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Abstract 

The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource 
conservation. Disassembly is an essential process of remanufacturing end-of-life products. Effective disassembly plans 
help improve disassembly efficiency and reduce disassembly costs. This paper studies a disassembly planning prob-
lem with operation attributes, in which an integrated decision of the disassembly sequence, disassembly directions, 
and disassembly tools are made. Besides, a mathematical model is formulated with the objective of minimizing the 
penalty cost caused by the changing of operation attributes. Then, a neighborhood modularization-based artificial 
bee colony algorithm is developed, which contains a modular optimized design. Finally, two case studies with differ-
ent scales and complexities are used to verify the performance of the proposed approach, and experimental results 
show that the proposed algorithm outperforms the two existing methods within an acceptable computational time.
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1  Introduction
The awareness of environmental production and resource 
conservation has been widespread in recent decades, 
which has caused the government and society to pay 
attention to product recycling [1, 2]. Thus, many coun-
tries have introduced various policies to recover end-of-
life (EOL) products effectively. Environmental pollution 
and resource shortage can be alleviated by using recy-
cling technology to reuse EOL products [3]. Disassembly 
is an essential process in recovering EOL products [4, 5], 
which refers to the decomposition of a complete product 
into parts. In the process, we need to figure out the func-
tions of product parts and the relationship between them.

Before implementing the disassembly process, deter-
mining the optimal disassembly sequences (disassembly 

scheme), which is the critical objective of disassembling 
planning (DP), helps improve the disassembly efficiency. 
The disassembly schemes based on the product structure 
and product design experience are favorable to the disas-
sembly process’s objective estimation. For the product to 
reach the end of its life cycle, DP can execute an effective 
benefit evaluation and realize the most profitable or least 
costly disassembly process [6]. The disassembly process 
can be divided into two disassembly types according to 
disassembly level, selective disassembly, and complete 
disassembly [7]. Selective disassembly, also named par-
tial disassembly, pays much attention to the parts worth 
disassembling. The product is fully disassembled in 
completed disassembly to achieve the optimal objective, 
such as the maximum profit or minimum cost. Our work 
focuses on the studying of complete disassembly.

After years of work efforts, plenty of research has been 
conducted on disassembly plans. For example, Giri and 
Kanthababu [8] presented a novel method to produce 
complete disassembly sequences using a part interference 
matrix. The experiment studies verified the technique’s 
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effectiveness. Kheder et  al. [9] proposed a genetic algo-
rithm to determine a feasible disassembly sequence by 
considering several criteria. Hsu [10] developed a fuzzy 
knowledge-based disassembly planning system for disas-
sembly process planning, which was found flexible and 
expandable. Zhang et  al. [11] studied parallel disassem-
bly sequence planning, and a solution method based on 
fuzzy-rough sets is proposed to reduce the time com-
plexity. Subsequently, two cases verified the effectiveness 
of the method. ElSayed et  al. [12] presented a genetic 
algorithm to address the optimal disassembly sequencing 
of EOL products, and a numerical example validated the 
proposed method. Tian et al. [13] focused on an uncer-
tain disassembly environment. In their work, an original 
probability analysis method is proposed, illustrated by 
some numerical examples.

All the above research focuses on complete disassem-
bly. Although the optimal/near-optimal disassembly 
solutions can be solved in these papers, they can only 
determine the disassembly sequences without consider-
ing the operation attributes, referred to as disassembly 
sequence planning (DSP). The selection of disassembly 
directions and tools also significantly affects the quality 
of the disassembly solution, which is out of the scope of a 
DSP. Thus far, a few studies consider the selection of dis-
assembly directions and tools in the DP, such as Kongar 
and Gupta [14] and Tseng et al. [15, 16]. However, they 
do not develop a specific mathematical model to present 
the relationship between disassembly sequence, direc-
tion, and tool. Therefore, this paper presents a math-
ematical model of disassembly planning with operation 
attributes (DPOA), and the integrated decision on the 
disassembly sequence, directions, and tools is made.

