing 
machines to improve productivity.

In addition, most studies on the machine allocation 
problem (MAP) consider only one evaluation index, e.g., 
productivity or cost, but ignore the combined effects 
of both. Even when considering multiple indices, most 
studies solve them using a linear weighted sum method 
instead of obtaining the Pareto optimal solution set. 
Thouin and Coates [6] formulated a mathematical model 
of the MAP to minimize scheduling costs and devel-
oped a heuristic to solve the model. Jaramillo and McK-
endall [7] presented a mathematical model of the MAP 
intended to minimize material handling costs and used a 
tabu search heuristic and a memetic algorithm to solve 
this model. Poon et al. [8] presented a genetic algorithm 
for the MAP to minimize the waiting time of production 
workstations and improve productivity. Chehade et al. [9] 
proposed a multi-objective algorithm based on the non-
dominated sorting genetic algorithm II (NSGA-II) with a 
local search to solve the MAP by considering productiv-
ity and cost. Mohtashami [10] proposed a multi-objective 
mathematical model and hybrid genetic algorithm for 
the MAP. The objectives were to maximize the produc-
tion rate and minimize the total cost. Based on the above 
analysis, balancing the productivity and cost of the MAP 
is the focus of and difficulty associated with this study. 
Because a shorter scheduling distance among machines 
leads to a lower cost for machine allocation, this study 
considers the two objectives of maximizing produc-
tion and the inverse of the scheduling distance among 
machines.

Recently, an increasing number of researchers have 
used meta-heuristic algorithms to solve multi-objective 
optimization problems (MOPs) [11]. The most com-
monly used meta-heuristics are NSGA-II [12] and the 
strength Pareto evolutionary algorithm  2 (SPEA2) [13]. 
Recently, many researchers have focused on the artificial 
bee colony (ABC) algorithm because of its specific global 
search ability and suitable local searchability. Karaboga 

[14] first proposed the original ABC algorithm in 2005. 
Karaboga and Basturk [15] compared ABC with other 
classic algorithms to verify its performance. Hedayatza-
deh et al. [16] proposed a multi-objective ABC (MOABC) 
algorithm. Akbari et  al. [17] verified its superiority by 
comparing it with other traditional algorithms. Currently, 
the ABC algorithm is used in a variety of fields, such as 
shop scheduling [18–20], network planning [21–24], 
nurse rostering [25–27], and economic scheduling [28–
30]. Because MOABC has been successfully applied in 
the above fields, this paper proposes a discrete MOABC 
algorithm to solve the EDTMAP.

The main contributions of this study are as follows. (1) 
We designed an electronic device testing machine alloca-
tion model. This can be easily extended to other types of 
machine allocation models. (2) We developed a discrete 
multi-objective artificial bee colony (DMOABC) algo-
rithm to solve the EDTMAP. Three key operators, i.e., 
feasible solution generator (FSG), local search operator 
(LSO), and crossover operator (XO), were designed for 
use in the algorithm. FSG is used to generate a feasible 
machine allocation scheme, and LSO and XO are used 
to balance both local and global searches. (3) We dem-
onstrate that DMOABC is robust and highly competitive 
with NSGA-II and SPEA2 for solving the EDTMAP by 
analyzing and comparing the results of numerical experi-
ments. (4) We applied DMOABC to real-world elec-
tronic device testing workshops. The results show that 
our method can guide actual electronic device testing 
machine allocation.

The remainder of this paper is organized as follows. 
Section 2 introduces the problem description and math-
ematical model of the EDTMAP. Section  3 presents a 
discrete multi-objective optimization algorithm based 
on ABC for the EDTMAP. Section  4 presents numeri-
cal experiments to verify the superiority of our proposed 
algorithm. In Sect. 5, we describe the application of the 
proposed DMOABC to a real-world testing workstation. 
Finally, Sect.  6 presents the conclusions and highlights 
future research directions.

2 � Problem Formulation
2.1 � Problem Description
In this study, the EDTMAP was investigated based on 
a real-world electronic device production factory with 
multiple testing workshops. Each workshop tests differ-
ent types of products to determine their reliability. Each 
product is sequentially tested at various stages, and the 
testing times at the different stages are different. Mul-
tiple machines can be used to test the products at the 
same stage. Compatibility and quantity constraints exist 
for machine interfaces at each stage. If the interfaces 
of the machine match a stage and satisfy the quantity 
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requirement for the stage, the machine can be scheduled 
for the stage. The total number of products tested at each 
stage per week is calculated based on the testing time 
and the number of machines at each stage. The minimum 
amount of products tested in the series of stages is the 
weekly production. In addition, all the testing machines 
are initially distributed in different workshops. These 
machines therefore must be scheduled for multiple work-
shops. We attempt to keep the total scheduling distance 
among the machines as short as possible, while keeping 
the total production of the factory as large as possible.

