
Du et al. 
Chinese Journal of Mechanical Engineering            (2023) 36:7  
https://doi.org/10.1186/s10033-023-00846-0

ORIGINAL ARTICLE

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Chinese Journal of Mechanical Engineering

Online Identification of Lithium‑ion Battery 
Model Parameters with Initial Value Uncertainty 
and Measurement Noise
Xinghao Du1, Jinhao Meng2*   , Kailong Liu3, Yingmin Zhang1, Shunli Wang4, Jichang Peng5 and Tianqi Liu1 

Abstract 

Online parameter identification is essential for the accuracy of the battery equivalent circuit model (ECM). The tradi-
tional recursive least squares (RLS) method is easily biased with the noise disturbances from sensors, which degrades 
the modeling accuracy in practice. Meanwhile, the recursive total least squares (RTLS) method can deal with the 
noise interferences, but the parameter slowly converges to the reference with initial value uncertainty. To alleviate the 
above issues, this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher 
parameter identification performance of the battery ECM. RLS converges quickly by updating the parameters along 
the gradient of the cost function. RTLS is applied to attenuate the noise effect once the parameters have converged. 
Both simulation and experimental results prove that the proposed method has good accuracy, a fast convergence 
rate, and also robustness against noise corruption.
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1  Introduction
Lithium-ion (Li-ion) batteries are widely used in electric 
vehicles (EVs) and stationary energy storage because of 
their high charge/discharge efficiency, low self-discharge 
rate, and long lifespan [1–4]. To extend the service life 
of the batteries and ensure their safe operation, a well-
designed battery management system (BMS) is required 
to monitor the state of health (SOH) and state of charge 
(SOC) [5–8]. Model-based estimation approaches, such 
as Kalman filters and particle filters, have been proposed 

to realize these functionalities. The model-based meth-
ods generally require an accurate battery model to ensure 
their performance [9].

The commonly used battery models include electro-
chemical models and ECMs. Electrochemical models 
describe the partial differential equations of the electro-
chemical reactions inside the battery [10]. As such, great 
efforts are required in parameterization and dealing with 
the computational burden. In contrast, ECMs only use 
resistance and capacitance (RC) elements to express the 
external characteristics of the batteries, which can bal-
ance the contradiction between the modeling accuracy 
and the complexity [11]. In this way, ECMs are consid-
ered more suitable for online state estimation of the bat-
teries in a BMS [12].

The characteristics of the Li-ion battery usually change 
with external factors such as temperature, current rate, 
aging, etc. It is easily realized that the RC parameters 
in the battery ECM vary with those external factors in 
real applications [13]. Thus, the suitability and accuracy 
of ECMs for a specific battery are closely related to the 
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parameter identification method. If the parameters of 
ECM deviate from the reasonable ranges, the perfor-
mance of the battery model will be questionable [14]. 
Both offline and online methods can be used for param-
eter identification of the ECM. Offline parameter identi-
fication methods require sufficient laboratorial labor, to 
collect enough measurement data for parameter extrac-
tion [15]. But we cannot test the Li-ion battery cover-
ing all its working conditions. Online methods are not 
highly relying on additional tests, which can identify the 
parameters of a battery ECM from the current and volt-
age measurement of the sensors. In this regard, a large 
amount of online parameter identification methods have 
been proposed in the literature, which can be briefly 
divided into nonlinear filter-based methods [16, 17] and 
least-squares (LS) [9, 18–21] based methods. Nonlinear 
filters, such as the Kalman filter [16], H-infinity filter [22], 
and Particle filter [17], normally need to tune the covari-
ance matrixes for an acceptable accuracy, which are dif-
ficult to be adjusted in real-time applications. LS-based 
methods have the advantages of easy tuning and a lower 
computational cost [20] and are further investigated in 
this paper.

RLS is the most widely used method for online param-
eter identification. Xiong et  al. [18] employed the RLS 
method to track the real-time characteristics of 32 Ah Li-
ion batteries. Many efforts have been found to improve 
the accuracy of RLS. Duong et al. [19] proposed a mul-
tiple adaptive forgetting factors based RLS (MAFF-RLS) 
method to capture the variations and different dynam-
ics of the parameters in ECM. Ouyang et  al. [9] used a 
robust RLS algorithm coping with the outliers of battery 
measurement.

