
Liu et al. 
Chinese Journal of Mechanical Engineering            (2023) 36:8  
https://doi.org/10.1186/s10033-023-00837-1

ORIGINAL ARTICLE

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Chinese Journal of Mechanical Engineering

A Compensation Algorithm for Large 
Element Characterizing the Damage Evolution 
Process and Its Application to Structure 
Collisions
Wen Liu1,2, Lele Zhang1,2*   , Yifan Ru1,2, Geng Chen1,2 and Weiyuan Dou1,2 

Abstract 

When simulating the process from elastic–plastic deformation, damage to failure in a metal structure collision, it 
is necessary to use the large shell element due to the calculation efficiency, but this would affect the accuracy of 
damage evolution simulation. The compensation algorithm adjusting failure strain according to element size is usu-
ally used in the damage model to deal with the problem. In this paper, a new nonlinear compensation algorithm 
between failure strain and element size was proposed, which was incorporated in the damage model GISSMO (Gen-
eralized incremental stress state dependent damage model) to characterize ductile fracture. And associated material 
parameters were calibrated based on tensile experiments of aluminum alloy specimens with notches. Simulation and 
experimental results show that the new compensation algorithm significantly reduces the dependence of element 
size compared with the constant failure strain model and the damage model with the linear compensation algorithm. 
During the axial splitting process of a circular tubular structure, the new compensation algorithm keeps the failure 
prediction errors low over the stress states ranging from shear to biaxial tension, and achieves the objective prediction 
of the damage evolution process. This study demonstrates how the compensation algorithm resolves the contradic-
tion between large element size and fracture prediction accuracy, and this facilitates the use of the damage model in 
ductile fracture prediction for engineering structures.

Keywords  Compensation algorithm, Element size, Damage model, Axial splitting

1  Introduction
In a collision, engineering metal structures deform 
severely and fracture may occur locally. Here, frac-
ture occurs under a monotonic load, which is differ-
ent with fatigue fracture that damage is accumulated 
under repeated loads [1]. And fracture is determined 

by material properties and the stress state. Mechanical 
properties vary with materials, e.g., welding parameters 
would affect the tensile strength [2]. For the stress state, 
shear fracture happens with low stress triaxiality and 
necking fracture with high stress triaxiality [3]. To simu-
late the phenomenon, three material constitutive models 
are required: an elastic–plastic model characterizing the 
elastic–plastic deformation; a damage initiation model 
characterizing the occurring of damage; a damage evolu-
tion model characterizing the material degeneration due 
to damage. However, element size is not consistent for 
engineering structure and constitutive models.

Due to the limitation of computational capability, 
large shell elements are usually used for deformation of 
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engineering structures. While small solid elements are 
needed for constitutive models, especially for damage 
models. This is because fracture generally happens in 
the small region, thus the deformation gradient is very 
large, which demands small solid elements to describe 
the severe deformation accurately [4, 5]. Therefore, for 
a fracture prediction problem of engineering structure 
with large shell elements, there are two key issues to be 
evaluated: the stress state absence of shell elements com-
pared with solid elements and the effect of element size 
on constitutive model. Among them, the relationship 
between element size and the damage model is studied 
in this paper.

In the field of constitutive model, Swift and Voce mod-
els are popular isotropic hardening rules, reflecting the 
relationship between stress and plastic strain [5, 6]. For 
the damage initiation model, the forming limit diagram 
[7] (FLD) can be used in proportional loading situations; 
in non–proportional loading situations, the FLD can be 
converted to the relationship between critical strain and 
stress state, based on which the nonlinear accumulation 
algorithm is applied [8]. Since the FLC mainly focuses 
on necking failure and does not pay enough attention to 
shear failure [9], the modified Mohr–Coulomb criterion 
(MMC) [10] characterizing the relationship between crit-
ical strain and stress state can be used. In the principal 
strain space, compared with the FLC curve, there is an 
additional critical curve in the MMC criterion that con-
siders the stress state from uniaxial compression to uni-
axial tension, which includes shear failure [5].

Damage evolution models are divided into two types: 
meso and macro. The mesoscopic damage model focuses 
on the evolution of mesoscopic material defects, and 
the most representative model is the Gurson–Tver-
gaard–Needleman model (GTN) [11]. And the macro-
scopic damage model directly characterizes the material 
load–bearing degradation phenomenon through dam-
age variables, the most representative model is the cou-
pling relationship between damage and stress proposed 
by Lemaitre [12]. Neukamm et  al. proposed a general-
ized incremental stress–state dependent damage model 
(GISSMO) in 2008, using the Lemaitre–type coupling 
of damage and stress to realize the damage evolution 
process under complex stress states [8, 13, 14]. Then 
the model was widely used to study the failure of metal 
structures in forming, compression and joining situations 
[15–17].