Briefly, the EDTMAP can be described as follows: there 
are m testing workshops in a factory, and each workshop 
produces n types of product. In addition, there are dif-
ferent types of testing machines in the factory that are 
initially distributed in various workshops. The number of 
machines of the same type in each workshop differs. Cur-
rently, it is necessary to schedule machines for different 
stages in multiple workshops to test products to maxi-
mize weekly production. Meanwhile, the total scheduling 
distance among the machines with respect to multiple 
workshops should be as short as possible. The main char-
acteristic of the EDTMAP is that multiple machines that 

meet the adaptability constraint of interfaces can be allo-
cated at the same stage.

There are some necessary assumptions for the pro-
posed mathematical model of the EDTMAP:

1)	 The same type of product follows the same testing 
route.

2)	 There can be more than one machine at a stage, and 
there is no capacity limit.

3)	 Interruption and preemption are not allowed.
4)	 Each machine can be scheduled for only one stage 

every week and is not allowed to be re-mobilized in 
that week.

5)	 Each machine can only test one product at a time.

2.2 � Mathematical Modeling of the EDTMAP
The notations and decision variables for the mathemati-
cal model of the EDTMAP are given as Table 1.

Based on the above notations, a multi-objective math-
ematical model of the EDTMAP is designed to simulta-
neously maximize the total production and the inverse 

Table 1  Notations and decision variables for the mathematical model of the EDTMAP

Variable Notation

W Set of workshops

i (i’) Index of the workshop, i ∈ W

Ji Set of the types of products tested in the ith workshop

j Index of the product type, j ∈ Ji

Si, j Set of stages where the jth type of product in the ith workshop is tested

k Index of the stage, k ∈ Si, j

T Set of the types of testing machines

p Index of the type of testing machines, p ∈ T

Rp, i’ Set of the pth type of testing machines in the i’th workshop

q Index of the pth type of testing machines in the i’th workshop, q ∈ Rp, i’

Dmax The maximum scheduling distance among all machines

wi, j Production weight of the jth type of product in the ith workshop

ti, j, k Time of the jth type of product in the ith workshop tested at the kth stage

Pi, j, k Production of the jth type of product in the ith workshop tested by one machine at the kth stage

Ii, j, k Interface type constraint for machines testing the jth type of product in the ith workshop at the kth stage

I’p Interface type of the pth type of testing machines

Ni, j, k Interface quantity requirement for machines testing the jth type of product in the ith workshop at the kth stage

N’p Interface number of the pth type of testing machines

di, i’ Distance from the ith workshop to the i’th workshop

tminute Minutes that the testing machine runs per hour

thour Hours that the testing machine runs per day

tday Days that the testing machine runs per week

η Production efficiency of testing machines

Xi,j,k,p,i’,q Decision variable. If the qth of the pth type of testing machines in the i’th workshop is scheduled to the kth 
stage where the jth type of product in the ith workshop tested Xi,j,k,p,i’,q = 1; otherwise, Xi,j,k,p,i’,q = 0
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of the total scheduling distance among machines. The 
mathematical model is as follows:

where f1 denotes the weighted sum of production in all 
workshops and f2 represents the inverse of the total 
scheduling distance among all testing machines. The con-
straints of this problem are as follows:

Constraint (3) computes the weekly production of the 
testing machine at each stage. Constraint (4) calcu-
lates the maximum total scheduling distance among all 
machines. Constraint (5) ensures that only machines 
with interfaces that match a stage can be scheduled for 
the stage. Constraint (6) ensures that only machines that 
meet the interface quantity requirement of a stage can be 
scheduled for the stage. Constraint (7) guarantees that 
any machine can be scheduled for only one stage every 
week at most. Constraint (8) describes the range of the 
decision variables.

2.3 � Mathematical Modeling of the EDTMAP
Based on the above model, there are some differences 
between the EDTMAP and the traditional MAP. The 
classic MAP only considers machine scheduling between 
multiple production lines in a single workshop, but not 

(1)

max f1 =
�

i∈I

�

j∈Ji

wij · min
k∈Si,j







�

p∈T

�

i′∈I

�

q∈Rp,i′

Pi,j,k · xi,j,k ,p,i′ ,q







,

(2)

max f2 = −

∑

i∈I

∑

j∈Ji

∑

k∈Si,j

∑

p∈T

∑

i′∈I

∑

q∈Rp,i′

di,i′ · xi,j,k ,p,i′,q ,

(3)Pi,j,k =

tminus

ti,j,k
· thour · tday · η,

(4)

Dmax =

∑

p∈T

∑

i′∈I

∑

q∈Rp,i′

di,i′ , i = s : arg max
s∈I

ds,i′ ,

(5)
(Ii,j,k − I ′p) · xi,j,k ,p,i′,q = 0,
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that among various workshops. Conversely, the EDT-
MAP considers machine scheduling between numerous 
production lines as well as between multiple workshops. 
Scheduling machines for a different workshop may 
increase productivity, but the scheduling distance among 
machines will increase accordingly, resulting in increased 
machine damage probability and cost. Balancing these 
two objectives is the focus of our algorithm design, as 
introduced in the next section.

