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Abstract 

Electric cable shovel (ECS) is a complex production equipment, which is widely utilized in open-pit mines. Rational 
valuations of load is the foundation for the development of intelligent or unmanned ECS, since it directly influences 
the planning of digging trajectories and energy consumption. Load prediction of ECS mainly consists of two types of 
methods: physics-based modeling and data-driven methods. The former approach is based on known physical laws, 
usually, it is necessarily approximations of reality due to incomplete knowledge of certain processes, which introduces 
bias. The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise 
but requires a large amount of accurately labeled data to achieve generalization, which introduces variance. In addi-
tion, some parts of load are non-observable and latent, which cannot be measured from actual system sensing, so 
they can’t be predicted by data-driven methods. Herein, an innovative hybrid physics-informed deep neural network 
(HPINN) architecture, which combines physics-based models and data-driven methods to predict dynamic load of 
ECS, is presented. In the proposed framework, some parts of the theoretical model are incorporated, while capturing 
the difficult-to-model part by training a highly expressive approximator with data. Prior physics knowledge, such as 
Lagrangian mechanics and the conservation of energy, is considered extra constraints, and embedded in the overall 
loss function to enforce model training in a feasible solution space. The satisfactory performance of the proposed 
framework is verified through both synthetic and actual measurement dataset.

Keywords:  Hybrid physics-informed deep learning, Dynamic load prediction, Electric cable shovel (ECS), Long short-
term memory (LSTM)
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1  Introduction
Electric cable shovel (ECS) is one of the most essential 
production equipment, which is widely applied in sur-
face-mining operations to peel off the surface cover and 
load ore materials [1]. Currently, the increasing require-
ments of high production efficiency and low operating 
costs have boosted the intelligent or unmanned opera-
tion of ECS [2, 3]. Complex construction machinery 
automation involves a major challenge, that is, the accu-
rate measurement and estimation of the load, which is a 

crucial precondition for the development of intelligent or 
unmanned ECS, since it directly influences the planning 
of digging trajectories and energy consumption.

The load acting on the ECS generally refers to the resis-
tive force between the dipper and surrounding media and 
digging forces, which includes the crowd force and hoist 
force provided by the crowd and hoist motor, respec-
tively. For modeling of the resistive force due to media-
dipper interactions, there is a considerable number of 
methods have been developed [4]. Reece [5] proposed a 
universal earthmoving equation for the cutting model. 
Based on Reece’s model, McKyes et  al. [6] added the 
inertia. The aforementioned methods are mainly based 
on the analysis of mining principles and theoretically 
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deduced, have the advantage of universality in calcula-
tion, and provide insights for resistive force prediction. 
However, the resistive force due to media-dipper inter-
actions not only depends on the physical mechanical 
properties of the excavated medium and the geometrical 
characteristics of the dipper but also is related to other 
effects, such as digging strategies. Therefore, some parts 
of the abovementioned resistive force model are difficult 
to model with a constant analytical expression. For exam-
ple, the normal cutting force, which is perpendicular to 
the speed of dipper teeth, is difficult to express analyti-
cally due to compression because it depends on both the 
digging operation and the medium’s hardness [7].

Digging forces as driving forces are mainly employed 
to overcome two components of external effects, namely, 
the dynamic part of ECS and resistive force between 
the dipper and surrounding media. In recent decades, 
researchers have focused on using the estimated resistive 
force to predict digging forces by establishing kinetics or 
dynamic models of the digging process [8, 9]. For exam-
ple, Stavropoulou et  al. [10] calculated digging forces 
in excavation based on mechanical equilibrium. Wang 
et  al. [11] adopted an analytic model to calculate dig-
ging forces in the mining process based on an empirical 
resistance equation and the Lagrange method. To realize 
the accurate prediction of digging forces, it is necessary 
to accurately establish the kinetics or dynamic models 
of the digging process under the premise of accurately 
simulating the resistive force due to media-dipper inter-
action. In terms of establishing the kinetics and dynamic 
models of the digging process, Li et al. [12], Rasuli et al. 
[13], and Frimpong et  al. [14] developed dynamic mod-
els of the ECS to describe the evolution of the excavator 
motion with time using the Newton-Euler formulation 
or iterative Newton-Euler method. The formulation of 
the dynamic models presented above depends on precise 
knowledge of the various kinematic and dynamic param-
eters. When modeling the ECS system’s dynamic parts, 
such methods make many idealized assumptions about 
the equipment, such as its kinematic structure, inertia 
properties, and assumptions regarding the forces acting 
on the system, which may not capture hard-to-model 
effects, leading to inaccuracies via model bias.

