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Abstract 

Feature information extraction is one of the key steps in prognostics and health management of rotating machinery. 
In the present study, an investigation about the feasibility of a methodology based on generalized S transform (GST) 
and singular value decomposition (SVD) methods for feature extraction in rolling bearing, due to local damage under 
variable conditions, is conducted. The technique adopts the GST method, following the time-frequency analysis, to 
transform a raw fault signal of the rolling bearing into a two-dimensional complex matrix. And then, the SVD method 
is performed to decompose the matrix to obtain the feature vectors. By this procedure it is possible to obtain the 
fault feature information of rolling bearing under different speeds and different loads. In order to streamline the 
feature parameters of the feature vectors to train more uncomplicated models, the principal component analysis 
(PCA) subsequently performed. The particle swarm optimization-support vector machine (PSO-SVM) model is used to 
identify and classify the different fault states of rolling bearing. Furthermore, in order to highlight the superiority of the 
proposed method some comparisons are conducted with the conventional methods. The obtained results show that 
the proposed method can effectively extract fault features of the rolling bearing under variable conditions.

Keywords:  Feature extraction, Generalized Stockwell transform, Singular value decomposition, Principal component 
analysis
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1  Introduction
The fault feature extraction of rolling bearing is a 
research topic of great interest for the prognostics and 
health management (PHM) rotating machinery. It is due 
to local damages that causes vibration impacts, between 
the structures of the rolling bearing. Generally, operating 
environment of the rotating machines is complex with a 
large disturbance which has a remarkable adverse impact 
on the machine performance. Studies show that such 
an environment can make local damages on the rolling 
bearing [1]. Once the rolling bearing fails, it will cause 
serious economic losses and even causalities. Therefore, 

conducting a fault diagnosis for the rolling bearing is of 
significant importance, which has attracted many schol-
ars in recent years [2].

The vibration signal collected by the sensor contains a 
large amount of operating states information of rolling 
bearing. It was found that analyzing the vibration signal 
can effectively realize the feature extraction of the rolling 
bearing [3]. The conventional methods for analyzing the 
vibration signal of rolling bearing often assume that the 
operating condition is stable [4]. Due to the complicated 
structure of rotating machinery, rolling bearings are usu-
ally operated under variable conditions [5]. The vibration 
signal collected from rolling bearing under variable con-
ditions can reflect the weak fault feature well. Therefore, 
the conventional fault feature extraction methods based 
on the assumption of stable operating condition are inev-
itably limited [6]. Although finding an effective vibration 
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signal processing method is of significant importance for 
rotating machinery from prognostics and health manage-
ment (PHM) viewpoint, fault feature of the rolling bear-
ing under variable conditions can be hardly extracted by 
conventional methods for analyzing the vibration signal 
[7].

It is worth noting that the vibration signal of the roll-
ing bearing is non-stationary, which originates from its 
complex structure [8]. In spite of superior characteris-
tics of the conventional Fourier transform method, it has 
shortcomings in analyzing the vibration signal, includ-
ing challenges in the time and frequency localization. 
Time frequency analysis (TFA) method can provide the 
joint distribution information. Therefore TFA method is 
an appropriate scheme for analyzing the vibration sig-
nal of the rolling bearing. Several popular TFA methods 
including the short time Fourier transform (STFT) [9], 
continuous wavelet transform (CWT) [10] and Stock-
well transform (S-transform) [11], have been proposed so 
far for processing the fault vibration signal of the rolling 
bearing.

STFT is a very powerful tool for processing the non-
stationary signals. The overall time-frequency trend of 
the signal can be obtained by STFT method. However, 
the STFT method still has some challenges in engi-
neering applications. More specifically, when the STFT 
method is applied to process the time frequency distribu-
tion of the raw signal, high time and frequency resolution 
cannot be obtained simultaneously [12]. This is mainly 
attributed to the limitations in the window function of 
the STFT method.

CWT, which has the characteristic of providing good 
time-frequency localization for the non-linear and non-
stationary signals. It has been widely used to conduct 
an analyzing for the rolling bearing. Although the CWT 
method has variable window function, the selection of 
its basis function does not have reasonable adaptability. 
Accordingly, applying the CWT method to obtain the 
time frequency distribution of the raw signal has some 
disadvantages, such as border distortion, energy leakage 
and interference terms [13–15].

