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Abstract 

With the further development of service-oriented, performance-based contracting (PBC) has been widely adopted 
in industry and manufacturing. However, maintenance optimization problems under PBC have not received enough 
attention. To further extend the scope of PBC’s application in the field of maintenance optimization, we investigate 
the condition-based maintenance (CBM) optimization for gamma deteriorating systems under PBC. Considering the 
repairable single-component system subject to the gamma degradation process, this paper proposes a CBM opti-
mization model to maximize the profit and improve system performance at a relatively low cost under PBC. In the 
proposed CBM model, the first inspection interval has been considered in order to reduce the inspection frequency 
and the cost rate. Then, a particle swarm algorithm (PSO) and related solution procedure are presented to solve the 
multiple decision variables in our proposed model. In the end, a numerical example is provided so as to demonstrate 
the superiority of the presented model. By comparing the proposed policy with the conventional ones, the superior-
ity of our proposed policy is proved, which can bring more profits to providers and improve performance. Sensitivity 
analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective 
maintenance on optimization policy. A comparative study is given to illustrate the necessity of distinguishing the first 
inspection interval or not.

Keywords  Performance-based contracting, Condition-based maintenance, Gamma process, Profit maximization, 
Inspection interval

1  Introduction
Service-oriented is an innovation that organization’s 
central work shifts from selling labor and materials to 
selling compositive products and services [1, 2]. With 
the continuous development of service-oriented, the 
role of operation and maintenance (O&M) has become 
more and more significant. For instance, in the U.S. 
defense budget for the fiscal year 2020, O&M costs were 
$292.7 billion, accounting for 41% of the total defense 

budget. Compared with the fiscal year 2019, O&M costs 
increased by $9.2 billion [3].

Conventionally, O&M is implemented under material-
based contracts (MBC) in which clients pay support pro-
viders according to the materials and labor consumed 
each time [4]. Nevertheless, with the implementation of 
MBC, the service providers will expose the problem of 
insufficient innovation. This is because a majority part of 
the provider’s income is from the consumables and ser-
vices they sold. With the product ages, providers might 
profit from these individual products. In contrast, clients 
need to pay more support and maintenance costs [5–7].

In order to well address this challenge, a new kind of 
support contract, namely “Performance-based contract-
ing” (PBC), has emerged. Under PBC, clients pay for 
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the outcomes delivered by providers instead of the indi-
vidual materials or services [8, 9]. Likewise, providers’ 
compensation has been tied to how much they success-
fully achieved the required outcomes. If providers do not 
act and allow the product to obsolete, the consequences 
will be borne by themselves. PBC promotes providers 
to innovate in the form of materials, technologies, pro-
cesses, and policies.

The concept of PBC came from Performance-based 
Logistics (PBL), which was first proposed in the U.S. mili-
tary. As an outcome-based support policy, PBL projects 
and delivers an integrated, affordable performance solu-
tion so as to optimize the weapon system’s performance 
and readiness. PBL concentrates more on how much the 
support solution satisfies the war fighter’s requirements, 
usually adopted availability instead of the consumption 
of resources to express [10]. In short, purchasing perfor-
mance outcomes instead of individual materials or ser-
vices is the essence of PBL. In the following discussion, 
PBL has the same meaning as PBC.

In recent years, PBC has been widely applied in vari-
ous fields, therefore the amount of academic research 
related to PBC is also gradually increasing. Nevertheless, 
the main research attention is put on contracts [11, 12], 
risks [13–16], incentives [17], and performance metrics 
[18]. Tan [11] proposed a new analytical model, which 
helps to determine the parameters and analyze contracts. 
Shang et al. [16] improved that energy performance con-
tracting is an effective way to achieve the goals of energy 
saving and emission reduction. Selviaridis et al. [17] pre-
sented a cross-case study. They found that the incentives 
can be framed through using a promotion, prevention, 
and hybrid, respectively. Akkermans et al. [18] provided 
a new approach to buyer-supplier contracting. According 
to our observation, mathematical modeling, and optimi-
zation approaches under PBC are rarely addressed.