In addition, the traditional MAP does not need to con-
sider the interface compatibility of machines. However, 
the EDTMAP should consider compatibility and quan-
tity constraints for machine interfaces at each stage. 
The machine can be scheduled for the stage only if the 
interfaces of the machine match the stage and satisfy the 
quantity requirement for the stage.

Table  2a–c describes an example of the EDTMAP. 
Table  2a describes the two testing workshops in a fac-
tory. Each workshop tests two types of products, and 
each type of product is tested sequentially in two stages. 
The testing times and required interface quantities of the 
products at each stage are listed in Table  2a. Table  2b 
lists the types and number of machines in each work-
shop. The matching stage and interface quantity of each 
type of machine are listed in Table  2b. Table  2c shows 
the distance between workshops. If a machine is not in 
use, then the scheduling distance is 0. Handling distances 
exist in the same workshop. Therefore, if the initial work-
shop of a machine is the same as the workshop where it 
is scheduled, then the scheduling distance is 0.5. Table 3 
shows the allocation scheme for the testing machines in 
this example. “M3W1 (2)” denotes that two third-type 
machines (M3) are initially in the first workshop (W1). In 
the allocation scheme, the two third-type machines are 
scheduled to test product A2T2R at Stage 2 in W1. “Null” 
denotes that no machine is scheduled for the stage.

3 � Proposed DMOABC for EDTMAP
3.1 � Main Framework of the Proposed Algorithm
In this paper, a DMOABC algorithm to obtain non-
dominated solutions for balancing the production and 
scheduling distances is presented. Considering the 
compatibility and quantity constraints for the inter-
faces of machines, we designed three operators, i.e., 
FSG, LSO, and XO, to ensure the feasibility of solutions 
and cause the population to evolve in the correct direc-
tion. FSG is designed to ensure that the initial solution 
is a feasible machine-allocation scheme. LSO is used 
as a solution to execute a local search. This effectively 
improves the local search ability of the DMOABC 
algorithm. A slight change in the solutions helps the 
algorithm to jump out of the local optimum. XO imple-
ments a crossover operator that allows individuals 
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in the population to exchange information with each 
other. This effectively improves the global search ability 
of the DMOABC algorithm. Hence, LSO and XO can 
balance the local search and global search abilities of 
DMOABC.

The original ABC algorithm was designed to solve 
continuous optimization problems. Considering that 
the EDTMAP is a discrete optimization problem, we 
modified the encoding to make the solution a feasible 
allocation scheme. The proposed DMOABC employs 
a fast non-dominated sorter and a crowding distance 
sorter [12] to store the non-dominated individuals from 
each generation to the next. The procedure for the pro-
posed DMOABC is illustrated in Figure 1.

Step 1: Initialize the population size P, number of 
workshops Nw, type number of products Np, and 
limit of abandoning solution La. Randomly generate 
an initial population PG;
Step 2: Employ the bee phase. For each individual 
xi (i = 1, 2, …, P) in the population, the following 
sub-steps are used to generate a new population 
EG:
1) Execute LSO for xi to generate a newly employed 
bee;
2) xi becomes a scout bee in the case of having not 
been improved for La generations. The procedure 
goes to step 6;
Step 3: Employ the fast non-dominated sorter to 
rank the new population EG;
Step 4: Onlooker bee phase. For i = 1, 2, …, P, circle 
the following sub-steps to generate a new popula-
tion OG:
1) Use the binary tournament selection for EG. The 
better one is selected as the onlooker bee;
2) Execute XO for the onlooker bee and a randomly 
selected employed bee to generate a new individual;
Step 5: Combine PG, EG, and OG as population UG; 
use the fast non-dominated sorter and crowding dis-
tance sorter to sort UG; and finally choose the first P 
individuals to update PG;

Table 2  Product and testing machine information

Workshop Product Testing time (and interface 
quantity
constraint) at stage 1

Testing time (and interface 
quantity
constraint) at stage 2

(a) Testing time (and interface quantity constraint) of products at various stages

 W1 A2T2R 5 (1) 10 (1)

A2T4R 3 (2) 3 (2)

 W2 B2T2R 2 (1) 4 (1)

B2T4R 3 (2) 3 (2)

Machine Matching stage Interface quantity Workshop Quantity

(b) Available machines in workshops

 M1 S1 1 W1 1

W2 1

 M2 S1 2 W1 0

W2 2

 M3 S2 1 W1 2

W2 2

 M4 S2 2 W1 2

W2 4

Workshop Distance from W1 (km) Distance from W2 (km)

(c) Distance between workshops

 W1 0.5 1

 W2 1 0.5

Table 3  Testing machine allocation scheme

Workshop Product Machine allocation 
at Stage 1

Machine 
allocation at 
Stage 2

W1 A2T2R M1W1 (1) M3W1 (2)