S transform, another time frequency analysis method, 
was proposed by Stockwell in 2002 [16]. The S trans-
form method maintains the absolute phase information 
of the signal and provides a variable signal decomposi-
tion scale. Therefore, it can be regarded as an extension 
for the STFT and CWT methods [17]. Moreover, the S 
transform method is a reversible TFA method and its 
time frequency resolution changes with the frequency 
[18]. However, the basic wavelet of the S transform 
method is fixed, which cause some disadvantages in engi-
neering applications, such as insufficient time frequency 

resolution regulation and insufficient energy aggregation 
[19, 20].

Aiming at resolving shortcomings of the above men-
tioned TFA methods, the generalized S transform 
(GST) method has been proposed by Pinnegar. The 
GST method has gained remarkable popularity among 
researchers [21]. The GST method can automatically 
adjust the width of the window function and has been 
widely used to analyze the vibration signal of the rolling 
bearing [22]. In the present study, the superiority of GST 
over S transform will be shown in detail. Based on the 
above analysis, the GST method is adopt to extract the 
fault feature information of rolling bearing under vari-
able conditions. Although the feature information can be 
extracted by GST, the two-dimensional complex matrix 
obtained from GST is too large to be regard as the fault 
feature vectors.

Singular value decomposition (SVD) has good stabil-
ity and is an inherent characteristic of the matrix, which 
can fully reflect the feature information contained in 
the complex matrix with favorable stability [23, 24]. So, 
the SVD method is performed to the complex matrix to 
obtain the feature vectors. In engineering applications, 
the feature vectors obtained from SVD method con-
tains a lot of feature information, which complicates the 
extraction of fault features of the rolling bearing [25]. 
Thus, obtaining the concise feature parameters is a signif-
icant issue in the SVD method. In order to obtain more 
concise feature parameters, the principal component 
analysis (PCA) method is introduced to conduct a data 
compression for the feature vectors.

After extracting feature parameters, the states recogni-
tion of rolling bearing is another significant issue for con-
dition monitoring of rotating machinery. Support vector 
machine (SVM), as an intelligent technology, has been 
widely applied to identify fault states in diverse practical 
applications [17]. However, one of the main challenges of 
the SVM method is determining the values of the penalty 
factor and kernel function parameters [26]. Recently, the 
Particle Swarm Optimization (PSO) algorithm has been 
proposed, which is suitable for determining the values 
of the penalty factor and kernel function parameters [27, 
28].

Compared to the existing studies, the main objectives 
and contributions of this research are as follows: (1) A 
new time-frequency feature extraction scheme is pro-
posed for the feature extraction of rolling bearing under 
different speeds and different loads. (2) The influence of 
the window function parameters of GST on the time-
frequency feature extraction are analyzed according to 
the numerical simulations. (3) The superiority of GST in 
feature extraction of rolling bearing is studied. (4) The 
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PSO-SVM model with different feature extraction meth-
ods are employed for comparison.

The framework of this article is arranged as follows: the 
theoretical basis of the GST, SVD, PCA and PSO-SVM 
model are introduced in Section  2. Then the proposed 
methods are described in Section 3. Moreover, the simu-
lated and experimental data are analyzed in Section 4 and 
Section  5, respectively. Finally, conclusions are summa-
rized in Section 6.

2 � Methodology
2.1 � Generalized S Transform
The GST is an extension of the standard S transform and 
can be derived from a STFT based on a Gaussian window 
function. The STFT of one-dimensional continuous sig-
nal x(t) is defined as

where f and t represent the frequency and the time, 
respectively. Moreover, g(t) and τ denote the Gaussian 
window function and the position of the g(t) on the time 
axis

When the g(t) is defined as a Gaussian window function

and the scale factor σ is defined as

It is obvious that

Then the standard S transform of signal x(t) can be 
obtained by combining Eqs. (1, 2, 3 and 4):

It is worth noting that the scale factor σ of a Gauss-
ian window is inversely proportional to the frequency. 
Although the standard S-transform has been applied in 
some fields, one of its main disadvantages is that the basic 
wavelet shape is fixed. Therefore, it cannot be adjusted in 
accordance with the requirements of the specific applica-
tion. This shortcoming has a significant negative influ-
ence on the adaptability of the standard S-transform for 
the signal analysis [19].