Nowadays, maintenance has been extensively recog-
nized as an essential part of asset management and a 
necessary business function. More and more manufac-
turers start realizing that the efficiency and reliability 
of products can be improved more effectively by devel-
oping a maintenance plan [19]. Therefore, there is more 
and more preventive maintenance (PM) is implemented. 
Conventionally, PM is implemented in the form of unit 
replacement or overhaul based on runtime, namely 
Time-based Maintenance (TBM) [20]. TBM is a mainte-
nance policy that implements maintenance activities at 
regular intervals based on historical maintenance data. 
However, CBM is a maintenance policy that puts more 
emphasis on planning maintenance activities through 
data collected by sensors [21]. With the use of emerging 
technologies such as wireless telecommunication and 
various sensors, CBM has developed rapidly and CBM 

modeling attracts increasing attention [22]. Alaswad and 
Xiang [21] conducted a comprehensive and systematic 
survey of CBM studies. They mainly reviewed the inspec-
tion interval, optimization objective, degree of mainte-
nance, and solution method of the CBM. With respect to 
systems subject to continuous deterioration, we generally 
adopted stochastic deterioration models, like the Wiener 
process and Gamma process. When degradation is in the 
form of cumulative damage, the Gamma process is more 
appropriate, which has been extensively studied in CBM 
models [23]. However, to our best knowledge, the work 
related to CBM maintenance optimization for gamma 
deteriorating systems under PBC is rarely reported.

In order to fill the gap mentioned above, the CBM opti-
mization for gamma deteriorating systems under PBC is 
investigated in this paper, which can be viewed as a com-
bination of PBC and CBM and is still very limited. The 
main target of this study is to find the optimal decision 
variables in order to maximize profit and improve system 
performance in a relatively low-cost way. Compared with 
the existing studies, a stepwise linear revenue function is 
adopted to correlate the availability with the support pro-
vider’s profit. For demonstrating the superiority of PBC, 
we compare the presented policy with traditional policy 
(i.e., cost minimization). Then, a sensitivity analysis of 
corrective maintenance cost and time required for cor-
rective maintenance is conducted. Finally, we conduct a 
comparative study of considering first inspection inter-
val or not, which is involved in our proposed model and 
rarely considered in previous works.

The remainder of this study is organized as follows.  
Section 2 conducts a literature review based on the math-
ematical modeling and optimization approaches under 
PBC.  Section  3 presents the degradation process with 
random effects, problem description, and model assump-
tions.  Section 4 develops a CBM optimization model for 
gamma deteriorating systems under PBC. In Sect. 5, the 
solution algorithm and related procedure are presented. 
A numerical example is provided in Sect. 6, which vali-
dates the superiority of the proposed model. Section  7 
presents the conclusion and several research directions.

2 � Literature Review
In the past ten years, the research concentrates on math-
ematical modeling and optimization approaches under 
PBC have been gradually increasing. Before starting 
further research, we review the papers related to math-
ematical modeling and optimization approaches of main-
tenance support under PBC.

In Table 1, we reviewed 18 pieces of literature related 
to mathematical modeling and optimization approaches 
of maintenance support under PBC. These papers are 
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ranked according to the publishing time. They were 
mainly summarized in application domains, solution 
algorithm, first inspection interval considered or not, and 
characteristic feature.

Concerning the application domains, the reviewed 
papers are mainly divided into spares inventory and 
maintenance optimization. From Table  1, it can be 
observed that 12 of the reviewed papers [24–35] con-
centrated on the spares inventory. As the common 
inventory stock items, spare parts are necessary for 
maintenance equipment. Generally, spare parts will 
cost a large part of the product life cycle cost (LCC) 

[36]. For this reason, PBC is applied in spares inventory, 
and correspondent optimization models are developed 
in order to obtain the optimal inventory. Instead, only 
6 of the reviewed papers [37–42] studied maintenance 
optimization under PBC.

With respect to the solution algorithms, one-third of 
the reviewed papers did not mention the solution algo-
rithm. 11 of the reviewed papers adopted the traditional 
solution algorithms, such as simulation, allocation algo-
rithm, gradient descent, selection algorithm, discrete 
algorithm, and coordinate search algorithm. Only 2 
reviewed papers applied heuristic intelligent algorithms, 

Table 1  Overview of application domains, solution algorithm, first inspection interval considered or not, and characteristic feature by 
the central reviewed literature

Ref. Application domain Solution algorithm Consider first
inspection 
interval?