The optimal disassembly solution often requires an 
exhaustive search because of the NP-complete character-
istics of the DP problem [17]. It is computationally chal-
lenging to solve medium and large-scale instances by the 
solution methods based on graph theory. Many (meta)
heuristics are widely proposed in the current work to deter-
mine a high-quality disassembly solution [18], for example, 
genetic algorithm [19, 20], particle swarm optimization [21, 
22], Tabu search [23], and ant colony algorithm [24, 25]. Fur-
thermore, the hybrid algorithms of multiple metaheuristics 
are also considered as solution methods for the disassembly 
problem [26, 27]. The artificial bee colony (ABC) algorithm 
is one of the most popular metaheuristics, the effectiveness 
of which is validated in solving disassembly problems [28–
30] and other optimization problems [31, 32]. Moreover, 
ABC is an easy-to-understand technique that can provide 
fast and cost-effective solutions to issues that would other-
wise cost plenty of time.

The solution complexity of DPOA is higher than a single 
DSP problem since the problem is an integrated decision 

problem and more disassembly information is considered. 
Therefore, a neighborhood modularization-based artificial 
bee colony (NM-ABC) algorithm is proposed, which con-
tains a modular optimized design. Two module concept-
based neighborhood structures are developed to improve 
the exploitation ability of NM-ABC in the employed bee 
phase and onlooker bee phase, respectively. They help 
guide the search in a better direction by extracting the sub-
sequence with the best fitness value, making the algorithm 
quickly converge to a high-quality disassembly solution. 
After that, a global optimal solution-based learning strat-
egy is adopted in the scout bee phase to generate a new 
disassembly solution. This strategy guarantees the quality 
of the disassembly solution while avoiding the proposed 
algorithm from falling into the local optimum. Moreover, 
to execute the NM-ABC in solving DPOA efficiently, the 
proposed algorithm’s neighborhood structures and opti-
mization operators are well developed according to the 
problem-specific characteristics.

The contributions of our work are as follows:

(1)	 This work presents a mathematical model of DPOA, 
in which an integrated decision of the disassembly 
sequence, disassembly directions, and disassembly 
tools is made.

(2)	 Module-based crossover (MBX) and module-
based insertion (MBI) neighborhood structures are 
designed in NM-ABC to improve the exploitation 
ability.

(3)	 Experiment results show that NM-ABC can obtain 
a higher-quality disassembly solution than two 
existing algorithms in the same computational time.

The remaining structures of this paper are arranged 
as follows. Section  2 presents the DPOA problem and 
constructs its mathematical model. In Section  3, the 
proposed algorithm, NM-ABC, and its structural design 
are presented. The comparison experiments and com-
putational results on two cases of different scales are 
presented in Section  4. Finally, Section  5 gives the con-
cluding remarks and future scope.

2 � Problem Statement
The process of disassembling EOL products contains 
many operation attributes, which affect the efficiency 
and cost of disassembly. To reduce the impact, the objec-
tive of DPOA is to minimize the penalty costs caused by 
changing the disassembly directions and tools. It is worth 
noting that DPOA is a complete disassembly that sepa-
rates all parts from a product to improve the part recy-
cling rate. Moreover, the mathematical model of DPOA is 
constructed on a series of assumptions listed as follows:
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(1)	 Precedence relationships between tasks must be 
met.

(2)	 EOL products to be disassembled contain all parts 
with no deletions, modifications, or additions.

(3)	 All product parts are detachable.

2.1 � Precedence Relationship Constraints
Due to engineering structure and production technol-
ogy limitations, there is always a particular sequence for 
the connection of tasks, i.e., the precedence relationship 
among tasks. A precedence relationship graph in Kon-
gar and Gupta’s work [14] describes how to construct the 
DPOA in the following paragraphs.

As presented in Figure 1, the example product contains 
ten parts, divided into ten tasks. For this product, there is a 
one-to-one correspondence between parts and tasks. Each 
node i, i = {1, …, N}, denotes a task of the product, where 
N represents the total number of tasks. Furthermore, some 
dummy tasks As, s = {1, …, S}, are used to represent com-
plex precedence relationships. It is worth noting that the 
disassembly of dummy tasks does not consume costs, and 
no additional part is recovered. Node A0 indicates an ini-
tial point that is the product to be disassembled. For exam-
ple, tasks 2 and 3 have arrows pointing to task A1, so task 
A1 can only be disassembled after tasks 2 and 3 are done. 
Similarly, since tasks 5 and 6 are pointed by the arrow from 
task 7, the two tasks can only be performed after task 7 is 
processed. Our work adopts the task precedence relation-
ship matrix P = [pij] to indicate the priority of task execu-
tion [33]. The value of pij is determined by Eq. (1), and the 
task precedence relationship matrix of the product from 
Figure 1 is shown in Eq. (2).

(1)pij =
{ 1 if task i precede task j,
0 otherwise,

2.2 � The Impact of Disassembly Directions and Tools 
on Penalty Costs

The main notations used in our model are shown in 
Table 1.