In order to overcome the disadvantages of standard S 
transform, Pinnegar et  al. [21] applied one adjustable 
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According to Eqs. (7) and (8), the GST method can 
transform the one-dimensional raw signal into a two-
dimensional complex matrix in the form below:

where Am×n and θm×n are the amplitude matrix and the 
phase matrix, respectively.

In addition, according to Eq. (6), the GST model can 
effectively change the Gaussian window width by adjust-
ing the parameter p. Then the improved time- frequency 
resolution and time-frequency aggregation performance 
can be obtained. Therefore, the time- frequency aggrega-
tion performance of the GST depends on the selection of 
the parameter p. Stankovic [30] proposed an energy con-
centration measure criterion for measuring the time-fre-
quency distribution. The proposed criterion is defined as:

The discrete form of Eq. (10) is defined as
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(1)	 For p ∈ (0, 1] , perform a GST on the signal x(t) 
using Eq. (6).

(2)	 Normalized the energy of the calculated GST:

(3)	 Calculate the time-frequency aggregation according 
to Eq. (10), and q = 2.

(4)	 The optimal value of parameter p can be calculated 
by Eq. (13)

2.2 � Principle of SVD
The real matrix A ∈ Rm×n can be decomposed by the 
SVD as the following [31]:

where U ∈ Rm×m , V ∈ Rn×n , U and V are the orthogo-
nal matrix, while S is a diagonal matrix, which can be 
expressed as S=[diag (σ1, σ2, ..., σk), O ], O is the zero 
matrix, k=min(m, n), σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

It is generally believed that the feature information in 
the amplitude matrix is mainly concentrated on the first r 
effective singular values, and the turning point of the sin-
gular value is fixed when it changes rapidly to be gentle 
and smooth. The corresponding ordinal number of this 
point is valid values r [32].

More details about the SVD can be found in Ref. [31].

2.3 � The Basic Theory of PCA
PCA is a commonly used method to reduce the signal 
from high-dimensional data space to low-dimensional 
data space [33]. The main steps of PCA is defined as
X= [x0, x1, ... , xN−1]T are the components of the signal 

x(t) processed by GST and SVD, xi = [σ1, σ2, · · · , σr], i = 
0, 1, ... , N−1, the mean of the samples can be calculated 
by Eq. (15):

According to Eq. (15), the co-variance matrix Sx of X is 
defined as

The (�1, �2, · · · , �r) is defined as the eigenvalues of the 
co-variance matrix Sx, and �1 ≥ �2 ≥ · · · ≥ �r . The cor-
responding feature vector is defined as ul, l = 1, 2, ... , 
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r. Thus, all eigenvalues can form an orthogonal matrix 
U = [u1,u2, · · · ,ur].

The cumulative variance contribution rate can be used 
to measure the information representation of the new 
generated components to the original data. In practical 
applications, the principal component is usually selected 
according to the cumulative percent variance (CPV). The 
CPV is defined as

It is generally believed that the current k principals can 
over more original data information when CPV≥0.95 
[34]. The orthogonal matrix composed of the first k 
eigenvalues is used as the low-dimensional projection 
space Uk = [u1,u2, · · · ,uk ] , and the original data can be 
reduced from r-dimensional to k-dimensional. The fea-
ture parameter matrix Yn×k obtained by PCA can be cal-
culated as

2.4 � PSO‑SVM Model
SVM is especially suitable for data processing of small 
samples due to its unique advantage. However, the val-
ues of the penalty factor and kernel function parameters 
of SVM model have an important influence on its learn-
ing ability and generalization ability. The PSO algorithm 
is used to optimize the parameters of the SVM model 
in this paper. The details about the SVM and PSO can 
be found in Refs. [26–28]. The flowchart of PSO-SVM 
model is shown in Figure 1.

3 � Fault Diagnosis Method Based on PSO‑ SVM
In this section, it is intended to propose a new scheme 
for extracting fault features of rolling element bearings 
under variable conditions. To this end, GST, SVD and 
PCA methods are utilized. A framework of the proposed 
algorithm is presented in Figure 2.