Characteristic feature

[24] Kim et al. (2007) Spares inventory ‒ ‒ Principal-agent model

[25] Nowicki et al. (2008) Spares inventory Allocation algorithm ‒ METRIC

[26] Mirzahosseinian and
Piplani (2011)

Spares inventory ‒ ‒ METRIC; Queueing theory;
Markov chain

[27] Jin and Tian (2012) Spares inventory;
Reliability

Simulation ‒ Reliability design;
Spare parts logistic

[28] Mirzahosseinian and
Piplani (2013)

Spares inventory;
Reliability

‒ ‒ METRIC;
Reliability design;
Spare parts logistic

[29] Zhang et al. (2014) Spares inventory;
Reliability

Simulation ‒ Reliability design;
Spare parts logistic

[30] Jin et al. (2015) Spares inventory;
Reliability

Gradient Descent ‒ METRIC;
Game theory

[31] Mirzahosseinian et al.
(2016)

Spares inventory;
Reliability

‒ ‒ METRIC; Reliability design;
Spare parts logistic

[32] Riccardo et al. (2016) Spares inventory Quick Request
selection algorithm;
Local Department Kit
allocation algorithm

‒ METRIC

[37] Qiu et al. (2017) Maintenance
optimization

‒ No Mathematical statistical
theory; Virtual age model

[38] Xiang et al. (2017) Maintenance
optimization

Discrete algorithm No Stochastic deterioration
model

[33] Hur et al. (2018) Spares inventory Runge-Kutta methods;
Discrete event simulation

‒ Markov chain

[34] Patra et al. (2019) Spares inventory;
Reliability

‒ ‒ Principal-agent model;
Time-series model

[39] Wang et al. (2019) Maintenance
optimization

Simulation No Mathematical statistical
theory

[40] Yang et al. (2019) Maintenance
optimization

ABC algorithm No Delay-time-based
maintenance model

[41] Li et al. (2020) Maintenance
optimization

Coordinate search
algorithm

No Mathematical statistical
theory

[42] Wang et al. (2020) Maintenance
optimization

PSO algorithm No Degradation-threshold-shock
model

[35] Hosseinifard et al.
(2021)

Spares inventory Simulation ‒ Service-level agreement

This paper Maintenance
optimization

PSO algorithm Yes Stochastic deterioration
model
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they are artificial bee colony (ABC) algorithm [40] and 
particle swarm optimization (PSO) algorithm [42], 
respectively. For low-dimensional problems, the tradi-
tional solution algorithm is relatively simple and effec-
tive. However, for high-dimensional problems, such as 
maintenance optimization problems with multiple deci-
sion variables, adopting a traditional solution algorithm 
will take large numbers of time and the accuracy of the 
solution is relatively low. In contrast, the heuristic intel-
ligent algorithms have high operating efficiency and are 
less affected by the dimensionality of the problem [43, 
44]. Therefore, the application of a heuristic intelligent 
algorithm is needed for complicated maintenance opti-
mization problems under PBC.

Regarding the first inspection interval, to our best 
knowledge, there has never been researching consider-
ing the first inspection interval in maintenance optimiza-
tion under PBC. The first inspection interval was firstly 
proposed by Jia and Christer [45] for modeling functional 
checking models. They have verified the effectiveness of 
distinguishing the first inspection interval. The fly in the 
ointment is that they did not consider the downtime in 
their numerical example.

In regard to the characteristic feature in maintenance 
optimization, it can be known from Table 1 that PBC has 
applied mathematical statistical theory [37, 39, 41], sto-
chastic deterioration model [38], delay-time-based main-
tenance model [40], degradation-threshold-shock model 
[42], and so on. At present, the development of stochas-
tic deterioration is the main research aspect of CBM, 
whether in research organizations or industrial applica-
tions [21]. Nevertheless, there is only one paper [38] that 
studies the application of stochastic deterioration models 
under PBC. So, the research on stochastic deterioration 
models under PBC needs to be further strengthened and 
developed.