A2T4R Null Null

W2 B2T2R M1W2 (1)
M2W2 (1)

M4W1 (2)
M4W2 (2)

B2T4R M3W2 (2) M4W2 (2)
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Step 6: Scout bee phase. If max(NIG) > La (NIG 
is the generation number in which any of the two 
objective function values of an individual have not 
been improved), it is selected as the scout bee and 
repeated:

1) The scout bee is placed into an external archive. 
Then, we apply the non-dominated sorter to the 
external archive and finally choose the non-dom-
inated individuals to update the external archive;

Send employed bee

Execute the local search operator

Generate new population EG

Initialize population PG

Send onlooker bee

Execute the crossover operator

Generate new population OG

Send scout bee

Replace the scout bee with a non-
dominated individual from PG

Combine PG , EG and OG  to generate 
new population UG

Apply  fast non-dominated sorter and 
crowing distance sorter to select 

optimal individuals 

Update initial 
population PG

Meet the stop 
Condition?

Combine PG  and external archive, 
return the non-dominated individuals

Employed Bee Phase

Onlooker Bee Phase

Scout Bee Phase

Yes
No

Figure 1  Procedure of the DMOABC algorithm
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2) Randomly select a non-dominated individual from 
PG and employ LSO for it to generate a new one;
3) Replace the scout bee with the new individual;
Step 7: If the termination criterion is satisfied, com-
bine the non-dominated individuals in the last gener-
ation with the external archive and use the non-dom-
inated sorter for this combined population to obtain 
the Pareto solution set; otherwise, proceed to step 2.

The critical elements of DMOABC are the FSG, LSO, 
XO, fast non-dominated sorter, and crowding distance 
sorter, which are described in detail below.

3.2 � Feasible Solution Generator
A feasible solution for the EDTMAP is a machine-alloca-
tion scheme that satisfies the given allocation constraints. 
First, we define a permutation Ak that includes all stages 
of n types of products in m workshops. Then, for each 
stage k ∈ Ak, the unallocated machine that matches stage 
k is sorted into a set Sl. For each machine l ∈ Sl, a num-
ber r in the range [0, 1] is randomly generated. If r < 0.5, 
machine l is allocated to stage k; otherwise, the machine 
is not assigned. Finally, a feasible machine-allocation 
scheme is generated. The pseudo-code of the FSG is out-
lined in Operator: FSG.

3.3 � Local Search Operator
The LSO is used by employed bees to execute a local 
search, enabling them to look for nectar separately. First, 
we define a permutation Ak that includes the stages of n 
types of products in m workshops. Subsequently, in each 
stage, k ∈ Ak is selected to execute the local search. There 
are four neighborhood structures available: (1) add one 
of the machines that has not been allocated and matches 
stage k to stage k. (2) Reduce one of the existing machines 

at stage k. (3) Select one of the machines that has not 
been allocated and matches stage k with less scheduling 
distance or interface quantity to replace one of the exist-
ing machines at stage k. (4) Nothing has changed at stage 
k. Finally, a new machine allocation scheme is generated 
after the local search has been completed for each stage. 
The pseudo-code of the LSO is shown in Operator: LSO.

An illustrative example of the LSO is shown in Table 4, 
based on the case described in Table 2a–c above. For the 
sake of brevity, we use “W1, A2T2R, S1” to represent 
stage 1 of product A2T2R in workshop 1. “M3W2N1” 
denotes the first of the third type of machines in the sec-
ond workshop. The number r generated for each stage 
is [4,  1, 1, 1, 2, 2, 4, 3]. Therefore, “W1, A2T2R, S1” 
and “W2, B2T4R, S1” have not changed. “W1, A2T2R, 
S2”, “W1, A2T4R, S1” and “W1, A2T4R, S2” add one 
machine. “W2, B2T2R, S1” and “W2, B2T2R, S2” reduce 
one machine. “W2, B2T4R, S2” exchanges one machine.

3.4 � Crossover Operator
The XO is designed to allow onlooker bees to exchange 
information so that the bee colony can move in the nec-
tar direction. The crossover operation is as follows: (1) 
randomly choose two stages as the cross points. (2) The 
machine allocation scheme is copied at stages between 
the two cross points from the onlooker bee to a newly 
employed bee. (3) Copy the machine allocation scheme 
at stages outside the two cross points from the initially 
employed bee to the newly employed bee. (4) Remove 
repetitive machinesfrom the stages outside the two 
cross points for the newly employed bee. The pseudo-
code for the XO is shown in Operator: XO.
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An illustrative example of the XO is given in 
Table 5a–c, whose symbolic representation is the same 
as that describing the LSO. First, two stages are ran-
domly selected as the cross points: “W1, A2T2R, S2” 
and “W1, A2T4R, S2.  The green shades represent the 
machine  allocation within the crossover points. Sec-
ond, the machine allocation scheme is copied at the 
stages between the cross points from the onlooker bee 
to a newly employed bee. Then, the machine allocation 
scheme is copied at the stages outside the cross points 
from the employed bee to the newly employed bee. 
Finally, the duplicate machines “M2W2N1” at stage 
“W2, B2T2R, S1” and “M4W1N1” and “M4W1N2” at 
stage “W2, B2T2R, S2” are removed from the initially 
employed bee to obtain a newly employed bee. Red 
lines indicate the removal operations.