Based on this analysis, the classical mechanistic 
method of predicting load of ECS can be used to deter-
mine only certain parts and aspects, such as the aver-
age value and approximate range, which is insufficiently 
detailed for the optimal digging trajectory planning of an 
unmanned ECS. Recently, with the development of sens-
ing and measurement technology, operation data gen-
erated in practical digging processes can be effectively 
recorded. Furthermore, artificial neural networks (ANNs) 
have been proven to be a powerful tool and approximator 

to capture potential nonlinear coupling between input 
and states of complex systems [15]. These results provide 
many opportunities for the practical application of data-
driven methods to improve the accuracy of dynamic load 
prediction and identification [16]. Data-driven methods 
typically reduce the problem of predicting load to that 
of optimizing the parameters of an expressive function 
class by minimize some form of a prediction loss in an 
end-to-end way [17]. However, there are many circum-
stances where data-driven approaches can reach their 
limits or lead to unsatisfactory results, due to model 
variance [18]. Additionally, some parts of load, such as 
the resistive force due to media-dipper interactions, are 
non-observable and latent which cannot be measured 
from actual system sensing, so they can’t be directly pre-
dicted by data-driven methods. A large number of stud-
ies have shown that neural networks that are endowed 
with good physical priors, namely, physics-informed neu-
ral networks (PINNs), can constrain and boost learning 
within a feasible solution space [19, 20]. PINNs require 
substantially less training data than other models and 
can produce simpler neural network structures while 
achieving high accuracy. Lutter et  al. [21]incorporated 
the physical prior originating from Lagrange mechanics 
into the model architecture of simulated and real robot 
systems. Jia et al. [22] and Muralidhar et al. [23] incorpo-
rated monotonic physical relationships as additional con-
straints in loss functions for a neural network that models 
lake temperature. Zhang et al. [24] embedded the physics 
constraints in the loss function to capture latent nonlin-
ear state variables, where measurement is unavailable.

Herein, we follow this line of research and develop a 
hybrid physics-informed deep neural network (HPINN) 
framework that combines first-principles models and 
data-driven methods, to improve the performance of 
load predictor. More concretely, for modeling of the 
resistive force due to media-dipper interactions, it deli-
cately incorporates some parts of the theoretical model 
of the resistive force, while capturing the difficult-to-
model parts by training a highly expressive approxima-
tor, such as an LSTM neural network from data. In terms 
of modeling the digging forces, it establishes the kinetics 
and dynamic models of the digging process, and a novel 
extended deep Lagrangian networks (DeLaN) is applied 
to model the system’s dynamic part, including the inertial 
effect, quality matrix, and gravity. The proposed frame-
work presents salient features that include ① the combi-
nation of the flexibility of deep learning with theoretical 
insights, ② distinct interpretability with physical mean-
ing, and ③ some variables with specific physical mean-
ing that cannot be directly measured can be accurately 
modeled.
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The remainder of this paper is organized as follows: 
Section  2 describes the mathematical definition of load 
modeling, theoretical background for the resistant force 
model, foundations of Lagrangian dynamics, and some 
preliminaries on LSTM. Section  3 introduces the pro-
posed HPINN architectures for dynamic load prediction. 
In Section 4, a synthetic dataset is used to test the per-
formance of the proposed framework. In Section  5, the 
effectiveness of the proposed framework is validated with 
an actual measurement dataset from an ECS prototype 
and compared with the classical mechanistic method 
and pure data-driven method. Section 6 summarizes the 
conclusions.

2 � Background
The framework for dynamic load prediction proposed in 
this paper draws inspiration from various fields, includ-
ing the resistive force model, classical mechanics, and 
advanced machine learning methods, such as PINNs.

2.1 � Problem Definition
As a complex multidisciplinary system, an ECS consists 
of three major assemblies, namely, the upper assembly, 
lower assembly, and front-end attachments, as illustrated 
in Figure 1. Among them, the attachments, consisting of 
the boom, hoist ropes, crowd machinery, dipper handle, 
and dipper, etc., are the main operating mechanism that 
directly contacts the media to complete the digging task.

While digging, two types of motions are simultane-
ously performed by the dipper handle: extension/retrac-
tion motion in the direction parallel to the major axes 
of dipper handle and circular motion around the axis of 
crowd gear. Therefore, the digging mechanism of ECS 
can be considered as a two degree of freedom (DOF) 
mechanism. Based on the motion characteristics, a polar 
coordinate system is established to describe the dynamic 
system, as illustrated in Figure  2, where the axis of the 
crowd gear, O, is set to be the origin; the stretching length 

of dipper handle is set to be the polar diameter (r), and 
the angle between vertical direction and axes of dipper 
handle is set to be the independent variable (ψ).

Generally, three main factors affect the dynamic load of 
ECS in practice: trajectory parameters (e.g., velocity and 
acceleration), ore pile parameters (e.g., material mechani-
cal properties and terrain of the ore pile), and structural 
parameters (e.g., dipper width and boom length). Since 
the structural parameters are static and remain relatively 
unchanged during the digging process, the mapping rela-
tionship among the digging trajectory, ore pile param-
eters, and corresponding dynamic load is considered in 
this paper.