Based on the above summarizes, it can be concluded 
that:

(1)	 Only a few studies applied PBC in maintenance 
optimization. Therefore, there is still an impera-
tive need to study maintenance optimization under 
PBC.

(2)	 The application of emerging heuristic intelligent 
algorithms in maintenance optimization under PBC 
is relatively rare. With the in-depth study of main-
tenance optimization problems under PBC, tradi-
tional algorithms cannot meet the requirements of 
efficiency and accuracy.

(3)	 As an effective approach, the first inspection inter-
val has not been considered in the maintenance 
optimization under PBC so far.

(4)	 As an important part of CBM, current research on 
the stochastic deterioration model in the mainte-
nance optimization under PBC is far from enough.

Consequently, this paper attempts to investigate the 
CBM optimization for gamma deteriorating systems 
under PBC. Meanwhile, we not only adopt the PSO algo-
rithm but also consider the first inspection interval.

3 � Problem Description and Assumptions
3.1 � Degradation Process with Random Effects
Generally, degradation is a physical or chemical pro-
cess in which the internal materials of the system suffer 
a gradual change under external stresses. For a system, 
the process of degradation is equivalent to damage. If the 
accumulated damage beyond the failure threshold over 
time, the system will eventually fail [23]. Figure 1 shows 
illustrate the process of degradation failure. Where X(t) 
represents the performance degradation at time t, Lf 
denotes the threshold of the failure, and tf represents the 
time when X(t) arrives Lf.

The system degradation process is usually stochastic 
so that it is an effective approach to describe the uncer-
tainty in the system degradation process using a random 
process. To facilitate mathematical processing, the com-
monly used stochastic degradation models are mostly 
homogeneous and stable independent incremental pro-
cesses, like the Wiener process and Gamma process. For 
systems where the degradation increases (or decreases) 
over time (non-monotonic), the Wiener process is more 
appropriate. However, for systems where the degra-
dation monotonically increasing (or decreasing), the 
Gamma process is more suitable [21]. Gamma processes 

X(t)
Lf

0 ttf
Figure 1  Process of degradation failure
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are well suited for modeling the temporal variability of 
deterioration, they have proven to be useful in determin-
ing optimal inspection and maintenance decisions [46]. 
Therefore, we investigate a system in which the degrada-
tion process follows the gamma process.

The gamma process is defined in mathematical terms 
as follows.

Let X denotes the random variables which have a 
gamma distribution, where the shape parameter α>0 and 
the scale parameter β > 0. The probability density func-
tion of X is as follows:

where Ŵ(α) =
∫∞

0 uα−1e−udu , and IA(x) = 1 for x ∈ A 
and IA(x) = 0 for x /∈ A.

Moreover, if α(t) is a non-decreasing, right-continuous, 
real-valued function for t≥0, with α(0)≡0, the gamma 
process can be described as a continuous stochastic 
process {X(t), t≥0} with shape function α(t)>0 and scale 
parameter β>0. The process has the following properties:

(1) X(0)=0;
(2) X(t+Δt)−X(t)~Ga(t); α(Δt), β) for all Δt>0 and t≥0;
(3) X(t) has independent increments.
If shape parameter α(t) is a linear function of time t, the 

random process will be a stationary gamma process. In 
this paper, we assume α(t)=αt, then the probability den-
sity function can be expressed as follows:

and the distribution function is as follows:

3.2 � Problem Description
CBM is one of the most effective maintenance strategies 
to deal with degradation failure [47]. It refers to a mainte-
nance strategy that makes a maintenance plan by collect-
ing and estimating the real-time conditions of the system. 
At present, CBM is mostly based on periodic inspec-
tions, which is shown in Figure 2. Where T1 and T denote 
inspection intervals, Lp denotes preventive maintenance 
threshold, Ti represents the inspection time, Tp repre-
sents the preventive maintenance time, Tf represents the 
corrective maintenance time.