3.5 � Non‑Dominated Sorter
The design of the non-dominated sorter is based on 
NSGA-II [12], which is used to divide all solutions into 
different levels. The specific procedure of the sorter is 
as follows: (1) for each solution p, store each solution 
dominated by p in a solution set Sp and calculate np, 
the total number of solutions dominating p. (2) Put the 
solutions that have not been dominated by any solution 
(i.e., np = 0) into level 1. (3) For each solution p belong-
ing to level 1, visit each solution q in Sp and set nq = 
nq −1. nq = 0 implies that q is dominated by solutions 
belonging to level 1, so put q into level 2. (4) As in Step 
3, all solutions can be assigned to different levels. The 

Table 4  Illustrative example of the LSO

Workshop Product Stage Machine 
allocation
(Before LSO)

Machine allocation
(After LSO)

W1 A2T2R S1 M1W1N1 M1W1N1

S2 M3W1N1 M3W1N1
M3W1N2

A2T4R S1 Null M2W2N2

S2 Null M4W2N3

W2 B2T2R S1 M1W2N1
M2W2N1

M1W2N1

S2 M4W1N1
M4W1N2

M4W1N1

B2T4R S1 M3W2N1 M3W2N1

S2 M4W2N2 M4W1N2

Table 5  Illustrative example of the XO
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pseudo-code of the non-dominated sorter is presented 
in Algorithm: Non-dominated sorter.

3.6 � Crowding Distance Sorter
A crowding distance sorter based on NSGA-II [12] is 
employed. The specific procedure for the sorter is as fol-
lows: (1) the crowding distance of each solution is set to 0. 
(2) For each objective m, the solution set is sorted accord-
ing to the objective function value in ascending order. We 
then set the crowding distances of the first and last solu-
tions to infinity. Finally, other solutions are assigned a 
crowding distance value equal to the absolute normalized 
difference in the function values of two adjacent solutions. 
The corresponding procedure for the crowding distance 
sorter is described in Algorithm: Crowding distance 
sorter.

4 � Numerical Experiments and Comparisons
4.1 � Experimental Instances and Parameter Settings
In this section, the performance of DMOABC in solv-
ing the EDTMAP is evaluated. Numerical experiments 
of size n×m were designed. The number of workshops n 
∈ {2, 3, 4} and the number of product types m ∈ {2, 3, 
4} in each workshop constitute the problem n×m. Other 
parameters include the runtime of each machine, and the 
production efficiency was set as follows: tminute = 60, thour 
= 24, tday = 7, η = 0.85. In addition, we assumed that the 
production weight of each type of product is equal.

Two classic multi-objective optimization algorithms, 
NSGA-II and SPEA2, were selected for comparison 
with DMOABC. To guarantee comparison fairness, all 
the parameters in the various algorithms were set con-
sistently. The number of function evaluations (NFEs) is 
used as the control variable. In DMOABC, NSGA-II, and 
SPEA2, the NFEs were all set to n×m×105, and the pop-
ulation size was 100. In NSGA-II and SPEA2, the crosso-
ver probability was 0.9, and the mutation probability was 
0.2. All of the algorithms were coded in Java and imple-
mented on an Intel Core 3.0-GHz PC with 8-GB memory.

4.2 � Performance Evaluation Indices
Because the result of a multi-objective optimization 
problem is a Pareto solution set, the performance of our 
proposed multi-objective optimization algorithm can-
not be evaluated merely by the values of the objective 
functions. The evaluation indices should indicate the 
dominance between the solutions, how close the Pareto 
solution set is to the true Pareto front (PF), and how uni-
formly the Pareto solution set is distributed. Therefore, 
this study uses two indices to measure the performance 
of DMOABC for solving the EDTMAP.

•	 Set coverage (C-metric) [31]: this metric can directly 
indicate the dominance between two Pareto solution 
sets. A and B denote two approximations of the PF, 
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and C(A, B) represents the percentage of the solu-
tions in B that are dominated by at least one solution 
in A, i.e.,

C(A, B) is not necessarily equal to 1 − C(B, A). C(A, B) = 
1 indicates that all solutions in B are dominated by some 
solutions in A, and C(A, B) = 0 implies that no solution in 
B is dominated by a solution in A. Hence, C(A, B) > C(B, 
A) implies that the Pareto solution set of A is better than 
that of B.