In the field of test design, ductile fracture under vari-
ous stress states is achieved by changing the loading 
state of the failure region. For bars, the fracture of stress 
triaxiality ranging from − 0.33 to 0 can be achieved 
with specimens of different height–to–diameter ratios 
under compression condition [18]. The fracture of stress 

triaxiality ranging from 0.33 to 1 can be achieved with 
arc–notched specimens under tensile condition, and the 
stress triaxiality of the failure area can be adjusted by 
changing the arc notch radius of specimens [19, 20]. For 
sheets, which are prone to transverse instability under 
compression condition, generally only tensile tests are 
conducted to achieve fracture of stress triaxiality rang-
ing from 0 to 0.66 by changing the angle between the 
minimum section of specimens and tensile force. Regard-
ing the realization of the angle, one way is to design a 
series of specimens with different notches [21]. Because 
fracture usually originates from notches under loads, 
desired stress states can be obtained from specimens 
with notches [22]. And another way is to keep the speci-
men unchanged and change the loading angle by means 
of clamps [23, 24].

In the field of ductile failure simulation with shell ele-
ments for engineering structures, owing to the serious 
deformation close to the fracture region, measure strain 
increases nonlinearly with gauge length decreasing in the 
experiment, and the relation between calculated stain 
and element size in the finite element (FE) model is also 
similar to this. To ensure the objective of the FE solution, 
a compensation term related to the ratio of thickness to 
size of the shell element is usually adopted in the dam-
age model. Alsos et  al. used the compensation term in 
the RTCL damage model and simulated the penetration 
of stiffened panels, which matched well with experiments 
[25, 26]. Storheim et al. also use the compensation term 
in the damage model [27]. Moreover, some studies found 
the effect of element size on damage accumulation is also 
relevant to the stress state. Walters proposed a relation 
among failure strain, the ratio of thickness to size of shell 
elements and the stress triaxiality for the damage model 
[28]. Korgesaa et al. used the relation in the ductile frac-
ture simulation of stiffened panels [29]. Korgesaar also 
used the relation in the RTCL damage model to simu-
late the collision failure of the hull at low stress triaxial-
ity [30]. And some conclusions were found: The effect 
of element size in shear state is less than that in tensile 
state [31]. Uniaxial tensile state is more sensitive to dam-
age accumulation with respect to element size than plane 
strain and biaxial tensile states [32].

In the impact accident, the kinematic energy is usually 
dissipated by the deformation of energy–absorbing struc-
tures. They are generally thin–wall structures, including 
circle tubes [33], square tubes [34], honeycombs [35], etc. 
In recent years, the splitting of the tube with notches, 
owing to the large stroke to length ratio and high specific 
energy absorption, is employed in the energy–absorb-
ing structures [36]. And the simulation method is usually 
used to obtain the optimum structure parameters [37], 
thus the simulation accuracy is very important. But the 
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splitting process is difficult to simulate accurately. This 
is because the splitting process involves deformation 
concentration caused by notches, material degenera-
tion and crack growth due to void growth, the effect of 
stress states, etc. Guan et al. used a Johnson–Cook fail-
ure model to predict the splitting of circle tubes, where 
fracture variation dependent on the stress state was con-
sidered, but the material degeneration derived by void 
growth was ignored [37]. Rouzegar et al. used a surface–
based cohesive technique to model the splitting of circle 
tubes, where material degeneration was considered, but 
the fracture paths were determined before simulation 
[38]. Owing to the complexity of simulating the splitting 
of a circle tube, this was chosen to check an algorithm 
relevant to damage evolution proposed in this paper.

In this research, a compensation algorithm for large 
element charactering the damage evolution process was 
proposed, which establishes a nonlinear relationship 
between element size and failure strain, and the duc-
tile failure simulation of thin–walled metal structures 
under collision loading was performed. First, specimens 
of aluminum alloy 5083–O sheet with different notches 
were designed to achieve fractures of different stress 
states. Secondly, the Lemaitre–type coupling relation-
ship between stress and damage was established for the 
gradual deterioration of bearing capacity exhibited dur-
ing material ductile fracture. Then, the compensation 
algorithm for large element was incorporated, and the 
calibration of the model parameters was completed by 
a surrogate model and an intelligent optimization algo-
rithm, and objective simulation of the experiments was 
achieved. Finally, the damage evolution simulation of 
axial splitting of a circular tube was realized.