One drawback of the RLS-based methods is that they 
are sensitive to measurement noises. Unexpected noises 
always exist and cannot be eliminated easily, which inevi-
tably leads to biased parameter identification results in 
practice. As an alternative choice, the total least square 
(TLS) method can effectively deal with the measure-
ment noises from sensors [23]. Wei et  al. [24, 25] have 
employed an RQ-based RTLS method for the online 
parameter identification of the ECM, which alleviates the 
model identification bias caused by noise disturbances. 
Although the method shows good accuracy and robust-
ness against noise corruption, the convergence speed has 
not been fairly discussed in their work. Considering the 
parameters of the battery model change with the battery 
stats, an ideal parameter identification method should 
have good accuracy as well as a superior convergence 
speed.

Regarding convergence speed, RLS updates the param-
eters along the gradient of the cost function, which has a 
rather fast convergence rate [26]. Although the RQ-based 

RTLS method [23] adopts a similar form of the gradient 
search strategy as RLS, the convergence rate of the RTLS 
decreases significantly with unknown initial parameter 
values. It’s worth mentioning that the convergence rate 
has a great influence on whole system stability [9].

Therefore, RLS converges the parameters quickly with 
low computational cost, while the identification results 
are biased with measurement noises. Although RTLS 
can deal with noise corruption, the convergence speed is 
slow. In order to cope with the above issues, this paper 
proposes a novel co-estimation framework, where the 
RLS is applied to converge the parameter quickly with-
out any prior knowledge of initial values and the RTLS 
method is further applied to update the converged 
parameters to deal with the noise disturbances. The 
simulation and experimental results show the proposed 
method has good estimation accuracy and robustness 
under different circumstances.

The key contributions of this paper are in the following 
aspects.

(1)	 A comprehensive study is constructed to analyze 
the advantages and deficiencies of RLS and RTLS 
for online parameter identification.

(2)	 A convergence indicator is synthesized based on the 
residual errors of parameter identification to deter-
mine the convergence of the parameters within a 
predefined time scale.

(3)	 A novel co-estimation framework is, for the first 
time, designed for identifying ECM parameters, 
which effectively deals with the initial value uncer-
tainty and measurement noise.

(4)	 The proposed method is validated under vari-
ous dynamic driving cycles in both simulation and 
experimental tests compared with RLS and RTLS.

The remainder of this paper is organized as follows. 
Section  2 introduces the modeling strategy for the bat-
tery. Section  3 compares the performances of RLS and 
RTLS, and presents the motivation for the proposed co-
estimation method. Simulation and experimental results 
are carried out in Sections 4 and 5, respectively. The main 
conclusions are given in Section 6.

2 � Battery Modeling
Considering a balance of modeling accuracy and sim-
plicity, ECM is preferred and investigated in this paper. 
Among all the ECMs, the Thevenin model has a rela-
tively simple structure, which can capture the primary 
dynamics of the battery without taking much computing 
resources.

As shown in Figure 1, the Thevenin model consists of a 
series resistor and a parallel RC network. R0 represents the 



Page 3 of 10Du et al. Chinese Journal of Mechanical Engineering            (2023) 36:7 	

Ohmic resistance, which is used to describe the instantane-
ous voltage drop when a current excitation is applied to the 
battery. The RC network aims at describing the dynamic 
characteristics of the battery, such as kinetic effect and ion 
diffusing.

The battery open circuit voltage (OCV) Uoc is expressed 
as

 where S is the battery SOC; ki (i = 1, 2, …, m) are the 
polynomial coefficient of the OCV-SOC curve; m is the 
order of the function.

The terminal voltage and current of the battery are 
expressed as Ut and It, respectively. Ut represents the 
voltage of the RC network. The transfer function of the 
Thevenin model is established as

 where s is the Laplace operator.
By applying the bilinear transform in Eq. (3), the discrete 

form of the Thevenin model in Eq. (2) can be expressed as 
Eq. (4).

 where z is the discretization operator, a1, b1, and b2 are 
the coefficients defined as Eq. (5).

(1)Uoc(S) =

m
∑

i=0

kiS
i,

(2)G(s) =
UOC(s)− Ut(s)

It(s)
= R0 +

Rp

1+ sRpCp
,

(3)s =
2(z−1 − 1)

Ts(z−1 + 1)
,

(4)G(z−1) =
b0 + b1z

−1

1+ a1z−1
,

 where Ts is the sampling interval.
Applying the linear regression method, Eq.  (4) can be 

rewritten as a linear equation

In Eq.  (6), the output yk, the estimated parameters θk, 
and the input xk at time k are defined as

Once θk is obtained, the parameters of the Thevenin 
model can be deduced as

3 � Online Parameter Identification
3.1 � Least Squares
LS performs the parameter identification by minimiz-
ing the squares of the errors between the terminal volt-
age and the output of the battery model [27]. As shown in 
Figure 2, LS assumes that the measured output ỹ is noisy 
while the input x is accurate.