For the disassembly direction, we use the same design 
as the work of Kongar and Gupta [14], including six 
directions: ±X, ±Y, ±Z. During the disassembly process, 
for the disassembly direction remaining the same, there is 
no additional penalty cost; a penalty cost of 1 is given for 
a 90° change; if a 180° change is a need, the penalty cost is 
2. The penalty cost matrix for the disassembly directions 
is shown in Table 2.

In the disassembly tool, an idea in line with practical 
conditions is proposed to match the change of disas-
sembly tools. If the disassembly tool is not required to 
change, the additional penalty cost is 0; if a different tool 
is adopted, a penalty cost of 1 is given. Eq. (3) illustrates 
the penalty cost caused by the change in the disassembly 
tools. T’i, i = {1, …, N} indicates the tool used to disas-
semble task i.

2.3 � Mathematical Model
The example product from Figure  1 is adopted to help 
illustrate the mathematical model of DPOA. The disas-
sembly information is shown in Table 3.

The total penalty costs for a disassembly sequence are 
related to changing the disassembly directions and tools. 
An example disassembly sequence {2, 3, 9, 8, 7, 1, 10, 5, 
6, 4} is given to help illustrate the impact of disassembly 
directions and tools on penalty costs. For the first two 
tasks in the sequence, i.e., tasks 2 and 3, the disassem-
bly direction of tasks 2 and 3 are the same; both are +X, 
therefore d23 = 0, d12 = 0. Further, we can get the general 
expression of Cd, as shown in Eq. (4):

(2)
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(3)tij =
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j ,
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Figure 1  The task precedence relationships of one example product
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Similarly, for tasks 7 and 1 above positions 5 and 6 in 
the example sequence, the disassembly tool of task 7 is T2; 
the disassembly tool of task 1 is T1; the penalty cost of 1 is 
increased for the tool changed from T2 to T1, that is t71 = 1, 
t56 = 1. Therefore, the general expression of Ct can be rep-
resented by Eq. (5).

(4)Cd =

N−1∑
k=1

dk ,k+1.

(5)Ct =

N−1∑
k=1

tk ,k+1.

The total penalty costs are the summation of the penalty 
costs produced by changing the disassembly directions and 
tools, represented in the followings:

(6)TC = Cd + Ct =

N−1∑
k=1

(dk ,k+1 + tk ,k+1),

(7)Min TC ,

(8)s.t. Ki < Kj , ∀pij = 1,

(9)seq = {x1, x2, ..., xN },

Table 1  The main notations defined in our model

Notations Descriptions

N The total number of disassembly tasks for a product

i, j Task indices, i, j = 1, 2, …, N

F_seq Set of feasible disassembly sequences

k Position indices in the disassembly sequence (The positions in the disassembly sequence 
correspond to the tasks to be processed one by one)

dij Penalty cost of direction change for performing tasks i and j

dk,k+1 Penalty cost of direction change for performing two tasks at the kth and (k+1)th position

Cd Penalty costs of direction change for the disassembly sequence

tij Penalty cost of tool change for performing tasks i and j

tk,k+1 Penalty cost of tool change for performing two tasks at the kth and (k+1)th position

Ct Penalty costs of tool change for the disassembly sequence

Ki Position of task i in the sequence

TC The total penalty costs of performing the disassembly sequence

Decision variables:

seq Index for disassembly sequence

xk The task at the kth position

Table 2  The information on the penalty cost of disassembly direction changing

Parts i/j +X −X +Y −Y +Z −Z

+X 0 2 1 1 1 1

−X 2 0 1 1 1 1

+Y 1 1 0 2 1 1

−Y 1 1 2 0 1 1

+Z 1 1 1 1 0 2

−Z 1 1 1 1 2 0

Table 3  The disassembly information of the example product from Figure 1

Parts/tasks 1 2 3 4 5 6 7 8 9 10

Direction −Z +X +X +Z −Z −Z −Y −X −Y +Y

Tool T1 T1 T1 T2 T1 T1 T2 T2 T2 T2
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Eq. (7) indicates the objective function of our model, 
the purpose of which is to minimize the total penalty 
costs. Eqs. (8)–(11) denote the constraints of this model. 
Eq. (8) solves the task precedence relationships, indi-
cating that tasks must be disassembled by priority. Eq. 
(9) shows the relationship between the two decision 
variables, which represents one disassembly sequence 
containing N positions. Eq. (10) indicates that the dis-
assembly sequence is feasible. Eq. (11) defines that the 
value of Ki and xi can take from 1 to N.