Based on sensor measurements, the dipper motion 
information (consisting of the angle between the verti-
cal direction and the axis of dipper handle ψ , stretching 
length of dipper handle r , the angular velocity of dip-
per handle ψ̇ , stretching velocity of dipper handle ṙ , the 
angular acceleration of dipper handle ψ̈ , the stretching 
acceleration of dipper handle r̈ ), and the correspond-
ing digging forces (consisting of the hoist force Fr and 
crowd force Fh ) can be synchronously acquired at every 
moment. A 3D scanner is used to measure the profile of 
the ore pile being excavated, and the obtained laser scan-
ning data can be applied to establish an accurate geomet-
ric model, which is capable of describing the dynamic 
shape of the ore pile, as shown in Figure 3. The digging 
is a dynamic process, and based on the obtained 3D 
model, the digging depth d corresponding to the digging 
trajectory can be obtained. In the digging process, the 
medium loaded into the dipper continues to accumulate. 
Therefore, the mass, moment of inertia, and centroid of 
the dipper-material system are constantly changing, and 
the required digging force depends not only on the cur-
rent working conditions but also on the historical digging 
trajectory. Essentially, dynamic load prediction can be 

Figure 1  For a WK-55-type electric shovel, the capacity of the dipper 
is 55 m3

Figure 2  Polar coordinate system built in the dynamic analysis
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summarized as a time series modeling task. For simplic-
ity, let x = [ψ , r, ψ̇ , ṙ, ψ̈ , r̈, d] and y=[Fr , Fh, Ft , Fn] . The 
goal of load prediction is to find a suitable function f  that 
can efficiently and accurately map from input x to dig-
ging forces y , e.g.,

In addition, the non-observable variable (e.g., the resis-
tive force due to media-dipper interactions) which is not 
measured in data, and cannot be directly modeled and 
solved. We can introduce available prior physics knowl-
edge (e.g., Lagrangian mechanics, the conservation of 
energy) as extra constraints into the function f  for indi-
rectly solving the latent variable.

2.2 � Digging Resistance Model
During the digging process, the dipper interacts with the 
excavated material, and the excavated material produces 
a great resistance to the dipper originating from the pres-
ence of surcharge, cohesion, etc. As mentioned, empirical 
equations of modeling the resistance of complex digging 
process may not be reliable, but give insights on digging 
resistant force prediction. Figure  4 shows the various 

(1)(x0, x1, · · · , xt−1, xt) →
f yt .

forces components due to the interaction of media tools 
that the dipper needs to overcome during the digging 
process. Ft is the tangential resistance parallel to the 
direction of tip motion; Fn is the normal resistance nor-
mal to the direction of tip motion, and G is the gravity of 
the medium loaded in the dipper.

Herein, the dynamic prediction model of the dig-
ging resistant force based on the method of trial wedges 
proposed by McKyes et  al. [6] is selected to predict the 
tangential resistance. With this method, the tangential 
resistance can be divided into three parts, including the 
cutting resistance tangential components Fc , the veloc-
ity effect resistance Fv , and the resistance caused by the 
extrusion from the two sides of the dipper Fs.

where Fc can be obtained as Eq. [6].

where ω is the dipper width, γ is medium specific mass, 
d is the digging depth, c is the medium cohesion, v is the 
speed of dipper teeth, β is the digging angle, ρ is the fail-
ure plane angle, ψ denotes the internal friction angle of 
the medium, and δ denotes the external friction angle.Fv 
and Fs can be obtained through Eqs. (4) and (5).

When the dipper cuts through the medium, the bot-
tom of the tip compresses the medium, thus, the normal 
resistance due to the extrusion reaction arises whose ori-
entation is perpendicular to the speed of dipper teeth. 
And it’s difficult to obtain an analytical expression of the 
normal resistance Fn because it depends on both digging 
operations and the medium’s hardness. Usually, the value 
is obtained by multiplying the tangential cutting resist-
ance by a factor obtained from experience [7]. However, 
in this article, we use a neural network to represent the 
normal resistance:

(2)Ft = Fc + Fv + Fs,

(3)







Fc = ω

�

γ gd2Nγ + cdNc + γ v2dNa

�

,

Nγ = 0.5(cot β + cot ρ)/EN ,

Nc = [1+ cot ρ cot (ρ + ϕ)]/EN ,

Na = [tan ρ + cot (ρ + ϕ)]/[1+ tan ρ cot β/EN ],

EN = cos (β + δ)+ sin (β + δ) cot (ρ + ϕ),

ρ = (π− ϕ),

(4)Fv =
ωdν2γ [tan ρ sin(ρ + ϕ)+ cos(ρ + ϕ)]

sin(β + δ + ρ + ϕ)(1+ tan ρ cot β)
,

(5)

Fs =
2d3γ (cot β + cot ρ) sin(β + δ)

√

cot2 ρ + cot β cot ρ
3ω sin(β + ρ + ϕ + δ)

.

(6)Fn = fθ (x0, x1, · · · , xt−1, xt).