The design of this type of strategy has primarily concen-
trated on preventive maintenance threshold and inspec-
tion interval. Different from traditional inspection models, 
we consider the first inspection interval, T1, because the 
probability of the cumulative deterioration level above the 

(1)Ga(x;α,β) =
βα

Ŵ(α)
xα−1e−βxI(0,∞)(x),

(2)f (x;αt,β) =
βαt

Ŵ(αt)
xαt−1e−βx,

(3)F(x;αt,β) =
βαt

Ŵ(αt)

∫ x

0

uαt−1e−βudu.

preventive maintenance threshold is relatively small in the 
early period. Thus, it is necessary to set the first inspection 
interval to reduce the inspection frequency and the cost.

Generally, the cost is the primary consideration when set-
ting the inspection interval and preventive maintenance 
threshold. The existing maintenance optimization models 
often adopt the optimization standard that minimizing sys-
tem maintenance cost instead of performance. However, in 
some cases when the cost is minimal, the performance of 
the system may be very low, which can not be acceptable in 
practice. In this study, we deal with an optimization model of 
CBM for gamma deteriorating systems under PBC. The dif-
ference from the traditional maintenance optimization mod-
els is that PBC motivates support providers to implement 
efficient maintenance strategies which encouraging profits 
and improving the performance of the system in a relatively 
low-cost way [27]. Therefore, how to find the optimal deci-
sion variables (i.e., first inspection interval, repeat inspection 
interval, and preventive maintenance threshold) in order to 
accomplish the target of PBC is what we are committed to 
studying.

3.3 � Modeling Assumptions
The basic modeling assumptions are listed as follows:

(1)	 A single-component system is a system that treats 
a component as a system for research. Since main-
tenance policies for single-component systems are 
more established and are the basis for maintenance 
policies of multi-component systems, this paper 
investigates a repairable single-component system 
subject to the gamma degradation process. Let X(t) 
represent the degradation of time t and satisfy the 
following conditions: (a) when t=0, X(0)=0, the 
system is viewed as an operative condition; (b) the 
increments of degradation are non-negative and 
independent.

X(t)

Lf

Lp

0 T1 T T

Ti Ti Ti Tp

tT1 T T

Ti TfTi Ti

Figure 2  Periodic inspection policy of degradation process
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(2)	 The inspection of the system is a discrete inspec-
tion, and the status of the system can only be 
detected in an inspection way. All inspections are 
viewed as perfect. The first inspection interval is T1 
and the repeated inspection interval is T.

(3)	 If X(t)<Lp, the system continues to work until the 
next inspection.

(4)	 If Lp<X(t)<Lf, the system will be preventively 
repaired. We assume that the preventive repair is 
imperfect, namely the system will return to opera-
tive condition with probability p. In contrast, the 
system will stay the same state with the probability 
q=1−p.

(5)	 If Lf<X(t), the system will break down and correc-
tive maintenance will be performed. Corrective 
maintenance is perfect, the system can be repaired 
as new after corrective maintenance. Further-
more, the failure is not obvious which can only be 
detected in an inspection way, therefore the system 
will keep running when a failure happens until the 
inspection.

4 � Maintenance Optimization Modeling 
under Performance‑based Contracting

4.1 � Optimization Model of Performance‑based 
Contracting

In this section, the expected profit rate under PBC is 
derived and calculated. As a representative profit-cen-
tered strategy, PBC considers both the performance 
and costs of operation. In this paper, the expected aver-
age availability is adopted to measure the performance, 
which is because higher system stability is required in 
the defense and industrial field. And then, the expected 
cost rate per unit time is adopted to measure the costs of 
operation.

Firstly, the revenue function is used to help to connect 
the profit and availability. As it is easy to implement and 
can clearly express the relationship between the profit 
and availability, the stepwise linear revenue function 
is adopted in this study to assist in maintenance deci-
sion making under PBC, the schematic diagram of step-
wise linear revenue is shown in Figure  3, which can be 
expressed as Eq. (4):

where θ represents the fixed revenue, π(A−Amin) denotes 
the incentive based on performance. If A<Amin, providers 
could not obtain any revenue. If A≥Amin, providers can 
get fixed revenue and incentives.