•	 Distance from representatives in the PF (D-metric) 
[31]: this metric is a comprehensive index reflect-
ing both the diversity and convergence of a Pareto 
solution set. P* denotes the true PF. A represents an 
approximation of the PF. The average distance from 
P* to A is defined as follows:

where d(v, A) is the minimum Euclidean distance 
between v and the points in A. |P*| is the number of 
solutions in P*. A smaller D(A, P*) denotes a better 
solution set. Because the true PF is unknown, in this 
study, P* was used as the non-dominated solution set 
found by all algorithms for each instance.

4.3 � Experimental Results and Analysis
In this section, a statistical analysis of the comparison 
results for the three algorithms is presented. Normali-
zation was used to eliminate the influence of the vari-
ous magnitudes of the objective value. Each scale of the 
problem contained three other test cases, each of which 
ran ten times independently. The mean of the C-metric 
is shown in Table 6, and the mean of the D-metric is ana-
lyzed in Table 7. The optimal values are set in bold font 
among these three algorithms. A testing instance with a 
size of 3×2 was selected to compare the PF of these algo-
rithms, as shown in Figure 2. The horizontal axis repre-
sents the inverse of the machine scheduling distance, 
whereas the vertical axis denotes production. The red 
circle points “○” denote the PF of DMOABC, the green 
rectangular points “□” indicate the PF of NSGA-II, and 
the blue triangle points “△” are the PF of SPEA2.

These statistical results demonstrate that DMO-
ABC performs better than the other algorithms on all 
test instances in terms of the C-metric and D-metric. It 
can be observed from Table  6 that the C-metric values 

(9)C(A,B) =

∣

∣{u ∈ B|∃v ∈ A : v donimate u}
∣

∣

|B|
,

(10)D(A,P∗) =

∑

v∈P∗

d(v,A)

|P∗|
,

obtained for DMOABC are more extensive than those 
obtained for the other two algorithms. This indicates that 
those obtained for DMOABC dominate most of the solu-
tions obtained for NSGA-II and SPEA2. In Table  7, the 
statistical results for the D-metric reveal that the solu-
tions obtained by DMOABC are closer to the ideal PFs 
than those obtained by the other two algorithms. Figure 2 
shows that those obtained by DMOABC dominate most 
of the solutions obtained by NSGA-II and SPEA2.

The superiority of DMOABC is attributed to the fol-
lowing facts. First, in the employed bee phase, the LSO 
can improve the quality of each solution in the popula-
tion. Second, in the onlooker bee phase, the XO can 
improve population quality because employed bees and 
onlooker bees share nectar information. Finally, in the 
scout bee phase, each scout bee can abandon a solution 
that has not been improved during the limited number of 
generations to avoid falling into a local optimum. In sum-
mary, according to the above analysis, we can conclude 
that DMOABC is effective for solving the multi-objective 
EDTMAP.

Table 6  C-metric comparison for DMOABC, NSGA-II, and SPEA2

The optimal values are set in bold font among these three algorithms

Problem C(DMOABC, 
NSGA-C)

C(NSGA-C, 
DMOABC)

C(DMOABC, 
SPEA2)

C(SPEA2, 
DMOABC)

2×2 0.9033 0.0138 0.9470 0.0215

2×3 0.8875 0.0396 0.9264 0.0257

2×4 0.9604 0.0221 0.9335 0.0338

3×2 0.9535 0.0184 0.7621 0.1065

3×3 0.9182 0.0397 0.5731 0.1794

3×4 0.9259 0.0333 0.4342 0.2216

4×2 0.9022 0.0507 0.4766 0.2449

4×3 0.9164 0.0366 0.4633 0.2324

4×4 0.8631 0.0555 0.3987 0.2703

Mean 0.9145 0.0344 0.6572 0.1485

Table 7  D-metric comparison for DMOABC, NSGA-II, and SPEA2

The optimal values are set in bold font among these three algorithms

Problem DMOABC NSGA-S SPEA2

2×2 0.0107 0.0560 0.0656

2×3 0.0117 0.0661 0.0868

2×4 0.0156 0.0812 0.1109

3×2 0.0166 0.0704 0.0949

3×3 0.0243 0.0712 0.1266

3×4 0.0265 0.0818 0.1355

4×2 0.0236 0.0725 0.1107

4×3 0.0289 0.0787 0.1334

4×4 0.0386 0.0924 0.1415

Mean 0.0218 0.0745 0.1118
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5 � Real‑World Case Study and Comparisons
In this section, the proposed method is applied to a real-
world case involving electronic device testing workshops 
belonging to a Chinese company that produces wireless 
radio-frequency modules (WRFMs).

5.1 � Description of a Real‑World Case
A WRFM is a modular digital radio product, a high-per-
formance professional radio module for data transmis-
sion implemented through digital signal processing and 
radio technologies. WRFMs have many applications, 
such as in wireless remote controllers, remote garage 
doors, remote control lighting, communication, and 
security. A diagram of a WRFM is shown in Figure 3.