2 � Experiments and Analysis of Aluminum Alloy 
5083–O Notched Specimens

In order to achieve ductile fracture due to different 
mechanisms under plane stress state, the standard ten-
sile specimen, the specimen with arc–shaped notches 
and the specimen with sharp–angled notches shown 
in Figure  1 were designed. The detailed dimensions are 
shown in Table  1, the thickness of the notched speci-
mens is 2.5 mm, and the thickness of the standard speci-
mens is 2 mm. The thickness difference of specimens was 
caused by adjustment during processing. The specimens 
were cut by wire EDM along the rolling direction on an 
aluminum alloy 5083–O sheet of 1000 × 1000  mm2. The 
“degree” in the specimens with sharp–angled notches 
refers to the angle between the tangential direction of 
the smallest section in the specimen plane and the tensile 
direction, expecting that as the angle increases, the duc-
tile fracture mechanism changes from shear fracture to 

necking fracture. Under tensile loading, the deformation 
of specimens is concentrated around the smallest section, 
and specimens are not subjected to force in the out–of–
plane direction, which is plane stress state.

Tensile experiments were performed at room tem-
perature using an INSTRON 8801 fatigue test machine, 
and the displacement of specimens was measured using 
a video extensometer with the gauge length 50 mm. The 
tensile speed was 3 mm/min. To maintain the accuracy of 
experiments, the average of three repeated experiments 
was used.

The force–displacement curves of experiments are 
shown in Figure  2. All curves have three significant 
phases, the straight line segment before the circle marker 
is the linear elastic phase, and the curve after the marker 
is the plastic deformation phase and the damage evolu-
tion phase coupled with it. The damage initiation point 
needs to be determined by calibrating the constitutive 
model. And the rapidly falling part indicates the frac-
ture response, which corresponds to the failure strain in 
the constitutive relationship. The peak force and failure 
displacement of different types of specimens are signifi-
cantly varied, which is mainly caused by the excessive 
difference in geometric configuration and the different 
area involved in deformation. The deformation response 
difference of the same type of specimens is mainly from 
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the effect of stress state on the damage evolution. In the 
response of the specimens with arc notches shown in 
Figure  2b, as the notch radius increases, the specimen 
stress state is closer to uniaxial tension and the failure 
strain gradually increases. In the response of the speci-
mens with sharp–angled notches shown in Figure 2c, as 
the angle between the tangential direction of the smallest 
section in the specimen plane and the tensile direction 
increases, the specimen stress state changes from shear 
to tension and the failure strain gradually decreases.

3 � Constitutive Model Based on Strain Element 
Homogenization and Calibration

Corresponding to the experiment curves, the elastic–
plastic model in this paper is as follows:

where σ̄ and σs are the equivalent stress and the yield 
stress respectively, ε̄ and ε̄p are the equivalent strain and 

(1)σ̄ =
{

Eε̄, σ̄ < σs,

k0 + Q
(

1− e−γ ε̄p
)

, σ̄ � σs,
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Figure 2  Tensile force–displacement curves of experiments: a standard tensile specimen, b specimens with arc–shaped notches and c specimens 
with sharp–angled notches
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the equivalent plastic strain respectively, E is the elastic 
modulus, k0, Q and γ are constants from the Voce hard-
ening law [5], and k0 = σs.

To account for non–proportional loading paths, in 
the damage initiation model the instability variable F is 
defined as [14]:

where ε̄c(η) is the critical equivalent strain related to the 
stress triaxiality η, σm is the mean stress.

The relationship between the critical equivalent strain 
and the stress triaxiality represented by the MMC crite-
rion is defined as follows [5, 10]:

where A and n are the material constants related to the 
plastic deformation, and c1c, c2c, c3c are the material con-
stants for the damage initiation.

When the instability variable F in Eq. (2) reaches 
unity, the damage is coupled to the stress according to 
the GISSMO model and the coupling relationship is as 
follows [14]:

where σ̄ ∗ and σ̄ are the equivalent stress with and without 
damage respectively, D and Dc are the current damage 
value and the damage value at the onset of stress–dam-
age coupling respectively, m is the material constant for 
the effect of damage on stress. When plastic deformation 
occurs, the damage starts to accumulate by Eq. (9):

(2)F =
∫ ε̄p

0

dε̄p

ε̄c(η)
,

(3)η =
σm

σ̄
,

(4)

ε̄c =






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
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






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,

(5)f1 = cos
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(
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,

(6)f2 = sin

{
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[

−
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(
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,

(7)f3 = c3c +
√
3

2−
√
3
(1− c3c)

(

1

f1
− 1

)

,

(8)σ̄ ∗ = σ̄

(

1−
(

D − Dc

1− Dc

)m)

,

(9)D =
∫ ε̄p

0

dε̄p

ε̄f(η, le, t)
,

where ε̄f(η, le, t) is the equivalent failure strain which is 
related to element size le, thickness t and stress triaxiality 
η. When damage value D reaches unity, the material fails.