(4)ER =

{

0,
θ + π(A− Amin),

A < Amin,
A ≥ Amin,

Let EP denote the expected profit rate per unit time. 
According to the expected cost and the expected rev-
enue, the maintenance optimization model to maximize 
the expected profit can be expressed as Eq. (5):

where Tmax represents the potential time constraint for 
inspection interval.

In order to reflect the superiority of the proposed 
model, a benchmark model to minimize cost is proposed 
as follows:

4.2 � Calculation of Renewal Probabilities
Before calculating the A and EC in Eq. (4) and Eq. (5), 
the probabilities of preventive renewal and corrective 
renewal should be calculated in advance.

In this study, we have a hypothesis that the system is 
renewed when preventive maintenance is performed 
perfectly or the cumulative degradation beyond the fail-
ure threshold at the inspection. It is noticed that the first 
inspection interval, T1, is greater than subsequent inspec-
tion intervals, T.

4.2.1 � Probability of Preventive Renewal
Let pλ (λ=1,2,3,…) represents the probability of preven-
tive maintenance is perfectly implemented at the λth 

(5)

max EP(T1,T , Lp) = ER(T1,T , Lp)− EC(T1,T , Lp),

s.t.,

{

0 < T < T1 < Tmax,

0 < Lp < Lf ,

(6)

min EC(T1,T , Lp),

s.t.,

{

0 < T < T1 < Tmax,

0 < Lp < Lf ,

Amin 10
Availability

R
ev
en

ue

a1

Rmax

Figure 3  Stepwise linear revenue function
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inspection. At the first inspection, if Lp<X(t)< Lf, PM will 
be implemented perfectly with probability p. The corre-
sponding probability can be expressed as Eq. (7):

There are two cases where PM is perfectly performed 
at the second inspection (λ=2). The first situation is that 
PM is not required at the first inspection but is required 
and performed perfectly at the second inspection. The 
second situation is that PM is failed to implement at 
the first inspection and the cumulative degradation 
did not beyond the failure threshold during the second 
inspection interval, at the same time, PM is perfectly 
implemented at the second inspection. Therefore, the 
probability of these cases can be expressed as Eq. (8):

It is similar to the situation above, there exist three 
cases where PM is performed perfectly at the third 
inspection (λ=3). The first situation is that PM is not 

(7)p1 = Pr{Lp < X(T1) < Lf } × p.

(8)

p2 =Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf } × p

+ Pr{Lp < X(T1) < Lf&Lp < X(T1 + T ) < Lf }

× (1− p)p.

required during the first two inspections but is required 
and performed perfectly at the third inspection (shown 
in Figure  4(a)). The next situation is that PM is not 
required at the first inspection and fails to implement at 
the second inspection, meanwhile, it is performed per-
fectly at the third inspection (shown in Figure 4(b)). The 
third situation is that PM is required during the first two 
inspections, but they all fail to implement perfectly, it is 
performed perfectly at the third inspection (shown in 
Figure  4(c)). Combining the above three situations, the 
probability of these cases can be expressed as Eq. (9):

According to the above deduction, the general expres-
sion of the probability which performing PM perfectly at 
the λth inspection can be expressed as Eq. (10):

(9)

p3 =Pr{X(T1 + T ) < Lp&Lp < X(T1 + 2T ) < Lf }

× p+ Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf&Lp

< X(T1 + 2T ) < Lf } × (1− p)p + Pr{Lp < X(T1)

< Lf&Lp < X(T1 + 2T ) < Lf } × (1− p)2p.

(10)
p� =































Pr{Lp < X(T1) < Lf } × p, � = 1,

Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf } × p+ Pr{Lp < X(T1) < Lf &Lp < X(T1 + T ) < Lf } × (1− p)p, � = 2,

Pr{X(T1 + (�− 2)T ) < Lp&Lp < X(T1 + (�− 1)T ) < Lf } × p+
�−1
�

n=2

Pr{X(T1 + (n− 2)T ) < Lp Lp

< X(T1 + (n− 1)T ) < Lf &Lp < X(T1 + (�− 1)T ) < Lf } × (1− p)�−np+ Pr{Lp < X(T1) < Lf &Lp
< X(T1 + (�− 1)T ) < Lf } × (1− p)�−1p, � > 2,