In this real-world case study, there are three work-
shops in the factory. Each workshop tests three types 
of WRFM. The actual WRFM production line for each 
workshop is shown in Figure  4. In actual production, 
each type of WRFM is tested in three stages. There 
are various types of testing machines with other inter-
faces in each workshop. All of these machines can be 
allocated to any workshop. To maximize both the total 
production and the inverse of the total scheduling dis-
tance of the machines, a reasonable testing machine 
allocation scheme is required. The testing time and 

requirements associated with 16 compatibilities and 
quantities for interfaces of each type of WRFM at the 
various stages are listed in Table 8a, information con-
cerning available testing machines in each workshop 
is provided in Table  8b, and the distances among the 
three workshops are listed in Table 8c.

Figure 2  Pareto front comparison for DMOABC, NSGA-e, and SPEA2

Figure 3  Diagram of a WRFM
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5.2 � Solving the Real‑World Case Using the Proposed 
DMOABC

DMOABC and its comparison algorithms (i.e., NSGA-
II and SPEA2) were applied to this real-world case. All the 
parameter settings were the same as those in Section 4. Each 
algorithm was run independently 30 times. The statistical 
results for the C-metric are shown in Table 9, and the statisti-
cal results for the D-metric are summarized in Table 10. In 
terms of the C-metric, the values obtained for DMOABC 
were significantly larger than those obtained for the other 
algorithms. This shows that the solutions obtained by DMO-
ABC dominate most of the PF solutions obtained by NSGA-
II and SPEA2. In terms of the D-metric, the values obtained 
by DMOABC were smaller than those obtained by the other 
algorithms. This implies that the PF accepted by the DMO-
ABC is closer to the ideal PF than that obtained by NSGA-II 
and SPEA2. The above results show that DMOABC outper-
forms the comparison algorithms in solving this case.

Figure 5 shows the PFs obtained using the different multi-
objective optimization algorithms. In this figure, the hori-
zontal axis represents the inverse of the scheduling distance 
of the machines, while the vertical axis represents produc-
tion. The red circles “○” denote the PF obtained by DMO-
ABC, the green rectangles “□” indicate those obtained by 
NSGA-II and the blue triangles “△” are those obtained 
by SPEA2. It is easily observed that most of the solutions 
obtained by DMOABC can dominate those obtained by 
NSGA-taine SPEA2. Based on this figure, we can conclude 
that the DMOABC is superior to its comparison algorithms 
in terms of convergence performance.

Points A and B in Figure 5 correspond to the two extreme 
objectives of this case. More specifically, Point A is the 
machine allocation scheme with the maximum production 
on the PF for DMOABC. Point B is the machine allocation 
scheme with the minimum scheduling distance of machines 

on the PF for DMOABC. Point A is (− 130.5, 6686.33), and 
Point B is (0, 0). The maximum production values on the PF 
for NSGA-II and SPEA2 are 5985.04 and 6013.92, respectively. 
Therefore, compared with NSGA-II and SPEA2, DMOABC 
improved the production capacity by 11.72% and 11.18%, 
respectively. Decision makers can select an appropriate test-
ing machine allocation scheme from PF solutions according 
to real-world production needs. For instance, the machine 
allocation scheme at Point A might be selected if the execu-
tors wish to have more production without considering the 
increase in the machine scheduling cost. When the produc-
tion target is given, the executors expect the machine sched-
uling costs to be as high as possible. In this case, the solution 
on the PF can be selected to obtain the machine allocation 
scheme that both satisfies the production target and mini-
mizes the machine scheduling cost. The allocation scheme 
of Point A is shown in Table 11, and Point B indicates that no 
machine is scheduled. From the allocation scheme of Point 
A, we can observe that six M1F1, two M1F2, and two M2F3 
are scheduled for stage 1 of product C2T2R in workshop 3. 
This allocation scheme demonstrates one characteristic of the 
EDTMAP: that machines are compatible. Additionally, more 
machines are scheduled to increase the production capacity, 
but the total scheduling distance increases; thus, the schedul-
ing cost increases. Hence, there is a clear conflict between the 
production and scheduling distance, which confirms that the 
EDTMAP is a typical multi-objective problem.

6 � Conclusions and Future Works
In this study, the real-world electronic device testing 
machine allocation problem (EDTMAP) was investigated 
from both theoretical and actual production perspectives. 
First, we formulated a multi-objective mathematical model 
that considers the total production and machine-scheduling 
distance. We developed a discrete multi-objective artificial 
bee colony algorithm (DMOABC) to address this problem. 
Furthermore, we compared the proposed DMOABC with 
two state-of-the-art multi-objective algorithms: NSGA-II 
and SPEA2. The experimental results show that DMOABC 
solves the EDTMAP more effectively compared with the 
other algorithms. Finally, the proposed mathematical model 
and algorithm were successfully applied to a real-world 
EDTMAP. The results demonstrate that our method can 
effectively guide actual machine allocation.