3 � Solution Approach
As a swarm intelligence algorithm, the ABC algorithm 
was developed by Karaboga in 2005 [34]. The ABC 
includes four execution phases: population initializa-
tion phase, employed bee phase, onlooker bee phase, 
and scout bee phase [35, 36]. The random search method 
employed in the basic ABC is easy to fall into the local 
optimum when solving medium/large-scale instances. 
Therefore, a neighborhood modularization-based 

(10)seq ∈ F_seq,

(11)Ki, xi ∈ {1, ...,N }, ∀i = 1, ...,N .

artificial bee colony algorithm (NM-ABC) is developed. 
The proposed algorithm combines a neighborhood struc-
ture based on the modular concept and the mechanism 
of ABCs. The design of NM-ABC considers the problem 
characteristics of DPOA to guarantee the feasibility of 
disassembly sequences. Furthermore, for a clear under-
standing of NM-ABC, the example product from Figure 1 
is utilized to help understand the structures of the algo-
rithm. Figure 2 demonstrates the flow chart of NM-ABC.

3.1 � Food Source
The food sources where bees gather nectar represent the 
set of feasible solutions to the disassembly planning prob-
lem. Based on the characteristics of DPOA in the work, 
an integer vector encoding method is adopted, each ele-
ment of which denotes a task for one product. A random 
integer vector indicates a food source from 1 to N. For 
example, a food source can be seq1 = {2, 3, 10, 9, 8, 7, 5, 1, 
6, 4}, which represents that the first one performed is task 
2, and task 3 is processed at second, and so on.

Besides, the execution of tasks needs to meet certain 
priority relationships. An available task disassembly set 
U (the highest priority task) is developed in our work to 
facilitate the description of the solution encoding. After 

Figure 2  The procedure of NM-ABC
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that, a feasible disassembly sequence seq is produced (see 
the steps below).

•	 Step 1: Start.
•	 Step 2: Determine the current set U of executable 

tasks according to the precedence relationships.
•	 Step 3: If U is null, a feasible disassembly sequence 

seq is generated, and skip to step 6; otherwise, go to 
the next step.

•	 Step 4: Select a task randomly from U and then put it 
into the current position of seq.

•	 Step 5: Update U, go back to step 3.
•	 Step 6: Stop the procedure.

3.2 � Population Initialization Phase
In the basic ABC, three parameters should be considered, 
including the number of food sources (NFS), the num-
ber of iterations (NI), and the maximum number of trials 
(Limit) that is used to determine whether a food source is 
to be abandoned. There are only two bees with the same 
number in the colony in the initialization stage, which are 
the employed bees and onlooker bees respectively. Also, 
the number of employed bees is equal to the number 
of food sources since one employed bee is arranged to 
explore one food source. Furthermore, the initial popu-
lations are randomly produced according to the encod-
ing rules, and the fitness value of each initial food source 
needs to be calculated. The fitness function in NM-ABC 
is the same as the objective function in our model, i.e., 
Eq. (7).

3.3 � Neighborhood Modularization‑based Employed Bee 
Phase

In the employed bee phase, a MBX neighborhood 
structure is designed to improve the exploitation abil-
ity of employed bees. Besides, the precedence relation-
ship of the newly generated food source can be met by 
utilizing this neighborhood structure. Finally, the best 
food sources are preserved through the rules of greedy 
selection.

A schematic diagram in Figure 3 is used to illustrate the 
MBX in our algorithm. Suppose that the food source seq1 
= {2, 3, 10, 9, 8, 7, 5, 1, 6, 4} is in the employed bee search 
phase. Another food source is required to perform MBX 
operation. Therefore, we randomly select a food source 
seq2 = {3, 2, 1, 8, 4, 10, 7, 6, 9, 5} from the remaining food 
sources. The steps below show how MBX extracts the 
module with optimal fitness (abbreviated as the optimal 
module) and produces a new sequence.

•	 Step 1: Randomly select a number from 2 to N−2 
as the size of the module (mod_size). Therefore, 

a sequence can be divided into (N - mod_size + 1) 
modules.

•	 Step 2: Calculate the fitness value of each module. 
Assume the selected number is 3, i.e., mod_size = 3. 
Hence, seq1 has eight modules. The first module of 
seq1 is {2, 3, 10}, and {3, 10, 9} is the second module, 
and so on.