X(t)

Lf

Lp

0 T1 T T

Ti Ti Ti Tp

t

X(t)

Lf

Lp

0 T1 T

Ti Ti

tT

Tp Ti Tp
X(t)

Lf

Lp

0 T1 T

Ti Ti

tT

Tp Ti TpTp

(a) (b) (c)
Figure 4  Perfect PM at the 3rd inspection
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where

4.2.2 � Probability of Corrective Renewal
Then, let qλ (λ=1,2,3,…) denotes the probability of cor-
rective maintenance (CM) is performed at the λth 
inspection. The probability of CM is implemented at the 
first inspection is

There are also two cases where CM is implemented at 
the second inspection (λ=2). The first situation is that 
X(t)<Lp at the first inspection, but Lf<X(t) between the 
first and the second inspection. The second situation is 
that PM is failed to implement at the first inspection and 
the cumulative degradation beyond the failure threshold 
at the second inspection. Thus, the probability of these 
cases can be expressed as Eq. (14):

Similar to the above situation, there are three cases 
where CM is performed at the third inspection (λ=3). 
The first situation is that X(t)<Lp during the first two 
inspections, and Lf<X(t) between the second and the 
third inspection. The second situation is that PM is 
required at the second inspection, but the PM fails 
to implement, and Lf<X(t) between the second and 
the third inspection. The third situation is that PM is 
required and performed at both the first two inspec-
tions, but these two inspections are both failed to 
implement, meanwhile, Lf<X(t) between the second 

(11)

Pr{X(T1 + (�− 2)T ) < Lp&Lp < X(T1 + (�− 1)T ) < Lf }

=

∫ Lp

0

f (u,α(T1 + (�− 2)T ),β)

∫ Lf −u

Lp−u
f (v,T ,β)dvdu,

(12)

Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n

− 1)T ) < Lf&Lp < X(T1 + (�− 1)T ) < Lf }

=

∫ Lp

0

f (u,α,T1 + (n− 2)T ),β)

∫ Lf −u

Lp−u
f (v,αT ,β)

× F(Lf − u−v,α(�− n)T ,β)dvdu.

(13)q1 = Pr{X(T1) > Lf }.

(14)

q2 =Pr{X(T1) < Lp&X(T1 + T ) > Lf } + Pr{Lp

< X(T1) < Lf&X(T1 + T ) > Lf } × (1− p).

and the third inspections. Therefore, the probability of 
these cases can be expressed as Eq. (15):

Similarly, there are four cases where CM is per-
formed at the fourth inspection (λ=4). The first situ-
ation is that PM is not required before the fourth 
inspection and the cumulative degradation beyond 
the failure threshold between the third and the fourth 
inspections (shown in Figure  5(a)). The second situa-
tion is that the first PM is required at the third inspec-
tion, but the PM is not performed perfectly, and 
Lf<X(t) between the third and the fourth inspections 
(shown in Figure 5(b)). The third situation is that the 
first PM is required at the second inspection, however, 
both the second and third inspections are not per-
formed perfectly, and Lf<X(t) between the third and 
the fourth inspections (shown in Figure 5(c)). The last 
situation is that the PM fails to implement during the 
first three inspections, and Lf<X(t) between the third 
and the fourth inspection (shown in Figure 5(d)). The 
probability of these cases can be expressed as Eq. (16):

According to the above deduction, the general expres-
sion of the probability which performing CM at the λth 
inspection can be expressed as Eq. (17):

(15)

q3 =Pr{X(T1 + T ) < Lp&X(T1 + 2T ) > Lf }

+ Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf

&X(T1 + 2T ) > Lf } × (1− p)+ Pr{Lp < X(T1)

< Lf&Lp < X(T1 + T ) < Lf&X(T1 + 2T )

> Lf } × (1− p)2.