Figure 3  Constructing the ore pile surface

Figure 4  Resistive force analysis of the digging process
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2.3 � Deep Lagrangian Networks (DeLaN)
The purpose of establishing dynamic models of the dig-
ging process is to predict how the state of the system 
evolves over time by a vector of generalized variables 
q ∈ R

N and velocities q̇ ∈ R
N , where N is the number of 

coordinates. DeLaN uses knowledge originating from the 
Euler-Lagrange equation and encodes this prior within 
a flexible deep learning architecture [21]. Based on this 
architecture, all learned models adhere to Lagrangian 
mechanics. Specifically, the Lagrangian of a rigid body is 
generally defined as

where T = 1
/
2q̇H(q)q̇ is the kinetic energy, V is the 

potential energy, which can be defined as a scalar func-
tion V(q), and H is the positive definite mass matrix. Sub-
stituting L into the Euler-Lagrange differential equation 
yields the second order ordinary differential equation 
(ODE) described by:

where τ represents the nonconservative generalized 
forces, for ECS system, mainly refers to motors force 
effects and the resistive force due to media-dipper inter-
action, c describes Coriolis and centripetal effects, and 
−∂V

/
∂q is gravity [25]. In DeLaN, the unknown func-

tions H(q) and V (q) are represented as a feed-forward 
network, i.e.,

where ⌢.  refers to an approximation, ⌢L is a lower triangu-
lar matrix with a nonnegative diagonal, and θ1 and θ2 are 
the network parameters, and one can encode the ODE 
by exploiting the full differentiability of the neural net-
works. The parameters θ1 and θ2 can be learned online 
and end-to-end by minimizing the violation of the physi-
cal law described by the ODE. The basic architecture of 
the DeLaN [26] can be found in Figure 5.

2.4 � Long‑Short‑Term Memory Networks (LSTM)
LSTMs have achieved state-of-the-art performance in a 
range of different domains comprising sequential data, 
such as natural language processing (NLP) [27], load 
prediction [28], and remaining useful life (RUL) estima-
tion [29]. In Figure 6, we show a typical structure of an 
LSTM’s hidden nodes incorporating four interacting 
units, including an internal cell, an input gate, a forget 

(7)L = T − V ,

(8)

H(q)q̈ + Ḣ(q)q̇ −
1

2

(
∂

∂q

(

q̇TH(q)q̇
))T

︸ ︷︷ ︸

:=c(q,q̇)

−
∂V

∂q
= τ ,

(9)







⌢

H=

⌢

L(q;θ1)
⌢

LT(q;θ1),

⌢

V =

⌢

V (q;θ2),

gate, and an output gate [30]. The internal cell memorizes 
the cell state at the previous time step via a self-recurrent 
connection. The input gate controls the flow of input 
activation into the internal cell state. The output gate 
regulates the flow of output activation into the LSTM 
cell output. The forget gate scales the internal cell state, 
enabling the LSTM cell to adaptively forget or reset the 
cell’s memory [24]. Specifically, given the previous hidden 
output ht−1 , cell state memory Ct−1 , and current input xt , 
the current hidden output ht can be computed in the fol-
lowing way:

(10)







it = σ

�

U [i]xt +W [i]ht−1

�

,

f t = σ

�

U [f ]xt +W [f ]ht−1

�

,

ot = σ

�

U [o]xt +W [o]ht−1

�

,

c̃t = tanh
�

U [g]xt +W [g]ht−1

�

,

ct = ct−1 ⊙ f t + c̃t ⊙ it ,

ht = tanh(ct)⊙ ot ,

Figure 5  Structure of DeLaN

Figure 6  Structure of LSTMs
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where σ is the logistic sigmoid function, ⊙ represents 
for the Hadamard product, and U [ζ ] ( W [ζ ] ) denotes the 
weight matrix between the current input xt(ht−1 ) and the 
operations ζ(ζ ∈ i, f , o, g).

3 � Methodology
In the proposed framework, we incorporate available 
physics information (e.g., theoretical model of digging 
resistant force, Lagrangian mechanics, and energy con-
servation) into the PINN architecture to predict the 
dynamic load under different positions and postures of 
the ECS during digging process.

3.1 � Overall Framework
In its most general form, we model the continuous-time 
dynamic digging process of an ECS by modeling ① the 
digging resistant force between the dipper and the sur-
rounding medium, and ② the dynamic part, including 
the inertial effect, Coriolis and centripetal effects, and 
gravity. The overall framework of the HPINN mainly con-
sists of four components, namely, an empirical resistance 
equation for modeling the tangential digging resistance, 
a deep LSTM network for modeling the normal digging 
resistance, and a central finite difference filter-based 
numerical differentiator for calculating the derivatives of 
the kinetic energy with respect to time, as described in 
Figure 7.

For modelling of the digging resistant force, we use an 
empirical resistance equation proposed by McKyes et al. 
[6] to model the tangential resistance, which is mainly 
related to the physical mechanical properties of the exca-
vated medium, and has an analytical expression. Different 
from the classical mechanistic model, which calculates 
the normal digging resistance based on the tangential 
digging resistance multiplied by a proportionality coeffi-
cient, in this paper, we present a methodology for mod-
eling the difficult-to-model normal digging resistance Fn 
using an LSTM network with the trainable weights and 
biases contained in θ . The normal digging resistance is a 
function of the digging trajectory, digging speed and dig-
ging depth. Therefore, the input of the LSTM network 
includes digging trajectory, digging speed and the digging 
depth corresponding to the digging profile. The digging 
trajectory and digging speed can be obtained directly 
through sensor acquisition, and the digging depth can 
be calculated according to the digging trajectory and the 
shape of ore pile. Since the digging resistance is generated 
by the contact between the dipper and the surrounding 
medium, which cannot be directly measured, in order to 
establish end-to-end supervised training, the output of 
the LSTM network needs to be projected into the gener-
alized coordinates to participate in the calculation as part 
of the mechanical equation.