•	 Step 3: Extract a module with the optimal fitness 
value. If there is more than one module with optimal 
fitness values, one module is randomly reserved from 
them. The lowest fitness value is 2. Hence, the mod-
ule {9, 8, 7} is extracted.

•	 Step 4: The two subsequences before and after the 
optimal module need to perform crossover opera-
tions, i.e., {2, 3, 10} and {5, 1, 6, 4}. seq2 maps these 
two subsequences, and two new subsequences {3, 2, 
10} and {1, 4, 6, 5} are obtained, respectively.

•	 Step 5: A new sequence is constructed by MBX, 
seqnew = {3, 2, 10, 9, 8, 7, 1, 4, 6, 5}.

The optimal module satisfies the priority relationships, 
and seq2 maps both the newly produced subsequences 
before and after the optimal module. Since these two 
sub-sequences also meet the priority relationships in 
seq2, the freshly generated sequence by MBX must satisfy 
the priority relationship constraint.

3.4 � Neighborhood Modularization‑based Onlooker Bee 
Phase

In the onlooker bee search phase, each onlooker bee 
will select an employed bee to follow based on a specific 
probability. In our work, roulette is adopted to determine 
the probability. The food source with a better fitness 
value is more likely to be selected.

A module-based insert (MBI) neighborhood structure 
is designed in this stage to obtain food sources with a 
better fitness value. The greed rule is adopted to preserve 
the optimal food source.

A schematic diagram in Figure 4(a) is adopted to illus-
trate the MBI. Assuming there is a sequence seq = {2, 

Figure 3  A schematic diagram of module-based crossover 
neighborhood structure
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3, 10, 1, 9, 8, 7, 5, 6, 4} in the onlooker bee stage to per-
form MBI operation. After MBI operation, a new feasible 
sequence seqnew = {2, 3, 9, 8, 7, 5, 6, 1, 10, 4} is generated 
(see the steps below).

•	 Step 1: Randomly select a number from 2 to N−2 
as the size of the module (mod_size). Therefore, 
a sequence can be divided into (N - mod_size + 1) 
modules.

•	 Step 2: Calculate the fitness value of each module. 
Supposing mod_size = 5, hence, seq1 has 6 modules.

•	 Step 3: Extract a module with the optimal fitness 
value. If there is more than one module with optimal 
fitness values, one module is randomly reserved from 
them. The lowest fitness value is 4. Hence, the opti-
mal module {9, 8, 7, 5, 6} is extracted.

•	 Step 4: For the remaining sequence segmentation {2, 
3, 10, 1, 4}, they are inserted into the optimal module 
in turn under the precedence relationship constraint.

•	 Step 5: Determine the set of positions in the optimal 
module to insert task 2, as shown in Figure 4(b), and 
we find only that position 1 can be inserted. There-
fore, task 2 is inserted in position 1. If more than one 
position can be inserted for a task, choose the posi-
tion to insert that maximizes the fitness value of the 
food source.

•	 Step 6: According to step 5, insert all the tasks in the 
remaining sequence segmentation into the optimal 
module. Therefore, a new feasible sequence seqnew = 
{2, 3, 9, 8, 7, 5, 6, 1, 10, 4} is produced.

All the above steps meet the task precedence relation-
ship. Hence, the newly produced sequence by MBI must 
be feasible.

3.5 � Scout Bee Phase
To avoid the algorithm falling into a local optimum, 
a food source will be discarded when it has not been 
updated for a Limit consecutive generation. Therefore, a 
parameter Trial is adopted to record the number of food 
sources has not been updated. If a food source is not 
updated, Trial = Trial + 1; otherwise, Trial = 0. If Trial 
≥ Limit, this food source will be abandoned, and a new 
food source will be generated by a single point insertion 
(SPI) operation [37] based on the global optimal solution 
learning strategy. It is more likely to obtain a better food 
source by searching near the current optimal food source 
[38]. Figure 5 denotes the process of SPI operation based 
on an example product from Figure 1.

As shown in Figure  5, it is assumed that the current 
optimal sequence to perform SPI in the scout bee phase 
is seq = {2, 3, 10, 9, 8, 1, 7, 4, 6, 5}. The steps below show 
how to generate a new sequence by performing SPI.

•	 Step 1: Randomly select a task as the insertion 
object, supposing task 8 is selected.

•	 Step 2: Find the immediately preceding {2, 3} and 
following tasks {7, 4} of task 8 that satisfy the prec-
edence relationship constraints. Then, the insertable 
position of task 8 is further determined.