The steps of the proposed method are as follows:

Step 1: The time-frequency domain transform of 
each raw signal is conducted by using GST, and the 
amplitude matrix of GST is used as feature matrix.
Step 2: The SVD is performed to the feature matrix 
to obtain the feature vectors, which are composed of 
multiple sets of singular value.
Step 3: The PCA is subsequently performed to the 
feature vectors to extract the more streamlined fea-
ture parameters for accurate fault classification.
Step 4: The PSO-SVM model is introduced for iden-
tification and classification of different bearing typi-
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(18)Y n×k = Xn×rU r×k .
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cal faults, and a comparison is made among different 
feature extraction methods and different models.

4 � Simulation Analysis
In order to evaluate the performance of the GST, a sim-
ulated signal is constructed. The numerical model is 
defined as

where t1 = mod(t,1/33), the fault feature frequency of the 
impact signal is f0 = 33 Hz, mod is the remainder func-
tion, f1 = 3500 Hz, f2 = 450 Hz, f3 = 150 Hz, f4 = 48 Hz, 
r(t) is Gaussian white noise and r(t)~N(0, 0.16).

(19)
x(t) = e(−400t1) sin(2πf1t)+ sin(2πf2t)

+ 0.8 sin(2πf3t)+ sin(2πf4t)+ r(t),

The sampling frequency and the data length of the 
simulated signal are 8 kHz and 4000 point, respectively. 
Figure 3(a) shows the waveform of signal x(t). The time-
frequency distribution of simulated signal obtained by 
STFT and CWT are shown in Figure 3(b‒c), respectively. 
The GST of simulated signal x(t) with different values 
of parameter p (p = 0.7, 0.8, and 1.0) are shown in Fig-
ure 3(d)‒(f ), respectively.

As shown in Figure 3(b), the time-frequency represen-
tation obtained by STFT can detect the low frequency 
component (f2, f3, f4) clearly. However, the concentration 
of high frequency component (f1) is not well. In addition, 
the energy distribution of the impact signal is completely 
misrepresent due to the deficient time resolution of the 
STFT. Although the impact feature information of the 
simulated signal can be identified from Figure  3(c), the 
concentration of frequency component (f0), which cor-
responding to the time interval 0.03 s is very poor. Oth-
erwise, the time-frequency distribution of frequency 
component (f2, f3, f4) is well.

The time-frequency representation of GST with p = 0.6 
is plotted in Figure 3(d). It can be seen that the frequency 
component (f2, f3, f4) can be detect clearly. Moreover, the 
frequency component (f0), which corresponding to the 
time interval 0.03 s has a good frequency domain resolu-
tion, but its time domain resolution is poor. The standard 
S transform (where p = 1.0) of simulated signal is plot-
ted in Figure 3(e). It can be seen that only the frequency 
component (f3, f4) can be detect clearly. The time-fre-
quency distribution of frequency component (f2) is not 
well. In addition, the frequency component (f0), which 
corresponding to the time interval 0.03 s has a good time 
domain, but its frequency domain resolution is poor.

The optimal GST with popt = 0.8 is plotted in Fig-
ure 3(f ). The time-frequency representation obtained by Figure 1  Flowchart of PSO-SVM model

Figure 2  Framework of the proposed algorithm
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optimal GST can detect all frequency components. The 
energy distribution of impact signal is more satisfactory 
than other techniques.

Based on the above analysis, the time-frequency energy 
concentration obtained by the optimal GST has a great 
improvement than the standard S transform, STFT and 
CWT.

5 � Experimental Analysis
5.1 � Experiment Data Sources
In this section, an experiment data collected from Case 
Western Reserve University are adopted to conduct an 
analysis [35]. The experiment data has been widely used 
in many researches and has been proved to be effective 
in the verification of rolling bearing feature extraction 
methods [36]. The main equipment and instruments 
of the bench experimental platform comprise the 
dynamometer, torque meter and displayer, coupling, 

Figure 3  Waveform of simulated signal and its time-frequency spectra: (a) time domain waveform, (b) STFT, (c) CWT, (d) GST with p = 0.6, (e) GST 
with p = 1, (f ) GST with popt = 0.8
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drive end  bearing, three-phase asynchronous motors, 
and fan end bearing, as shown in Figure 4.

Vibration signal of rolling bearing in four typical states 
of the normal, inner ring fault (IRF), outer ring fault 
(ORF) and body fault (BF) are tested in the experiment. 
The type of rolling bearing is 6205-2RS JEM SKF. Table 1 
lists the parameters of the rolling bearing.