For LS, the parameter vector θk can be solved by mini-
mizing the cost function as

 where �yi is the measurement error, ỹi is the noisy out-
put. It can be defined that the gradient of the cost func-
tion J (θk) is equal to zero

(5)
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Figure 1  Circuit diagram of the Thevenin model
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Then, the analytical solution of the parameter vector θk 
can be obtained as

 where Xk = [x1, x2, . . . , xk ]
T, Y k = [y1, y2, . . . , yk ]

T.
The recursive form of the LS can be further expressed 

as

 where Kk denotes the gain matrix; Pk is the covariance 
matrix; ek  is the residual error, and λ (0.95 < λ < 1) is a 
user-defined forgetting factor.

It should be noted that LS has not considered the errors 
from the input x. Thus, the estimation results are easily 
biased owing to the noise corruption.

3.2 � Total Least Squares
Different from LS, TLS assumes that both output ỹ and 
input x̃ are noisy. As we can see from Figure  3, TLS 
employs the orthogonal regression to minimize the sum 
of the squared orthogonal distances from the sampling 
points to the fitting line.

Similarly, TLS solves the parameter vector θk by mini-
mizing the cost function as

(10)∂J (θk)/∂θk = 0.

(11)θk = (XT
k Xk)

−1
X
T
k Y k ,

(12)


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K k = Pk−1xk/(�+ x
T
k Pk−1xk),

ek = yk − x
T
k θ̂k−1,

θk = θk−1 + K kek ,

Pk = (I − K kx
T
k )Pk−1/�,

(13)J (θk) = �[�Xk , �Y k ]�F,

 where �Xk = [�x1,�x2, . . . ,�xk ]
T

, �Y k = [�y1,�y2, . . . ,�yk ]
T.

The recursive form of the TLS is expressed as

 where the gain factor αk is obtained by using the gradient 
search approach in Ref. [24].

 where x̃k is the noisy input vector.
As shown in Eq.  (14), RTLS updates the parameters 

along the direction of x̃k  rather than the gradient of the 
cost function. Only one gain factor αk can be obtained at 
each iteration, which largely limits the convergence rate 
when multiple parameters are needed to be identified.

3.3 � A Comparison Between RLS and RTLS
A comparative study is carried out in this subsection to 
evaluate the performances of RLS and RTLS for online 
parameter identification.

As shown in Figure 4, RLS and RTLS have some merits 
in a specific area. On one hand, RTLS takes into account 
the disturbances from both the input and output, which 
has a better performance in dealing with noise interfer-
ences. On the other hand, RLS updates the parameters 
along the gradient of the cost function, which owns a 
very fast computing speed and a higher convergence rate.

However, RLS is biased with measurement noises, 
while RTLS converges slowly with initial value uncer-
tainty. Therefore, to design a superior approach to deal-
ing with the above issues, this paper integrates the RLS 
and RTLS for better parameter identification of the ECM.

(14)θk = θk−1 + αk x̃k ,

(15)∂J (θk−1 + αk x̃k)/∂αk = 0,

Figure 2  The principle of the LS method
Figure 3  The principle of the TLS method
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3.4 � The Proposed Co‑estimation Method
This work proposes a co-estimation algorithm for supe-
rior performances of online parameter identification, 
which has fast convergence speed and robustness against 
noise corruption. Meanwhile, the proposed method does 
not require much computational effort and is suitable for 
online implementation. The flowchart of the proposed 
method is as follows.

The variables in Figure  5 are described as follows: (i) 
ei (i = k − TL, k − TL +1, ..., k) is the residual error of the 
parameter identification, (ii) e0 is set as a threshold to 
decide the convergence of the parameters, (iii) Tl is the 
time scale for determining the convergence of the param-
eters, (iv) Ek  is designed as a convergence indicator, 

which is expressed as the root mean square error (RMSE) 
of ei,

The strategy of the proposed co-estimation method can 
be summarized in the following three parts.