•	 Step 3: Randomly select a position and insert task 8. 
If task 8 is inserted into the position between tasks 3 
and 10. Therefore, a new sequence seqnew = {2, 3, 8, 
10, 9, 1, 7, 4, 6, 5} is produced.

The feasibility of the newly produced sequence also can 
be guaranteed since each step of SPI satisfies the prece-
dence relationships.

3.6 � Pseudocode of NM‑ABC
The pseudocode of NM-ABC is presented in Figure 6.

Figure 4  Module-based insert neighborhood structure: (a) a 
schematic diagram of MBI, (b) the set of positions in the optimal 
module

Figure 5  A schematic diagram of SPI
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4 � Computational Examples and Analysis
In this section, two instances with different complexity 
are used to test the performance of the NM-ABC algo-
rithm. The first case to be analyzed is the product from 
Figure  1, and a refrigerator is taken as the second case, 
which is more complex than the first one. Large-scale 
cases contain more operation attributes, the solving dif-
ficulty of which increases exponentially. The NM-ABC 
program is developed in MATLAB 9.8, and the experi-
ments are run on a computer with AMD Ryzen 7 4800U 
CPU @ 1.80 GHz and 16 GB of RAM.

4.1 � Case Study 1
The product case from Figure  1 contains a total of 10 
tasks, and the disassembly information of case study 1 is 
presented in Table  3. Further, some parameters used in 
NM-ABC are set as follows: NFS = 10, NI = 50, Limit = 
5. The experiments were executed five times to converge 
per experiment fully through the proposed algorithm, 
and Table  4 shows the computational results. The first 
and second columns denoted the number of experiments 

and gained the optimal or near-optimal disassembly 
sequence for each run. The third and fourth columns 
are the penalty costs of the corresponding disassembly 
sequence, i.e., the objective value and the execution time, 
respectively.

From Table 4, we find the same optimal objective value 
for each run (7 for 5 times), which shows the stability and 
effectiveness of NM-ABC. Also, the proposed approach 
is efficient since the execution time for each run is less 

Figure 6  The pseudocode of the NM-ABC algorithm

Table 4  Obtained optimal or near-optimal solutions for case 
study 1

Runs The optimal or near-
optimal solutions

Penalty costs Running time (s)

1 {2, 3, 10, 8, 4, 7, 9, 1, 5, 6} 7 1.756

2 {2, 3, 10, 8, 4, 7, 9, 6, 5, 1} 7 1.679

3 {2, 3, 10, 8, 4, 7, 9, 5, 1, 6} 7 1.794

4 {2, 3, 10, 8, 4, 7, 9, 5, 6, 1} 7 2.146

5 {3, 2, 10, 8, 4, 7, 9, 6, 5, 1} 7 2.182
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than 2.2 s. Therefore, it can be concluded that NM-ABC 
is capable to solve the DPOA for case study 1.

4.2 � Case Study 2
The experiments in case study 1 show the feasibility 
and efficiency of the NM-ABC algorithm. A larger-scale 
instance is utilized in this subsection to further validate 
the performance and the availability of the NM-ABC. 
Case study 2 contains more operation attributes, the 
solution complexity of which is higher than the first case. 
The refrigerator with 68 parts from Wang et  al. [39] is 
taken as the second instance, and the parts can be divided 
into 66 tasks. Figures 7 and 8 indicate the 3D diagram for 
the refrigerator, and the task precedence diagram of the 
refrigerator product, respectively. Table 5 represents the 
disassembly data for each task of the instance product.

The parameters used in NM-ABC are set as follows: 
NFS = 20, NI = 100, Limit = 20. Similarly, case study 2 is 
also executed five times as in case study 1 to converge per 

trial fully through the proposed algorithm. Table 6 shows 
the computational results.

Since case study 2 contains too many tasks, the 
obtained optimal or near-optimal disassembly solution is 
not shown in Table 6. For the second instance, NM-ABC 
can generate a satisfactory disassembly sequence in a rea-
sonable time from Table 6. In the five trials, the optimal 
or near-optimal value was 20 for four times, and the value 
for the other time was 21, which shows the effectiveness 
and stability of the algorithm. When the penalty costs is 
20, one of the optimal disassembly sequence is {37, 38, 2, 
31, 32, 29, 3, 18, 1, 22, 4, 19, 33, 5, 30, 6, 34, 11, 35, 40, 8, 
36, 23, 24, 25, 39, 42, 41, 20, 21, 7, 9, 10, 43, 12, 13, 26, 
15, 27, 28, 14, 16, 17, 64, 61, 65, 62, 44, 45, 46, 54, 56, 58, 
55, 57, 47, 48, 49, 52, 53, 59, 50, 60, 51, 66, 63}. Moreo-
ver, the computational time of the instance is about 50 
s, which is also acceptable. It takes more computational 
time than the first case since the second instance is more 
large-scale and complex. NM-ABC also performs well in 
solving case study 2 like the previous case.