Akin to Lutter et  al. [21], we incorporate the physical 
prior of Lagrangian mechanics into the framework to cal-
culate the dynamic part of the ECS. Meanwhile, there are 
key distinctions between the approaches. As previously 
mentioned, during the digging process, the mass, rota-
tional inertia, and centroid of the dipper-medium sys-
tem are related not only to the current position but also 
to the digging profile that the dipper has traveled, which 
can be summarized as a time series modeling task. It is 
known that LSTM is uniquely capable of modeling long-
term dependence in time series data. In order to capture 
the sequence-to-sequence input-output relationship, 
we extended the DeLaN using an LSTM neural network 
instead of a feed-forward network as the baseline neural 
network model. All parameters of the extended DeLaN 
are contained in ϑ . The input of DeLaN is the sensor data 
sequence collected during the digging process, including 
digging trajectory, digging speed, digging acceleration 
and digging depth information calculated according to 
the digging profile and the shape of ore pile, and the out-
put is the dynamic part of the system.

3.2 � Loss Function
Having established the parameterization for the model 
of the complex digging process, we now discuss how to 
optimize these parameters from data using standard end-
to-end optimization techniques. With the available train-
ing data, the “Lagrangian mechanics loss function” of the 
HPINN can be formulated as Eq. (11).

where N represents the number of measurement (data) 
samples, T is the number of sampling steps in the time 
series, f −1(ϑ) denotes the inverse model of Eq. (9), which 
is the dynamic part of ECS, and τM denotes the external 
forces, including motor forces {Fr , Fh} projected to the 
generalized coordinate and the interaction force between 

(11)

Jd(θ ,ϑ) =

N∑

i=1

T−1∑

t=0

∥
∥
∥τ

M
(i)
t
− f −1(ϑ)

(i)
t

∥
∥
∥ + �Ω(θ ,ϑ),

Figure 7  The proposed HPINN architecture
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the dipper and the surrounding medium {Ft , Fn} . θ and 
ϑ are the trainable weights and biases of the extended 
deep Lagrangian network and LSTM, respectively. � is 
a suitable hyperparameter that controls the regulariza-
tion strength. Ω denotes the regularization term, and 
Ω =

∑

ω∈{θ ,ϑ} ω
2 , where ω is the parameter to be trained.

In addition to the Lagrangian mechanics objective, ECS 
needs to observe the conservation of energy that is the 
total energy of the system must be equal at every moment 
during its operation. This objective can also be expressed 
using the change in energy, i.e.,

In particular, the derivatives of kinetic energy with 
respect to time, namely, dT

/
dt , respectively, cannot be 

computed using automatic differentiation, as t is not an 
input of the network. Thus, we developed a central finite 
difference filter-based numerical differentiator for the 
calculation. Adding energy conservation to the optimiza-
tion problem yields “energy loss” for the HPINN.

As a result, the proposed HPINN architecture can be 
trained by solving the following optimization problem 
through a standard training algorithm (e.g., gradient 
descent):

where J (θ ,ϑ) is the generic total hybrid loss function 
composed of both data loss and domain loss, as follows:

where, α and η are user-defined hyper-parameter deter-
mining the weight of each term in the objective function 
for convergence control (e.g., inversely proportional to 
the magnitude of each term, or for simplicity α = η= 1). 
The purpose here is to optimize the network parameters 
{θ ,ϑ} for both the deep LSTM networks and extended 
DeLaN, such that the HPINN is able to accurately fit 
the measurement samples while meeting the domain 
constraints. This process improves the capabilities of 
the HPINN to model potential nonlinear, sequence-to-
sequence, input-output relationships within a physically 
feasible solution space.

4 � Experimental Investigation on Synthetic Dataset
To comprehensively demonstrate the applicability and 
superiority of proposed framework, as well as the abil-
ity of accurately model latent variables that cannot be 

(12)Ė = τMq̇ = Ṫ + V̇ .

(13)J e(θ ,ϑ) =

N∑

i=1

T−1∑

t=0

∥
∥
∥Ṫ

(i)
t + V̇

(i)
t − τ

M
(i)
t
q̇
(i)
t

∥
∥
∥ .

(14)
{

⌢

θ ,
⌢

ϑ

}

= arg
{θ ,ϑ}

min J (θ ,ϑ),

(15)J (θ ,ϑ) = αJd(θ ,ϑ)+ ηJ e(θ ,ϑ),

directly measured but have specific physical meaning, a 
synthetic dataset, which from the ideal dynamic equation 
of WK-55-type ECS, is used to test. Latent variable values 
cannot be obtained from field measurements, but they 
have explicit values when synthesizing a dataset.