In the manufacturing process of bearing fault parts, a 
single-point fault with a diameter of (0.1788 mm, 0.3576 
mm, 0.5364 mm, 0.7152 mm) are processed on the sur-
face of the bearing inner ring, outer ring and body by 
electric spark technology, respectively. The accelerometer 
was placed at the three-phase asynchronous motors to 
measure the vibration signals of drive end bearing under 
different working conditions. The purpose of this study is 
to fulfill the fault feature extraction and states identifica-
tion. Therefore, only the rolling bearing with 0.1788 mm 

single-point fault diameter are selected to be verified the 
proposed method.

In this experiment, the sample frequency and sample 
length are set to 12 kHz and 1200 point, respectively. 
The vibration signals of rolling bearing with four differ-
ent bearing typical states (i.e., normal, IRF, ORF and BF) 
are collected by the acceleration sensor under different 
speeds and different loads, respectively. The speeds are 
1730 r/min, 1750 r/min, 1772 r/min, and 1797 r/min, and 
the corresponding loads are 3 hp, 2 hp, 1 hp, and 0 hp. 
Table  2 is the selected experimental data in this paper. 
A, B, C, and D are used to represent four different opera-
tion conditions, respectively. For each operation condi-
tion, 200 samples are randomly selected (including 50 
samples of each four typical state pieces), 800 samples 
are obtained in total, and each sample is 1200 points. The 
training data contains 480 samples and the testing data 
contains 320 samples.

5.2 � Time‑Frequency Analysis and Feature Extraction 
Method

5.2.1 � Time‑Frequency Analysis Based on GST
Taking operation condition A as an example, the time 
domain waveform of four different bearing typical states 
vibration signal are shown in Figure 5.

Figure 4  Schematic diagram and physical map of the experiments platform: (a) schematic diagram, (b) physical map

Table 1  Parameters of 6205-2RS JEM SKF

Parameter Outer  
diameter 
 (mm)

Inner  
diameter 
 (mm)

Thickness 
 (mm)

Rolling element 
diameter (mm)

Number of 
rollers

Value 52 25 15 7.94 9

Table 2  Experimental data for bearing fault diagnosis

Working 
condition

Motor speed 
(r/min)

Motor loads 
(hp)

Normal IRF ORF BF

Training Test Training Test Training Test Training Test

A 1730 3 30 20 30 20 30 20 30 20

B 1750 2 30 20 30 20 30 20 30 20

C 1772 1 30 20 30 20 30 20 30 20

D 1797 0 30 20 30 20 30 20 30 20
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The time-frequency representation using STFT, CWT, 
standard S transform and optimal GST are displayed and 
compared in Figures 6, 7, 8 and 9.

As shown in Figure  6, the impact feature information 
caused by the fault of the rolling bearing is completely 
misrepresent due to the deficient time resolution of the 
STFT. As shown in Figure 7, although the impact feature 

information can be obtained from the time-frequency 
representation, the concentration of fault frequency 
component is very poor. The fault frequency compo-
nent of the standard S transform has a good time domain 
resolution. However, its frequency-domain resolution is 
poor, as shown in Figure  8. As shown in Figure  9, after 
the raw signal is converted in the time-frequency domain 

Figure 5  Time domain waveform of four different bearing typical states vibration signal: (a) normal, (b) IRF, (c) ORF, (d) BF

Figure 6  Time-frequency representation of raw signal using STFT: (a) normal, (b) IRF, (c) ORF, (d) BF

Figure 7  Time-frequency representation of raw signal using CWT: (a) normal, (b) IRF, (c) ORF, (d) BF
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by using the optimal GST, the obtained time-frequency 
representation has good concentration in both the time 
domain and frequency-domain.

Therefore, the feature information of rolling bearing 
vibration signal obtained by optimal GST has the better 
time-frequency concentration than other time-frequency 
analysis methods.

5.2.2 � Feature Extraction Based on GST and SVD
The amplitude matrix of the raw signal obtained by 
GST is used to the feature matrix. The singular values 
can be acquired by using SVD to the feature matrix and 
the results of four different bearing typical states are 
shown in Figure  10. Compared with results of standard 

S transform and SVD (as shown in Figure 11), the results 
obtained by GST and SVD are more coincident and 
stable.