Based on the relationship between the equivalent fail-
ure strain and element size from Ref. [28], this paper 
introduces a calibration parameter regarding the refer-
ence element size by Eq. (10):

where ε̄c(η) is the critical equivalent strain in Eq. (4), le, 
and t are the element size and the thickness of shell ele-
ments respectively, S is the area of shell elements, ε̄f0(η) 
is the equivalent failure strain of the reference element 
related to triaxiality η, le0 and t0 are the element size and 
the thickness of the reference shell element respectively, r 
is the parameter related to element size.

It’s worthwhile to mention that no matter what 
shape, e.g., square, rectangle and triangle, the element 
is, le represents the equivalent size as the area keeps 
constant.

The relationship between the equivalent failure strain 
and the stress triaxiality for the reference element is still 
characterized by the MMC criterion Eq. (4). The values of 
parameters c1c, c2c and c3c are different from the damage 
initiation model and are denoted by c1f, c2f and c3f now, 
while the values of A and n are consistent with the dam-
age initiation model.

The calibration of the model parameters was done 
using a surrogate model and an intelligent optimization 
algorithm. The calibration flow is shown in Figure  3. 
Sample points are determined based on the D–optimality 
design criterion. And the surrogate model is a linear pol-
ynomial response surface. The optimization based on the 
surrogate model includes two steps: first, use the adap-
tive simulated annealing algorithm to find an approxi-
mate global optimum; second, starting from the solution, 
use the gradient–based dynamic leap–frog method to 
find the local optimum. Thus, the optimum is obtained. 
Further, the domain of parameters is adapted based on 
the accuracy of the previous optimum [39]. The calibra-
tion process was done in the LS–OPT.

As shown in Figure  3, the calibration includes two 
parts: the elastic-plastic model and the failure model. As 
we all know, the elastic-plastic model has no relation with 
specimen geometry, thus all specimens were adopted 
to calibrate its parameters. However, the failure model 
is related to element size. A general method is calibrat-
ing failure model with reference element firstly, then 

(10)ε̄f = ε̄c(η)+ [ε̄f0(η)− ε̄c(η)]

(

tle0

t0le

)r

,

(11)le =
√
S,
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calibrating element size regularization parameters with 
other elements [14]. In this research, the shell element 
is used, thus two parameters, thickness and element 
size, need to be concerned. The element with thickness 
2.5  mm and size 0.2  mm is employed as the reference 
element, and specimens with thickness 2.5 mm, namely 
specimens with notches, are adopted to calibrate failure 
model parameters m, A, n, c1c, c2c, c3c, c1f, c2f, c3f. Then, 
element size 0.3  mm, 0.5  mm are used to calibrate ele-
ment size regularization parameter r. Since the regu-
larization function (10) takes thickness and element size 
into account, the standard specimen with thickness 2 
mm and notched specimens with thickness 2.5 mm are 
both adopted in the calibration of parameter r. As to the 
determination of element size, both efficiency and accu-
racy are considered, which is described with simulation 
results in Section 4.

4 � Simulation and Discussion
The FE models of the specimens in Figure 1 were estab-
lished using fully integrated shell elements with three 
integration points along the thickness direction. In order 
to compare the effect of the constitutive model on fail-
ure prediction, the constant failure strain model (CFS), 
the damage model based on the linear relationship of Ref. 
[28] (r = 1) and the damage model based on the nonlinear 
relationship Eq. (10) (r = 2.39) were used. The material 
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Figure 3  Parameter calibration flow chart of constitutive models

Table 2  Elastic–plastic parameters

Parameter E (GPa) Voce model

k0 (MPa) Q (MPa) γ

Value 69.3 156 213 11.1
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parameters calibrated in this paper are shown in Tables 2 
and 3. Among them, the constant failure strain is the 
elongation at break of the ST specimen.

Three element sizes of 0.2 mm, 0.3 mm, and 0.5 mm 
were selected and 0.2 mm was used as the reference size, 
which was determined considering the accuracy and effi-
ciency of calculation. With the strain gradient increasing, 
element size should be decreased to describe the defor-
mation accurately. Among specimens, the maximum 
strain gradient appeared in the specimens with sharp–
angled notches, and they were used to determine the 
appropriate element size. The N–45 specimen was cho-
sen to analyze. The force–displacement curves are shown 
in Figure 4c, we can see that the curves of element size 