4.1 � Dataset Preparation
To generate a synthetic dataset for model training, we 
first need to describe the digging trajectory of the ECS. 
As described in Section  2, the hoist motor and crowd 
motor cooperate to drive the dipper teeth along a prede-
termined trajectory and complete a digging task. Here, 
two sixth-order polynomials are applied to describe the 
digging trajectory, as given in Ref. [11]. The digging tra-
jectory is formulated as

where a0∼6 and b0∼6 denote polynomial coefficients, sx 
and sy are the positions of the dipper tip in the horizontal 
and vertical directions based on the reference Cartesian 
coordinates.

Figure  8 shows the trajectory of a dipper tip of the 
excavator during the digging stage using two sixth-order 
polynomials. The origin of the digging cycle is at the bot-
tom of media point B, and the end of the cycle is at point 
C. The ECS is located on the A-B plane.

By solving inverse kinematics of the shovel, the motion 
information of the joint space in the digging process can 
be obtained, including the angle between the vertical 
direction and the axis of the dipper handle ψ , the stretch-
ing length of the dipper handle r, the angular velocity of 
the dipper handle ψ̇ , the stretching velocity of the dipper 
handle ṙ , the angular acceleration of the dipper handle 
ψ̈ , and the stretching acceleration of the dipper handle 
r̈ . The digging resistive forces were calculated based on 

(16)

{

sx(t) = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t + a0,

sy(t) = b6t
6 + b5t

5 + b4t
4 + b3t

3 + b2t
2 + b1t + b0,

Figure 8  The Cartesian coordinate system built to describe the 
digging trajectory
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the method of trial wedges proposed by McKyes et al. [6]. 
Then based on the dynamic Eq. (17), the corresponding 
digging forces can be calculated.

where Lb is the length of the dipper handle, Ld is the 
length of the dipper, Fr is the hoist force, Fh is the crowd 
force, Fn is the normal excavating resistance, Ft is the tan-
gential excavating resistance, ϑ is the angle between the 
hoist rope and dipper handle. mb is the mass of dipper 
handle, md is the total mass of the dipper including the 
mass of the dipper itself m0 and the mass of the loaded 
material mt ( md = m0 +mt ). And the related parameter 
values of the shovel in simulation can be found in Ref. 
[11].

To generate the input-output pairs provided for model 
training and testing, the different coefficients of the poly-
nomial in Eq. (16) are chosen to obtain different digging 
trajectories. The total time in digging is set to 12 s and 
sampling time interval is set to 0.1 s. Based on the inverse 
kinematics and dynamics of the shovel, 1000 time series 
samples can be obtained. The entire dataset is randomly 
divided into two parts, including the training dataset 
with 800 samples, and test dataset with 200 samples. In 
practical, due to the unevenness of trajectories in real 
digging, vibration and shock occur during digging, and 
noise interference inevitably exists in measurement data, 
which may have a substantial impact on performance. 
To further examine the noise immunity of the proposed 
framework, we also added random errors of ±5%, ±10%, 
±15%, ±20% and ±25% in positions (ψ, r), velocity ( ψ̇ , 
ṙ ), acceleration ( ψ̈ , r̈ ) and forces ( Fr , Fh ) components, 
respectively.

4.2 � Measurement Indexes
The prediction results were evaluated based on three 
performance metrics, i.e., R-squared (R2), mean absolute 
error (MAE) and root mean square error (RMSE).

(17)







[

mb
(

r2 − Lbr + 1
3L

2
b

)

+md
(

r2 + Ldr + 1
3L

2
d

)]

ψ̈ + · · ·

[
2
(
mb +md

)
· r −

(
mbLd −mdLd

)]
ψ̇ · ṙ + · · ·

[

mbg sinψ
(

r −
Lb
2

)

+mdg sinψ
(

r +
Ld
2

)]

= Fr · r · sin ϑ − Ft ·
(
Ld + r

)
,

(
mb +md

)
r̈ −

[(
mb +md

)
· r − 1

2
(
mbLb −mdLd

)]

ψ̇2
− · · ·

(
mb +md

)
g cosψ = Fh − Fn − Fr · cosϑ ,

(18)R2 = 1−
1

N

N∑

i=1

T−1∑

t=0

(

⌢
y
(i)

t − y
(i)
t

)2

T−1∑

t=0

(

y
(i)
t − y(i)

)2
,

where N represents the number of samples, T represents 
the number of sampling steps in the time series, and ⌢y

(i)

t  , 
y
(i)
t  represent the predicted value and actual value, respec-

tively, at time step t for the n-th sample, respectively. y(n) 
is the average value of the n-th sample. The R2 is closer to 
1, the better the performance is. MAE is used to estimate 
the difference between the ground-truth value and pre-
dicted value. This function has strong robustness to large 
errors, and RMSE also reflects the discreteness of the 
model. However, compared with the MAE, RMSE is more 
sensitive to large errors because the error is squared, and 
large errors are further amplified. These three indices can 
be utilized to evaluate the performance of this framework 
from different perspectives.