Part I. Given the initial parameter values are unavail-
able, θk  is randomly initialized and updated by RLS 
using Eq. (12) until the parameters are converged to 
their references.
Part II. To determine whether the parameters have 
converged, Ek  is calculated using Eq.  (16) once l 
reaches TL.
Part III. When Ek  is less than the pre-set threshold 
e0, the flag is set to 1, indicating that convergence 
has been completed. The parameters are updated by 
RTLS using Eq. (14) and Eq. (15) afterwards.

It can be seen that the proposed co-estimation method 
combines the merits of RLS and RTLS. RLS can converge 
to the reference values of the parameters quickly with-
out any prior knowledge of initial values, while RTLS has 
good accuracy and robustness against the noise distur-
bances, which can be applied to update the already con-
verged parameters.

4 � Simulation Validation
A simulated battery model is used in this section to verify 
the performance of the proposed co-estimation method. 
The simulation is carried out on the software of MAT-
LAB R2020a. It is noteworthy that the Ohmic resistance 
R0 is stable during the discharging process while Rp and 
Cp tend to vary with SOC and current rate [28]. There-
fore, the model parameter R0 is defined as a constant, 
while that of Rp and Cp are time-varying. The OCV is 
obtained by the OCV-SOC relationship as in Eq. (1). The 
sampling frequency of voltage and current is set to 1 Hz.

The urban dynamometer driving schedule (UDDS) is 
applied to the simulated battery model. The voltage and 
current profiles are shown in Figure 6.

The unknown initial values of the model parameters 
are randomly initialized as R0 = 20 mΩ, Rp = 20 mΩ, Cp 
= 1000 F. Besides, TL and e0 in the proposed method are 
initialized as 100 s and 3 mV, respectively. To verify the 
performance of the proposed method with noise inter-
ference, white Gaussian noises are randomly added to 
the voltage and current measurements. The standard 

(16)Ek =

√

√

√

√

√

1

Tl

k
∑

i=k−Tl

e2i .

Figure 4  Performance comparison between RLS and RTLS

Figure 5  Flowchart of the proposed parameter identification 
method
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deviations (SDs) σv and σi are set to 4 mV and 4 mA in 
this validation.

As shown in Figure 7, the estimation of R0 is not sen-
sitive to the measurement noises, where the estimated 
values are close to the true values for all three methods. 
Regarding Rp and Cp, the estimated values of RLS are 
biased from the true values owing to the noise distur-
bances. As for RTLS, it takes a long time for the param-
eters to converge, which greatly enlarges the estimation 
error of the model.

It can be seen from Figure 7(d), the proposed method 
has the same convergence speed as RLS. Once Ek is less 
than e0, the converged parameters are further updated 
by RTLS in dealing with noise interferences. Thanks to 
the well-designed parameter updates mechanism, the 
proposed method shows good estimation accuracy and 
robustness, where the estimated values can well track the 
true values almost all the time.

To quantitively evaluate the estimation accuracy of the 
model parameters, the mean square deviation (MSD) is 
selected as

 where ek is the normalized error expressed as

 where ΔR0,k, ΔRp,k, and ΔCp,k are the errors between the 
estimated parameters and the true values at the time step 
k. The average MSDs of all three methods are presented 
in Table 1.

It can be seen that the average MSD of the proposed 
method is merely − 17.07 dB, which represents a higher 
accuracy of parameter identification under noise inter-
ference and initial value uncertainty. The above results 
coincide with the theoretical analysis in Section  4, the 
effectiveness of the proposed method is then proved by a 
battery simulation model.

5 � Experimental Validation
Experimental tests are carried out on a LiFePO4 bat-
tery to validate the proposed method in this subsection. 
The specifications of the battery are listed in Table 2. In 
Figure  8, the battery test platform consists of a thermal 
chamber to control the ambient temperature, a Chroma 
17011 test station to charge and discharge the battery, a 
host computer to program the experiment procedure and 
store the measurement data. The sampling frequency is 
set to 1 Hz.

We have tested Cell A under the UDDS, while the 
ambient temperature is set to 25 °C during the test. The 
OCV-SOC polynomial coefficients of Cell A are listed 
in Table  3. To verify the proposed method under noise 
corruption, white Gaussian noises with variances of σ2v 
= 8 mV2, σ2i  = 8 mA2 are randomly added to the voltage 
and current measurements. As the initial values of the 
parameters are unknown, they are randomly initialized as 
R0 = 15 mΩ, Rp = 35 mΩ, Cp = 400 F. TL and e0 are set as 
100 s and 3 mV, which are the same as the simulation test.