0.2 mm and 0.3 mm almost coincide before degeneration. 
That means element size 0.2  mm is enough to describe 
elastic–plastic deformation of specimens. And if employ 
smaller elements, it is believed that the accuracy won’t 
increase significantly while the computation efficiency 
will decrease a lot. So 0.2 mm was chosen as the reference 
size. It’s worthwhile to mention that damage behavior is 
not considered in the determination of the reference ele-
ment size. This is because the damage model is relevant 
to element size. If the element size is appropriate accord-
ing to the plastic model, the damage model should have 
the capability to characterize the material degeneration 
accurately.
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Figure 4  The force–displacement curves of three specimens: a ST specimen, b N–R10 specimen and c N–45 specimen



Page 10 of 17Liu et al. Chinese Journal of Mechanical Engineering            (2023) 36:8 

Nine simulation results were obtained for each speci-
men model. And the force–displacement curves com-
parison of ST specimen, N–R10 specimen, and N–45 
specimen in different simulation condition is shown in 
Figure  4. Obviously, the simulated force–displacement 
curves of ST specimen and N–R10 specimen are in good 
agreement with the experiments, and the failure model 
has less influence on the simulation results, and the 
results of ST specimen are better between them; while 
the simulated force–displacement curves of N–45 speci-
men in Figure  4c are highly correlated with the failure 
model.

The fracture specimens and the equivalent plas-
tic strain nephograms at fracture using the nonlinear 
relationship Eq. (10) with element size 0.2 is shown in 

Figure  5. Fracture locations are similar for both experi-
ments and simulations. The plastic deformation of ST 
specimen in Figure 5a is uniformly distributed in the par-
allel region while the damage failure occurs locally with a 
very small percentage in the plastic deformation region. 
The force–displacement curve in Figure  4 characterizes 
the overall deformation of the specimen. For ST speci-
men in Figure  4a, the force–displacement curve mainly 
reflects the plastic deformation and cannot reflect the 
difference between different failure models. N–R10 spec-
imen in Figure  5b is similar with ST specimen, except 
that the plastic deformation region of the specimen is 
relatively small, thus the damage failure region has a rela-
tively high proportion in the plastic deformation region, 
so the force–displacement curves in Figure 4b can reflect 
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Figure 5  Fracture specimens and equivalent plastic strain nephograms at fracture using the nonlinear relationship Eq. (10) (r = 2.39): a ST 
specimen, b N–R10 specimen and c N–45 specimen
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the difference of different failure models to a certain 
extent. The N–45 specimen in Figure  5c is exactly the 
opposite of them, and the damage failure region basically 
overlaps with the plastic deformation region, thus the 
force–displacement curves in Figure 4c reflect the differ-
ence between different failure models clearly.

From the force–displacement curves of N–45 speci-
men in Figure  4c, it can be seen that the 3 solid lines 
as to r = 2.39 of different element sizes coincide well 
and are in good agreement with the experiment, the 
3 long clash lines as to r = 1 of different element sizes 
coincide poorly, and the 3 short clash lines as to CFS 
model of different element sizes coincide worst. Due to 
strain element homogenization, the simulation results 
of CFS model relate to element size. The correlation of 
the simulation result with element size is significantly 
reduced after using compensation algorithms, and 
the nonlinear algorithm (r = 2.39) works best between 
them, which effectively guarantees the objectivity of the 
failure prediction.

The formula for calculating the simulation error is

where Fexp and Fsim are the experiment force and simu-
lation force corresponding to the same displacement s 
respectively, smax is the maximum displacement observed 
in the test and simulation. In addition, all elements on the 
fracture surface was used to calculate the stress triaxial-
ity of specimens. Because the fracture volume between 
simulation and experiment is different, the geometry of 
the FE model differs from that of the specimen once an 
element is deleted, and the average triaxiality before ele-
ment deletion is adopted to represent the stress state of 
the specimen. The stress triaxiality values of specimens 
calculated based on the results of element size 0.2  mm 
and the failure model r = 2.39 are listed in Table  4, and 
the stress triaxiality values based on other constitutive 
models and other elements are similar to these. Thus the 
simulation error calculated based on 5 specimens with 
sharp–angled notches and different failure models are 
shown in Figure  6, obviously the error of r = 2.39 stays 
low over the stress states ranging from shear ( η = 0 ) to 
biaxial tension ( η = 0.66 ), while the error of the CFS 
model is high overall, and the error of failure model r = 1 
varies with the simulation condition. When simulating 

(12)e =
∫ smax

0

∣

∣Fexp − Fsim
∣

∣ds
∫ smax

0 Fexpds
× 100%,

the shear stress state with large shell elements (0.5 
mm), the error of r = 1 is the largest, approaching 100%; 
but when the stress state is close to the biaxial tension, 
the error of r = 1 is the smallest, almost 0. In addition, 
the error of the CFS model deceases with element size, 
this is because the fracture energy increases with ele-
ment size, and when using the element sizes 0.2  mm, 
0.3  mm, 0.5  mm in turn, the fracture energy increases 
and approaches that of experiment, which can be seen 
from Figure 4c. But with larger elements, fracture energy 
may excess that of experiment, and the error will increase 
with element size.