4.3 � Experimental Results and Discussion
The experimental data modeling was performed on a 
computer with an Intel Xeon Silver 4114 CPU at 2.2 
GHz, 64 GB RAM and an NVIDIA Tesla P100 graphics 
card. The framework is coded by the authors in PyTorch 
and set as follows: the LSTM network in the proposed 
HPINN architecture has two LSTM layers and one fully 
connected layer. The hyperbolic tangent function (tanh) 
is employed as the nonlinearity, and the standard auto-
matic differentiation toolkit is used to compute the gradi-
ents of H(q, d; θ) with respect to q . The learning rate for 
the proposed hybrid deep neural network is set to 0.001, 
and the Adam optimizer is selected as the optimizer.

The prediction results of digging forces under different 
noise levels are shown in Tables 1 and 2. It can be seen 
that the performance of HPINN decreases as the noise 
level increases, but still has high accuracy. For intuitive 
comparisons, the hoist force and crowd force predicted 
by the HPINN and real values are also provided in Fig-
ures 9 and 10. It can be seen from Figures 9 and 10 that 
digging forces can be accurately predicted, which indi-
cates that the proposed framework is still able to provide 
competitive prediction results even if the level of noise is 
relatively high at 25%.

The HPINN embedded available physics information in 
model, which has the advantage of clear interpretability 
with physics meaning. Therefore, it can not only accu-
rately fit the visible variables, but also accurately predict 
hidden variables. The prediction results of the normal 
digging resistance under different noise levels are shown 

(19)MAE =
1

N

N∑

i=1

1

T

T−1∑

t=0

|
⌢
y
(i)

t − y
(i)
t |,

(20)RMSE =

√
√
√
√

1

N

N∑

i=1

1

T

T−1∑

t=0

(

⌢
y
(i)

t − y
(i)
t

)2

,
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in Table  3 and Figure  11. It can be observed that the 
HPINN is able to provide reasonable predictions under 
different noise levels, which implies that the proposed 
framework can successful capture the latent nonlinear 
expressions of normal digging resistance.

5 � Experimental Investigation on Real‑world 
Dataset

For the aim of testing and evaluation, we conducted dig-
ging experiments and used sensors to record operat-
ing data. The performance of the HPINN is compared 
to that of the classical mechanistic model and a purely 
data-driven method, that are most common dynamic 
load prediction methods, to verify its effectiveness and 
superiority.

5.1 � Experimental Setup
As shown in Figure 12, the experimental equipment used 
here is an intelligent ECS prototype, that is a 1:7 scale 
model of the WK-55-type, and the capacity of the dipper 
is about 0.16 m3. The main geometry and physical data 
of the digging device are listed in Table 4, and the corre-
sponding explanatory diagram is illustrated in Figure 13. 
The hardware for synchronous data acquisitions mainly 
consists of an industrial computer, a LiDAR for obtain-
ing information about the material to be excavated, two 

Table 1  Prediction performance of hoist forces at different noise 
levels

Noise levels Metrics

RMSE× (105) MAE × (105) R2

0 0.55 0.46 0.99

5% 0.78 0.61 0.99

10% 1.19 0.91 0.97

15% 1.75 1.36 0.95

20% 2.61 2.08 0.89

25% 2.83 2.20 0.88

Table 2  Prediction performance of crowd forces at different 
noise levels

Noise levels Metrics

RMSE× (105) MAE × (105) R2

0 0.47 0.36 0.99

5% 0.52 0.40 0.99

10% 0.73 0.59 0.98

15% 0.86 0.64 0.98

20% 1.33 1.04 0.96

25% 1.46 1.11 0.95

Figure 9  Prediction results of hoist force under different noise levels
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crowd/hoist motor encoders for obtaining position infor-
mation. And digging forces is uploaded through the drive 
inverter. Experiments were carried out on a test site con-
structed from real mine materials, and the whole digging 
operations are shown in Figure 14.

To obtain sufficient training data, 500 complex pile 
digging experiments are carried out, and the number of 
training samples and test samples are set to 400 and 100, 
respectively. To verify the effective of the HPINN, a pure 
data-driven method without including physics is con-
structed, which have two LSTM layers and one fully con-
nected layer, and the Adam optimizer and mean-square 

error (MSE) are selected as the optimizer and data loss 
function, respectively.

5.2 � Experimental Results and Discussion
This section presents experimental results of the pro-
posed HPINN for dynamic load prediction on a real-
world dataset. The prediction results were evaluated with 
performance metrics used in Section 3, and the digging 
forces prediction results are shown in Table 5. The hoist 
and crowd forces predicted by the HPINN, classical ana-
lytical method and pure data driven method are also pro-
vided in Figure  15 for intuitive comparisons. According 
to Table  5, the HPINN outperforms the classical ana-
lytical method and pure data-driven method on the real-
world datasets, i.e., the RMSE and MAE are smaller and 
the coefficient of determination, R2, is higher. More con-
cretely, the RMSE of the proposed framework is 31.8 %, 
21.7% less than that of the classical analytical method and 
pure data-driven method, respectively. The MAE of the 
proposed framework is 27.9%, 13.2% less than that of the 
classical analytical method and pure data-driven method, 
respectively. Moreover, the R2 of the proposed method 
is 8.6%, 2.3% higher than that of the classical analytical 
method and pure data-driven method, respectively. These 
results verify the applicability and superiority of the pro-
posed framework in dynamic digging force prediction.