In the present study, the operating states of rolling 
bearing include normal, IRF, ORF and BF. To observe the 
disparity of singular values in different operating states, 
the singular value clusters obtained by GST and SVD 
methods are shown in Figure 12(a). In order to observe 
the difference more clearly, the first 10 order singular val-
ues are compared, as shown in Figure 12(b).

As shown in Figure 12, the gaps between the different 
operating states are large enough and they can be easily 
distinguishable by using GST and SVD methods.

Figure 8  Time-frequency representation of raw signal using standard S transform: (a) normal, (b) IRF, (c) ORF, (d) BF

Figure 9  Time-frequency representation of raw signal using optimal GST: (a) normal, (b) IRF, (c) ORF, (d) BF

Figure 10  Singular values obtained by GST and SVD: (a) normal, (b) IRF, (c) ORF, (d) BF
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In addition, in the example, the noise level of the vibra-
tion signals is relatively low, while in real-world applica-
tion, tremendous noise level may corrupt the vibration 
signal. Therefore, the Gaussian white noise with a signal-
to-noise ratio (SNR) of 5 dB is added to the experimental 
signal to simulate the engineering practice. The feature 
extraction result by GST and SVD methods is shown 

in Figure 13(a). In order to observe the difference more 
clearly, the first 10 order singular values are compared, as 
shown in Figure 13(b).

When the SNR of the signal is 5 dB, the extracted fea-
tures are similar, and the gaps between the different oper-
ating states are large enough, as shown in Figure 13.

Figure 11  Singular values obtained by standard S transform and SVD: (a) normal, (b) IRF, (c) ORF, (d) BF

Figure 12  Singular value clusters for different operating states: (a) first 48 order; (b) first 10 order

Figure 13  Feature extraction result by GST and SVD methods: (a) first 48 order; (b) first 10 order
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5.2.3 � Data Compression for the Feature Vectors Based 
on PCA Method

The feature vector is composed of 48 feature quantities 
of singular values, as shown in Figure  10. When using 
the intelligent algorithms to identify the different faults 
states, the excessive feature quantities will train more 
complex models and reduce the learning speed of train-
ing data [25]. To solve the problem, PCA is introduced in 
this study. The PCA is used to reduce and optimize the 
feature matrix, which composed of multiple sets of sin-
gular value vectors. The feature parameters extracted by 
PCA are used as the input of intelligent algorithm model 
in this study.

To ensure the identification accuracy of different faults 
states of rolling bearing under variable operation condi-
tions, the training data are taken as an example. Principal 
component analysis (PCA) is an effective data dimen-
sionality reduction algorithm. In this paper, the PCA is 
used to reduce and optimize the feature matrix, which 
composed of multiple sets of singular value vectors. 
Firstly, the feature matrix is normalized. Secondly, the 
covariance of each principal component in the normal-
ized characteristic matrix is calculated. The ratio of prin-
cipal component covariance to the sum of all principal 
component covariance is defined as the principal com-
ponent contribution. Finally, the principal components 
with cumulative contribution rate higher than 95% are 

selected as the feature vectors of the condition compo-
nents. The selected principal component contribution 
rate is shown in Table 3 (limited to space, only listed the 
cumulative contribution rate is higher than 95% of the 
principal component).

According to Table 3, the first three principal compo-
nents are extracted as simplified feature parameters. Fig-
ure  14 is a feature waveform of the first three principal 
components after fusion using the PCA method.

As shown in Figure  14, the first-order principal com-
ponent and second-order principal component retains 
most of the information of the raw signal, and the change 
trend of the bearings in different bearing typical states 
are represented well. The change trend is basically con-
sistent with the sample states. The third-order principal 
components more chaotic overall, and the ability to char-
acterize bearings in different states is weak. The circles 
in Figure 14(a, b) are correspond to four typical states of 
rolling bearing, respectively.

5.3 � State Classification Based on PSO‑SVM
5.3.1 � The Proposed Method
The feature parameters extracted by GST and SVD-PCA 
are used as the input of PSO-SVM model. The main 
parameters of PSO are set as: particle population size is 
20, the maximum number of iterations is 100, and learn-
ing factors are set as c1=1.5 and c2=1.7. The PSO is used 
to optimize the SVM model, and the optimal penalty 
factor and kernel function parameters are obtained as 
16.7647 and 2.28269, respectively. Labels 1 to 4 indicate 
four different typical states of the bearing, respectively. 
State classification results of training data and testing 
data based on PSO-SVM are shown in Figure  15. As a 
comparison, the state classification results using PSO-
SVM based on GST and SVD are shown in Figure 16.