Furthermore, the effect of element size on fracture sim-
ulation should also be analyzed deeply. The failure mech-
anism between simulation and experiment is different. In 
physics, fracture appears with cracks propagation, which 
occurs in a small region. While in FEM, fracture occurs 
with the successive deletion of elements, the volume of 
which is dependent with element size and is generally 
larger than that of cracks. Thus, the experiment force 
decreases smoothly, but for the CFS model response in 
Figure  4c, simulation force decreases with a stair–step 
shape consistent with element deletion, that is there is a 
force maintenance and even hardening and decreasing 
stage for each deleted element. And due to failure strain 
is constant, fracture energy is consistent with volume of 
deleted elements and increases with element size, that is 
the area below the force–displacement curve increases 

Table 4  Stress triaxiality values of specimens

Specimen ST N–R10 N–R20 N– –10 N–0 N–30 N–45 N–90

Triaxiality 0.334 0.408 0.384 0.0375 0.0889 0.199 0.285 0.58
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Figure 6  Errors of different failure models
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with element size. To ensure the objective of simulation, 
a compensation algorithm for failure strain is adopted, 
e.g., Eq. (10), failure strain decreases with element size, 
which can also be seen in Figure 7, the equivalent plastic 
strain nephograms at fracture for N–45 specimen using 
the model r = 2.39 with several element sizes. Thus, we 
can see from Figure  4c the force discrepancies between 
simulation and experiment for the model r = 2.39 is much 
smaller than that of the CFS model. However, with ele-
ment size increasing, the discrepancy of failure volume 
between simulation and experiment still increases. The 
compensation algorithm is just a modification for failure 
strain, which can only reduce the discrepancy of overall 
response to some extent.

To guarantee the objectivity of the damage model, the 
nonlinear relationship between failure strain and element 
size shown in Eq. (10) was proposed. The variation of fail-
ure strain with element size at a certain stress state (stress 
triaxiality 0.33) is shown in Figure 8, and it can be seen 
that:

(1) The failure strain gradually increases with the 
increase of t/le and gradually tends to a constant value 
with the decrease of t/le.

(2) The parameter r characterizes the nonlinear rela-
tionship between the failure strain ε̄f and t/le. When r = 1, 
the relationship is linear, which is the same with Ref. [28].

(3) The intersection point A of all curves characterizes 
the failure strain corresponding to the reference element.

From the simulation error in Figure  6, it can be seen 
that the correct calibration of parameter r based on 
material property can effectively improve the simulation 
accuracy and avoid the less accurate prediction of linear 
model r = 1 for certain simulation conditions.

5 � Damage Evolution Simulation of Axially 
Splitting of a Circular Tubular Structure

5.1 � FE Model
The combined splitting circular tube energy absorber is 
used to dissipate collision energy of rail vehicles [37, 38], 
and the structure sketch is shown in Figure 9, consisting 
of a circular tube and a die. The thickness of the circular 
tube is 2 mm, and 6 notches are evenly distributed at the 
bottom of the circular tube. These notches are used to 
guide fracture paths due to the weakness around notches 
[22]. The friction coefficient between the tube and the 
die is 0.2. To model impact process, a quasi–static down-
ward compression of 40 mm is applied to the top of the 
circular tube. And lateral displacement constraints are 
also applied to the top of the circular tube to ensure the 
desired deformation mode. For the die, rigid material is 
adopted, and all displacements are constrained.

Figure 7  Equivalent plastic strain nephograms at fracture for N–45 
specimen using the model r = 2.39 with element sizes: a 0.2 mm, b 
0.3 mm and c 0.5 mm

Figure 8  Variation of failure strain with element size
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Figure 9  Sketch of the combined splitting circular tube energy 
absorber (unit: mm)
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The FE models were established using fully integrated 
shell elements with three integration points along the 
thickness direction. 4 element sizes 0.2  mm, 0.5  mm, 
1  mm, 2 mm and 3 failure models the constant fail-
ure strain model (CFS), the damage model based on 
the linear relationship of Ref. [28] (r = 1) and the dam-
age model based on the nonlinear relationship Eq. (10) 
(r = 2.39) were used for the tube. The compression simu-
lations were completed in the LS–DYNA with an implicit 
solver. It’s worth mentioning that these element sizes 
were determined according to the elastic–plastic defor-
mation of the structure. The force–displacement curves 
of r = 2.39, r = 1, CFS models are shown in Figure  10, 
the curves before first peak represent the elastic–plastic 
deformation, obviously, the deformation of element size 
0.2 mm matches well with that of element size 0.5 mm, 