Figure 10  Prediction results of crowd force under different noise levels

Table 3  Prediction performance of the normal digging 
resistance at different noise levels

Noise levels Metrics

RMSE× (103) MAE × (103) R2

0 17.21 12.08 0.99

5% 17.31 12.14 0.99

10% 23.65 19.00 0.99

15% 29.52 23.89 0.98

20% 45.24 31.64 0.96

25% 49.60 35.02 0.94
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As shown in Figure 15, compared with the classical ana-
lytical method, the predicted curves of HPINN and pure 
data driven method are more consistent with the ground-
truth curve. And the classical analytical method can pre-
dict the changing trend of crowd force and hoist force to 
some extent but cannot make accurate predictions. The 
main reason lies in that classical analytical approaches 

are mainly derived from physics and make many ideal-
ized assumptions about the system and excavated mate-
rial, such as its kinematic structure, inertia properties, 
assumptions regarding the forces acting on the physical 
system, and the assumption that the excavated material 
is uniform, continuous and isotropic, which may fail to 
capture hard-to-model effects, causing inaccuracies via 
model bias. Moreover, the classical method assumes or 
simplifies the dynamic digging process as a steady pro-
cess and does not consider the influence of time-varying 
dipper penetration and digging speed. Therefore, this 
approach can predict only a range of crowd force and 
hoist force and cannot sensitively capture small changes.

Figure 11  Prediction results of normal digging resistance under different noise levels

Figure 12  Experimental equipment: ECS prototype of the 1/7 scale 
model

Table 4  Structural parameters of the ECS prototype working 
device

Parameter Value Parameter Value

rw (m) 0.18 EF (m) 0.50

lh (m) 1.98 PF (m) 0.53

ld (m) 0.46 ED (m) 0.51

Vr (m
3) 0.16 αb (°) 45.00

Lbi (m) 2.13 md (kg) 364.10

Lbj (m) 0.76 mh (kg) 129.38
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Both pure data-driven method and HPINN are able to 
produce reasonable predictions of digging forces, and the 
HPINN slightly yields better prediction on whole ten-
dency, which implies that the proposed framework pro-
vides reasonable nonlinear expressions and can capture 
latent correlations for the complicated time-dependent 
data. In many cases, purely data-based methods, in par-
ticular deep learning models, which ground in the nature 

of data-based and captures rules present in the training 
data, may reach their limits and produce inaccurate pre-
diction results, due to model variance. Additional, pure 
data-driven method works in an end-to-end manner and 
cannot model non-observable variables. The HPINN 
combines the flexibility of deep learning with the theo-
retical insights of physics and retains certain physical 
interpretability, which explores a deeper coupling of ML 
methods with scientific knowledge. HPINN only restricts 
the system to comply with general laws of physics, such 
as energy conservation and force balance, and does not 
impose too many constraints on the system, so that 
the model maintains greater flexibility. Moreover, the 
change of some underlying variables with specific physi-
cal meanings can be obtained by using the framework 
proposed in this paper, such as resistive force, potential, 
and kinetic energies, which are not observable and hence, 
cannot be learned supervised. In this paper, the resistive 
force between the dipper and surrounding media is ana-
lyzed, and compared with traditional classical analytical 
method. The tangential component and normal compo-
nent of the resistance are illustrated in Figure 16.

During real digging, it is difficult for the bucket to enter 
the material at the ideal cutting angle, and the material 
will inevitably be squeezed, so the normal resistance is 
related to both the digging operation and the medium’s 
hardness, and has a relatively complex expression. There-
fore, the normal resistance cannot be obtained simply by 
multiplying the tangential resistance by the coefficient.

6 � Conclusions

(1)	 This paper presents a hybrid physics-informed deep 
neural networks framework, named the HPINN, 
which combines first-principles method and data-
driven modeling, to predict dynamic load of the 
ECS.

(2)	 In the proposed framework, some parts of the theo-
retical model of the resistive force are incorporated, 
while capturing the difficult-to-model part by train-
ing a highly expressive LSTM neural network with 
data.

(3)	 The HPINN can not only accurately fit the visible 
variables, but also accurately predict hidden vari-
ables.

(4)	 The HPINN combines the flexibility of deep learn-
ing with the theoretical insights of physics and 
retains certain physical interpretability, achiev-
ing a deep coupling of ML methods with scientific 
knowledge.

(5)	 Both synthetic data and actual measurement data-
set are used to validate the proposed framework, 

Figure 13  Explanatory diagram of the ECS prototype working device

Figure 14  The whole digging operations

Table 5  Performance comparison of digging forces on real-
world measurement data

Methods Metrics

RMSE MAE R2

Analytical method 939.69 700.46 0.81

Pure data-driven 819.19 581.99 0.86

HPINN 641.04 504.97 0.88
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which can also provide a competitive prediction 
performance with different noise levels.
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