The parameter identification results of Cell A are pre-
sented in Figure  9. Similar to the simulation, the noise 
effect degrades the estimation accuracy of RLS, where 
the modeling error is larger than the other two methods. 
Although the RTLS can deal with the disturbances from 
measurement noises, the modeling error is still large 
before the parameters can converge to the references. As 
expected, the proposed method can alleviate the above 
issues and maintain a stable performance during the 
whole driving cycle. The mean absolute error (MAE) and 
RMSE of the proposed method are only 1.26 mV and 2.26 
mV.

(17)MSD = 10log10(E[�ek�
2
2]),

(18)ek =

[

�R0,k

R0,k
,
�Rp,k

Rp,k
,
�Cp,k

Cp,k

]

,

Figure 6  Voltage and current profiles in the simulation test: 
(a) voltage, (b) current
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To further prove the feasibility of the proposed method 
under different circumstances, the experimental tests 
are carried out on Cell B under different driving cycles, 
new European driving cycle (NEDC) and federal test 
procedure (FTP). The ambient temperature is set to 
10  °C during the tests. According to the experimental 
results presented in Figure 10, the RLS method converges 
quickly yet with the drawback of being sensitive to noise 
disturbances. The RTLS method suffers from slow con-
verging speed. Consequently, the accuracy of these meth-
ods is inferior to the proposed co-estimation method.

As shown in Table 4, the MAE and RMSE of the pro-
posed method are much lower than the commonly used 
RLS and RTLS methods. The average RMSE of the pro-
posed method is around 77% of the RLS and 80% of the 
RTLS, and the average MAE of the proposed method 
is less than 32% of the RLS and 13% of the RTLS. The 
advantages of the proposed method are thus proved by 
experimental validation.

Figure 7  Simulation results of the model parameters: (a) R0, (b) Rp, (c) Cp, (d) Ek

Table 1  Average MSDs of different methods

RLS RTLS Proposed method

Average MSD (dB) − 13.05 − 15.58 − 17.07

Table 2  Specifications of the LiFePO4 battery

Cell name Model Nominal 
capacity
(Ah)

Charge cut-
off voltage 
(V)

Discharge cut-
off voltage (V)

Cell A ANR26650 2.5 3.6 2

Cell B 18650 1.5 4.2 2.5 Figure 8  Experimental platform for the battery test
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Table 3  Polynomial coefficients of the OCV-SOC function

k0 k1 k2 k3 k4 

2.567 15.92 − 152.8 754.7 − 2081

k5 k6 k7 k8 

3315 − 3012 1437 − 275.8

Figure 9  Experimental results of the parameter identification under the UDDS driving cycles (25 °C): (a) R0, (b) Rp, (c) Cp, (d) Ek, (e) Modeling error
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6 � Conclusions
The traditional RLS method is biased with the measure-
ment noises from sensors, which degrades the parameter 
identification accuracy. RTLS method can alleviate the 
noise disturbances, while the parameters converge slowly 
with initial value uncertainty. In this regard, we have pro-
posed a co-estimation method, which integrates the RLS 

and RTLS for parameter identification. Without any prior 
knowledge, RLS can identify the parameters with a fast 
convergence rate. Once the parameters have converged, 
RTLS is applied to keep updating the parameters in deal-
ing with the noise effect.

Both simulation and experimental tests have verified 
the validity of the proposed method. The average MSD of 
the proposed method is merely − 17.07 dB in the simu-
lation test. The MAE and RMSE of the modeling error 
are only 1.26 mV and 2.26 mV in the experimental test. 
Future works focus on using the identified parameters for 
battery SOC and SOH estimation.
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Figure 10  Experimental results of the parameter identification under 
different circumstances: (a) NEDC (10 °C), (b) FTP (10 °C)

Table 4  MAE and RMSE of modeling error

Circumstances RLS RTLS Proposed 
method

RMSE UDDS (25 °C) (mV) 3.13 3.11 2.26

NEDC (10 °C) (mV) 3.40 2.99 2.50

FTP (10 °C) (mV) 4.49 4.47 3.76

MAE UDDS (25 °C) (mV) 2.41 1.65 1.26

NEDC (10 °C) (mV) 2.50 2.02 1.56

FTP (10 °C) (mV) 3.37 2.86 2.83
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