and the deformation of element size 1 mm matches well 
with that of element size 2 mm. The deformation differ-
ence between element size 0.2 mm and 1 mm is caused 
by the simplification on the geometry for large element, 
which will be discussed later. And the first peak force 
difference is caused by failure models. So, these element 
sizes are appropriate to characterize the elastic–plastic 
deformation of the structure. Moreover, damage behavior 
is not considered in the determination of element size, 
which is the same with that of the reference element size 
discussed in Section 4.

Further, t/le for the structure is 10, 4, 2, 1, some of 
which are below the ratio range of the model calibration 
(12.5, 8.33, 5). From Figure 8, with the ratio decreasing, 
failure strain decreases. Because the compensation algo-
rithm is to keep fracture energy constant for different 
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Figure 11  The axially splitting process of the circular tubular structure
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ratios, with the ratio decreasing, failure volume in simu-
lation increases, and the discrepancy between simula-
tion and physics increases, thus the simulation accuracy 
would decrease. Therefore, the simulation accuracy of the 
structure would be smaller than that of specimens.

5.2 � Deformation Analysis and Comparison of Damage 
Models

The deformation modes under different conditions are 
similar, and the result of element size 0.2 mm and failure 
model r = 2.39 is analyzed as an example. The equivalent 
stress nephograms are shown in Figure  11, including 4 
deformation stages:

(1) In the initial stage of the compression, the circular 
tube starts to contact with the die and the impact force 
rises sharply, reaching the peak impact force of 5.23 kN at 
the displacement of 3.2 mm.

(2) Then the tube wall bends, the material around the 
notches fails and the impact force gradually decreases, 
reaching the minimum value of 3.84 kN at the displace-
ment of 7.6 mm.

(3) As the contact area between the circular tube 
and the die increases, the total friction force gradu-
ally increases and the impact force rises again, reaching 
4.82 kN at the displacement of 11.6 mm.

(4) Finally, the structural deformation stabilizes and the 
impact force keeps constant.

The force–displacement curves of r = 2.39, r = 1, CFS 
model are shown in Figure  10, and there are some dif-
ferences in the results of different element sizes, among 
which the CFS model is the worst case. Taking the results 
of the element size 0.2 mm as the benchmark, the errors 

caused by the element size calculated with Eq. (12) are 
shown in Figure 12, and the errors of CFS model is much 
larger than damage models. Apparently, the homogeni-
zation effect of the element on the failure strain has a 
significant effect on the force response, and the introduc-
tion of the compensation algorithm based on the damage 
model effectively reduces the correlation of the simula-
tion results with the element size.

The energy dissipation mechanism should be studied 
deeply. The dissipated energy is derived from two parts: 
the plastic deformation of the tube and the fracture 
energy of the material around notches. And the plastic 
deformation dominates because the energy dissipated by 
the failed elements only accounts for 17.2% of the total 
internal energy according to the simulation result of the 
nonlinear algorithm r = 2.39 using the elements of size 
0.2 mm. The extent of plastic deformation can be char-
acterized by the average equivalent strain calculated by 
the equivalent strains at the 6 middle points. The mid-
dle points are determined according notches, e.g., in Fig-
ure 9, the point B is a middle point for the undeformed 
structure. The equivalent strain is relevant with the 
equivalent stress, which is determined by the fracture tol-
erance around the notches. That is if the material around 
the notches is easy to fracture, the equivalent stress and 
the equivalent strain at the middle point between two 
notches are small, then the compressive force is small 
and associated energy dissipated by the structure is also 
small, and vice versa.

It’s worthwhile to mention the steady force difference 
among different element sizes. The force at the dis-
placement of 30  mm is used to study the steady force 
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Figure 12  Errors caused by element size in different failure models Figure 13  Stress–plastic strain curves for different element sizes
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difference, and the CFS model is taken as an example. 
From the equivalent plastic strain nephograms at the dis-
placement 30  mm shown in Table  5, with element size 
increasing, the deformation concentration around these 
notches decreases, that means it is hard to fracture, thus 
the relevant average equivalent strains at middle points 
increases shown in Table 5, so the steady force increases 
with element size shown in Figure  10c. In addition, the 
stress–plastic strain curves of failure elements are shown 
in Figure 13, and the failure strain decreases with element 
size in the compensation algorithms, which means frac-
ture is easy to happen as the element size increases. This 
reduces the effect of deformation concentration to a cer-
tain extent. Therefore, for the models r = 1 and r = 2.39, 
the steady force discrepancies caused by element size 
shown in Figure 10a, b are smaller than that of the CFS 
model shown in Figure 10c.