4.3 � Algorithm Performance Comparison
To further test the performance of the developed NM-
ABC, taking the above two instances as examples, the 
basic artificial bee colony (ABC) algorithm [40] and the 
genetic algorithm (GA) [41] are used for comparison in 
this subsection. Also, in the other two algorithms, we will 
adopt the same encoding principle, population initiali-
zation, and objective function in each simulation with 
NM-ABC. To guarantee the rationality of the compari-
sons and gain sufficient data, for the different values of 
PopSize (PopSize = 2 NFC) and the computational time 
(CPU time), each of them is implemented ten times since 
the computational processes of the methods have proba-
bilistic and randomized characteristics.

4.3.1 � Comparison Results for Case Study 1
Table 7 shows the computational results and comparison 
for case study 1. The first four columns denote the indices 
of experiments, the computational time (CPU time), the 
population size (PopSize), and the approaches for each 
run, respectively. The last three columns are values of the 
best (fbest), worst (fworst), and average (fmean) fitness values 
solved by the three algorithms for different parameters. 
NM-ABC can gain a minimal penalty cost in each run, 
as shown in Table 4. The other two algorithms can also 
obtain the optimal fitness value but they are not stable 
enough. For fworst and fmean, the value solved by NM-ABC 
is better than the other two methods.

From Table  7, the stability of NM-ABC is superior to 
the other methods under the same computational time 
and parameter settings. Hence, the comparison results 

Figure 7  The 3D diagram for the refrigerator

Figure 8  The precedence relationship of the refrigerator



Page 10 of 13Guo et al. Chinese Journal of Mechanical Engineering          (2022) 35:143 

in Table 7 indicate the superiority of the proposed algo-
rithm for the disassembly planning problem for case 
study 1.

4.3.2 � Comparison Results for Case Study 2
Table  8 shows the comparison results for case study 
2.  Since the product scale and complexity become 
larger, CPU time and PopSize increased to 70 s and 60. 
From Table  8, the minimal penalty cost value solved 
by NM-ABC in the three situations is equal to 20. The 
optimal fitness values solved by basic ABC and GA are 
21 and 28, respectively. For fbest, NM-ABC can obtain 
the best solution in each run, but the other two algo-
rithms do not once. For fworst, the solution value solved 
by NM-ABC also precedes the other two methods, and 
the basic ABC is inferior. The GA has the worst solu-
tion effect and seems not suitable for solving DPOA. 