The contributions of this research can be summarized as 
follows:

1)	 An electronic device testing machine allocation 
model was designed and extended to other types of 
machine allocation models.

2)	 A discrete multi-objective artificial bee colony algo-
rithm was developed to deal with the EDTMAP. 

Figure 4  Production line of WRFM
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Table 8  Product and testing machine information

Workshop Product Testing time (interface 
quantity)
at stage 1

Testing time (interface 
quantity)
at stage 2

Testing time 
(interface 
quantity)
at stage 3

(a) Testing time (and interface quantity constraint) of WRFMs at various stages

 W1 A2T2R 7.54 (2) 9.45 (2) 8.12 (2)

A2T4R 10.18 (4) 9.53 (4) 11.24 (2)

A4T4R 6.89 (4) 5.90 (4) 7.51 (4)

 W2 B2T2R 9.25 (2) 8.85 (2) 7.39 (2)

B2T4R 8.87 (4) 6.71 (4) 9.41 (2)

B4T4R 5.91 (4) 7.37 (4) 9.40 (4)

 W3 C2T2R 8.54 (2) 8.18 (2) 9.07 (2)

C2T4R 7.60 (4) 8.59 (4) 11.61 (2)

C4T4R 8.54 (4) 7.80 (4) 8.07 (4)

Machine Matching stage Interface quantity Workshop Quantity

(b) Available machines in workshop

 M1 S1 2 W1 8

W2 6

W3 0

 M2 S1 4 W1 8

W2 4

W3 9

 M3 S2 2 W1 1

W2 8

W3 0

 M4 S2 4 W1 8

W2 4

W3 5

 M5 S3 2 W1 8

W2 11

W3 7

 M6 S3 4 W1 3

W2 7

W3 3

Workshop Distance from W1 (km) Distance from W2 (km) Distance from W3 (km)

(c) Distance between workshops

 W1 0.5 1.5 3

 W2 1.5 0.5 2

 W3 3 2 0.5

Table 9  C-metric comparison for DMOABC, NSGA-II, and SPEA2

The optimal values are set in bold font among these three algorithms

Problem C(DMOABC, 
NSGA-C)

C(NSGA-C, 
DMOABC)

C(DMOABC, 
SPEA2)

C(SPEA2, 
DMOABC)

3×3 0.9395 0.0316 0.5688 0.2128

Table 10  C-metric comparison for DMOABC, NSGA-II, and SPEA2

The optimal values are set in bold font among these three algorithms

Problem DMOABC NSGA-S SPEA2

3×3 0.0319 0.0743 0.1121
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Three key operators, i.e., FSG, LSO, and XO, were 
designed for and implemented in the algorithm. 
FSG is used to generate a feasible machine allocation 
scheme, and LSO and XO are used to balance local 
and global searches.

3)	 By analyzing the comparison results of the numeri-
cal experiments, we demonstrated that DMOABC 
is robust and highly competitive with NSGA-II and 
SPEA2 for solving the EDTMAP.

4)	 We applied y DMOABC to real-world electronic 
device testing workshops. The results demonstrate 
that our method can guide the allocation of an actual 
electronic device testing machine.

Although our proposed method can effectively solve 
the EDTMAP, there are still some limitations to this 
study. One limitation is that our proposed mathemati-
cal model only considers the constraints of compatibility 
and number of interfaces. Therefore, additional condi-
tions should be considered. Another limitation is that 
the model only considers two indices: productivity and 
scheduling distance. With increasing awareness of the 
need for environmental protection, environmental pol-
lution indices need to be introduced into our model. In 
the future, the following studies can be considered: one 
research direction is to modify our mathematical model 
to align it with the actual production environment. 
Another exciting research direction is to introduce new 
evaluation indices, such as environmental pollution indi-
ces, to better guide the allocation of electronic device 
testing machines.

Figure 5  Pareto front solutions of the case

Table 11  Allocation scheme at Point A

Workshop Product Stage 1 Stage 2 Stage 3

W1 A2T2R Null Null Null

A2T4R Null Null Null

A4T4R M2F1 (6)
M2F2 (2)
M2F3 (3)

M4F1 (5)
M4F2 (3)
M4F3 (1)

M6F1 (3)
M6F2 (7)
M6F3 (2)

W2 B2T2R M1F1 (1)
M1F2 (3)

M3F2 (2) M5F1 (1)
M5F2 (2)

B2T4R M2F1 (2)
M2F2 (2)
M2F3 (4)

M4F1 (3)
M4F3 (3)

M5F1 (2)
M5F2 (7)

B4T4R Null Null Null

W3 C2T2R M1F1 (6)
M1F2 (2)
M2F3 (2)

M3F1 (1)
M3F2 (6)
M4F2 (1)
M4F3 (1)

M5F1 (2)
M5F2 (1)
M5F3 (7)

C2T4R Null Null Null

C4T4R Null Null Null
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