From Figure  10, we can see that there are abnormal 
peak force values at the displacement 7.6 mm for ele-
ment sizes 1 mm and 2 mm. Owing to the large element 
size, the notch width 0.2 mm is ignored in the models 
with element size 1 mm and 2 mm shown in Table  5. 
The CFS model still is taken to analyze, the plastic 
strain nephograms at the displacement 7.6  mm are 
shown in Table  5. For element sizes 1  mm and 2  mm, 
almost 4 elements around each notch meet the failure 
criterion, while only 1 element fails for element sizes 
0.2  mm and 0.5  mm. Obviously, compared with ele-
ment sizes 0.2 mm and 0.5 mm, the failure regions for 
element sizes 1  mm and 2  mm are much larger, and 
this induces abnormal peak force values in these two 
situations. Large elements are always used to achieve 
high efficiency, but the induced geometry simplifi-
cation may cause abnormal response. This should 

Table 5  Local deformation of the CFS model with element sizes 0.2 mm, 0.5 mm, 1 mm and 2 mm

Element size (mm) 0.2 0.5 1 2

FE model

    

Displace-
ment
7.6 mm

Plastic strain 
nephogram

    

Displace-
ment
30 mm

Plastic strain 
nephogram

    

Average 
stain

0.0722 0.0804 0.103 0.124
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be given special analysis. For this case, although the 
abnormal peak force appears when using element sizes 
1  mm and 2  mm, the steady force is similar with ele-
ment sizes 0.2 mm and 0.5 mm in the nonlinear algo-
rithm r = 2.39. When analyzing dissipated energy, since 
Eq. (12) actually evaluates dissipated energy error, the 
errors caused by element sizes can be seen from Fig-
ure 12. The maximum value is under 30%, and the error 
for element size 1 mm is under 15%. Obviously, the dis-
sipated energy calculated from element size 1 mm and 
2 mm can be accepted. But if analyzing peak force, the 
results from large elements are apparently wrong. In a 
word, whether calculation from large elements can be 
accepted depends on what index to concern.

From force–displacement curves shown in Figure  10 
and errors shown in Figure  12, we can see that the dif-
ference between compensation algorithms r = 2.39 and 
r = 1 is small. Considering the fact that plastic defor-
mation dominates the energy dissipation mechanism 
as discussed previously, the reducing effects of the two 
compensation algorithms on deformation concentration 
caused by element size are similar, which results in simi-
lar force responses. However, for failure elements, there 
is a big difference in the stress–strain curves between the 
two compensation algorithms shown in Figure  13. That 
is fracture energy is different for the two compensation 
algorithms. Therefore, for the structure where fracture 
energy dominates energy dissipation mechanism, com-
pensation algorithms would affect a lot on the results. 
The tube with relatively high thickness is one case. When 
it is compressed, plastic hinges are the main deforma-
tion mode. Owing to the high thickness, the fracture may 
occur on the hinges [40]. And this will be study in the 
next research.

6 � Conclusions

(1)	 Ductile fracture under various stress states was 
experimented and simulated based on specimens 
with notches. In the simulation, fracture volume is 
positively relevant to element size, and the result of 
the constant failure strain model is seriously related 
to element size. To ensure result objective, the com-
pensation algorithm adjusting failure strain accord-
ing to element size is incorporated in the damage 
model to keep fracture energy constant. And the 
results show that fracture simulation dependency 
on element size reduces a lot.

(2)	 A compensation algorithm reflecting the nonlinear 
relationship between failure strain and element size 
was proposed. The new algorithm keeps the fail-

ure prediction errors of different element sizes at a 
lower level in all stress states, while the errors of the 
existing linear compensation algorithm vary with 
the stress state.

(3)	 The damage evolution process of axially splitting of 
a circular tubular structure was simulated. Owing 
to the deformation concentration around notches 
is relevant with element size, the results of the con-
stant failure strain model are seriously dependent 
on element size. And because compensation algo-
rithms have similar reducing effect to the deforma-
tion concentration, both damage models with the 
linear compensation algorithm and the nonlinear 
compensation algorithm can objectively predict the 
ductile fracture process. And the fracture energy 
values difference between the two compensation 
algorithms just make accuracy of the nonlinear 
compensation algorithm better a little.

(4)	 The structure where fracture energy dominates 
energy dissipation mechanism, e.g., the compres-
sion of a tube with high thickness, will be studied in 
the future, where the new nonlinear compensation 
algorithm would play an important role.
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