As shown in Figure 15, we can see that even under vari-
able conditions, the training data and testing data actual 

Table 3  The cumulative contribution rate of the principal 
component

The principal 
component

Singular value Contribution 
rate (%)

Cumulative 
contribution 
rate (%)

1 41.2185 87.9 87.9

2 2.8704 6.12 94.02

3 0.8897 1.9 95.92

Figure 14  Trend of the first three-order principal components of the training set sample: (a) first-order principal component, (b) second-order 
principal component, (c) third-order principal component
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output of PSO-SVM are consistent with the desired out-
put. The errors of state classification results using the 
proposed method are calculated to be zero. As shown 
in Figure  16, the training data actual outputs errors of 
PSO-SVM are calculated to be zero, however the testing 
data actual outputs errors are 1.25%. In other words, The 
PCA can reduce and optimize the singular value vectors 
matrix, and obtained a simplified PSO-SVM model. Thus, 
the proposed method using PSO-SVM based on GST and 
SVD-PCA is able to efficiently realize the fault diagnosis 
of rolling bearing under variable conditions.

5.3.2 � Comparison of Recognition Accuracy with Different 
Feature Extraction Methods

In order to verify the superiority and effectiveness of the 
proposed method for rolling bearing fault diagnosis, the 
PSO-SVM model with different feature extraction meth-
ods are employed for comparison. The feature extraction 
methods are list as follows:

(1)	 Standard S transform and SVD methods: The S 
transform is used to conduct a time-frequency 
transformation for a raw signal. Subsequently, the 
two-dimensional complex matrix can be obtained. 
Then, the SVD is performed to the matrix to obtain 
the feature vectors.

(2)	 Local mode decomposition (LMD) and SVD 
methods: The raw signal is decomposed by LMD 
method. Subsequently, several product functions 
(PFs) component can be obtained. Then, the SVD is 
performed to the PF component to obtain the fea-
ture vectors [24].

(3)	 Wavelet approximation entropy method: Based on 
the DB5 wavelet basis, the fault vibration signal 
of rolling bearing is decomposed by four layers of 
wavelet. The feature vectors are obtained by cal-
culate the approximate entropy of each layer fre-
quency band [37].

Figure 15  State classification results using PSO-SVM based on GST and SVD-PCA: (a) training data, (b) testing data

Figure 16  State classification results using PSO-SVM based on GST and SVD: (a) training data, (b) testing data
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Moreover, a typical example of neural networks named 
Back Propagation (BP) is also applied. The state classifi-
cation results of different models with different feature 
extraction methods are listed in Table 4.

It can be seen from Table 4, compared with the same 
feature extraction method, although the PSO-SVM 
model has more time-consuming, it has an obviously 
higher accurate classification and efficiency than BP 
model. In addition, compared with the same model, the 
feature extraction method based on GST and SVD-PCA 
methods has an obvious superiority over other methods. 
The results indicate that the extracted feature parameters 
are more effective by the proposed method, which can 
be used as input to the intelligent model to obtain higher 
recognition accuracy.

In a word, the accuracy of different bearing typical 
states classification and identification can be effectively 
improved by the proposed method.

6 � Conclusions
In this paper a feasibility study of a time-frequency analy-
sis methodology, based on the GST and SVD applied to 
fault feature extraction problems in rolling bearing under 
variable conditions, has been analyzed. In addition, the 
PCA is subsequently performed to the feature vectors 
to extract the more streamlined feature parameters for 
accurate fault classification. The fault states are identi-
fied and classified by PSO-SVM model. A detailed com-
parison is made among STFT, CWT and GST methods. 
The results show that the GST method can obtain a more 
satisfactory time frequency representation than other 
similar techniques. Furthermore, a detailed comparison 
is made between standard S transform-SVD and GST 
-SVD. The results shows that the GST-SVD are more 
coincident and stable than standard S transform-SVD 
method. The experimental data analysis indicate that the 
proposed method could effectively extract the feature 
parameters of rolling bearing under variable conditions.
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