Table 5  The tasks for disassembly data of the refrigerator

Tasks Removed parts Direction Tool Tasks Removed parts Direction Tool

1 [1, #12, #13, #12, #13] from #2 −X T1 34 Cap-strew #32 −X T1

2 #14 from box #0 −X T1 35 Screws #31 −X T2

3 #15 from box #0 −X T1 36 Cover-pipe #30 −X T1

4 Screws #16 −X T2 37 Screws #51 −X T2

5 Hinge-up #17 −X T1 38 Top-table #45 −X T1

6 Door body #2 −X T1 39 Buttons #46 −X T1

7 Gasket door #1 −X T1 40 Screws #48 −X T2

8 Screws #5 −X T2 41 PCB-panel #47 −X T1

9 Stopper door #4 −X T1 42 PCB wire #49 −X T1

10 Stopper door #3 −X T1 43 Switch-door #50 −X T1

11 Screws #29 −X T2 44 Screws #52 +X T2

12 Hinge-mid #28 −X T1 45 Cover-comp #53 +X T1

13 Door body #7 −X T1 46 Water pans #54 +X T1

14 Gasket door #6 −X T1 47 Process pipeline from #58 +X T4

15 Screws #10 −X T2 48 Fix-earth #55 +X T5

16 Stopper door #9 −X T1 49 Sleeve #56, Shim #57 +X T1

17 Stopper door #8 −X T1 50 Fix-earth screw #60 +X T2

18 Lamp cover #27 −X T1 51 Cover-relay #59 +X T1

19 Screw #22 −X T2 52 Compressor #58 +X T1

20 Temperature control knob #23 −X T1 53 Gasket #61 +X T1

21 Gear #24 −X T1 54 Case-junction #66 +X T3

22 Screws #33 −X T2 55 Overload protector #65 +X T3

23 Thermostat #20 −X T1 56 PTC-relay #64 +X T3

24 Seasonal switch #21 −X T1 57 Wire-relay #63 +X T3

25 Wire #19 −X T1 58 Power-cord #62 +X T3

26 Lamp #18 −X T3 59 Screws #67 +X T2

27 Screws #26 −X T2 60 Compressor chassis #68 +X T1

28 Temperature control box #25 −X T1 61 Leg-front #44 −Z T1

29 Screws #36 −X T1 62 Screws #43 −Z T2

30 Roller-Tray #35 −X T1 63 Hinge-low #42 −Z T1

31 Stopper-EVAP #34 −X T1 64 Leg-front #41 −Z T1

32 Tray-EVAP #37 −X T1 65 Screws #40 −Z T2

33 Evaporator #38 −X T4 66 Reinforcement-leg #39 −Z T1

Table 6  Obtained optimal or near-optimal solutions for case 
study 2

Runs Penalty costs Running time (s)

1 21 51.585

2 20 52.270

3 20 55.976

4 20 49.602

5 20 50.831
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Moreover, the values of fmean solved by basic ABC and 
GA are inferior to NM-ABC.

Due to the larger scale and complexity of case study 2, 
the experimental results can better represent the solution 
performance of these three algorithms. Further, when 

CPU time = 70 s, PopSize = 60, the convergence curve 
graph of the three algorithms by executing an experiment 
on case 2 is obtained, as shown in Figure  9, represent-
ing the penalty cost value tendency. Through the curve 
graph, it is evident that NM-ABC performs better in con-
vergence and effectiveness.

Based on the above description, in both cases, the three 
methods can be sorted from their performance levels as 
NM-ABC > ABC > GA. Moreover, as the value of CPU 
time and PopSize increase, the proposed algorithm can 
obtain higher-quality solutions. One easy conclusion is 
that NM-ABC can efficiently solve our disassembly plan-
ning problem.

5 � Conclusions
This work presents a mathematical model of complete 
disassembly planning with operation attributes. It aims 
to determine a disassembly task sequence with minimal 
penalty cost caused by the change of disassembly direc-
tions and tools. Moreover, a neighborhood modulariza-
tion-based artificial bee colony algorithm (NM-ABC) is 
developed to solve the proposed disassembly planning 
problem. The neighborhood modularization design helps 

Table 7  Result comparison of the three algorithms for case study 1

No. CPU time (s) PopSize Method fbest fworst fmean

1 0.5 2 ABC 7 11 8.2

GA 7 10 8.1

NM-ABC 7 7 7

2 1 2 ABC 7 10 8.0

GA 7 8 7.5

NM-ABC 7 7 7

3 0.5 4 ABC 7 8 7.2

GA 7 8 7.5

NM-ABC 7 7 7

Table 8  Result comparison of the three algorithms for case study 2

No. CPU time (s) PopSize Method fbest fworst fmean

1 50 40 ABC 21 24 22.8

GA 33 46 37.9

NM-ABC 20 21 20.3

2 70 40 ABC 21 24 22.2

GA 32 44 37.6

NM-ABC 20 21 20.1

3 70 60 ABC 22 24 22.6

GA 28 43 36.7

NM-ABC 20 20 20

Figure 9  The convergence curve graph
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guide the search in a better direction by extracting the 
module with the best fitness value. Two different mod-
ule concept-based neighborhood structures and a global 
optimal solution-based learning strategy are employed in 
NM-ABC. Finally, taking two cases of different scales and 
complexity as experiment cases and compared with two 
well-known algorithms, the computational results show 
that NM-ABC can efficiently solve our disassembly plan-
ning problem.

Although the performance of the proposed approach 
has been proven to be superior, there are still some 
limitations. First, more operation attributes, such as 
disassembly time and classes of operations, need to be 
considered in the disassembly process to support the 
disassembly practice. Second, a disassembly uncertainty 
needs to be considered in the disassembly problem of 
EOL products. Finally, developing some more advanced 
and efficient neighborhood structures or metaheuris-
tic algorithms is an interesting research direction in the 
future disassembly field.
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