(16)

q4 =Pr{X(T1 + 2T ) < Lp&X(T1 + 3T ) > Lf }

+ Pr{X(T1 + T ) < Lp&Lp < X(T1 + 2T )

< Lf&X(T1 + 3T ) > Lf }

× (1− p)+ Pr{X(T1) < Lp&Lp < X(T1 + T )

< Lf&Lp < X(T1 + 2T )

< Lf&X(T1 + 3T ) > Lf } × (1− p)2 + Pr{Lp

< X(T1) < Lf&Lp < X(T1 + 2T )

< Lf&X(T1 + 3T ) > Lf } × (1− p)3.
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(17)

q� =



























































Pr{X(T1) > Lf }, � = 1,

Pr{X(T1) < Lp&X(T1 + T ) > Lf } + Pr{Lp < X(T1) < Lf &X(T1 + T ) > Lf } × (1− p), � = 2,

Pr{X(T1 + T ) < Lp&X(T1 + 2T ) > Lf } + Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf &X(T1 + 2T ) > Lf } × (1− p)

+Pr{Lp < X(T1) < Lf &Lp < X(T1 + T ) < Lf &X(T1 + 2T ) > Lf } × (1− p)2, � = 3,

Pr{X(T1 + (�− 2)T ) < Lp&X(T1 + (�− 1)T ) > Lf } + Pr{X(T1 + (�− 3)T ) < Lp&Lp < X(T1 + (�− 2)T ) < Lf

&X(T1 + (�− 1)T ) > Lf } × (1− p)+
�−2
�

n=2

Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T ) < Lf &Lp < X(T1

+(�− 2)T ) < Lf &X(T1 + (�− 1)T ) > Lf } × (1− p)�−n + Pr{Lp < X(T1) < Lf &Lp < X(T1 + (�− 2)T ) < Lf
&X(T1 + (�− 1)T ) > Lf } × (1− p)�−1, � > 3,

X(t)

Lf

Lp

0 T1 T T

Ti Ti Ti

tT

Ti Tf
X(t)

Lf

Lp

0 T1 T T

Ti Ti Ti

tT

Ti TfTp

X(t)

Lf

Lp

0 T1

Ti

tT T T

Ti Ti Ti TfTpTp
X(t)

Lf

Lp

0 T1

Ti

tT T T

Ti Ti Ti TfTpTpTp

(a) (b)

(c) (d)
Figure 5  CM at the 4th inspection
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where

4.3 � Calculation of Average Availability
In the field of maintenance support, availability is the 
most used metric to measure performance. In our pro-
posed model, availability is adopted to measure the prac-
tical performance outcomes. Meanwhile, it is assumed 

(18)

Pr{X(T1 + (�− 2)T ) < Lp&X(T1 + (�− 1)T ) > Lf }

=

∫ LP

0

f (u,α(T1 + (�− 2)T ),β)[1− F(Lf − u,αT ,β)]du,

(19)

Pr{X(T1 + (�− 3)T ) < Lp&Lp < X(T1 + (�− 2)T )

< Lf&X(T1 + (�− 1)T ) > Lf }

=

∫ Lp

0

f (u,α(T1 + (�− 3)T ),β)

∫ Lf −u

Lp−u
f (v,αT ,β)[1

− F(Lf − u− v,αT ,β)]dvdu,

(20)

Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T )

< Lf&Lp < X(T1 + (�− 2)T ) < Lf&X(T1 + (�

− 1)T ) > Lf }

=

∫ Lp

0

f (u,α(T1 + (n− 2)),β)

∫ Lf −u

Lp−u
f (v,αT ,β)

×

∫ Lf −u−v

0

f (w,α((�− n− 1)T ),β)[1− F(Lf − u

− v − w,αT ,β)]dwdvdu.

that the incentive is directly related to availability. The 
average availability is given by

where Tup denotes the expected uptime per cycle, Tdown 
denotes the expected downtime per cycle.

4.3.1 � Derivation of Uptime
The expected uptime per cycle is expressed as:

4.3.2 � Derivation of Downtime
The total expected downtime can be expressed as follows:

Let E1,λ(Tdown) represent the expected downtime 
when PM is implemented perfectly at the λth inspec-
tion, E2,λ(Tdown) represent the expected downtime when 
CM is implemented at the λth inspection. Then, the total 
expected downtime can be expressed as follows:

The expected downtime when PM is performed per-
fectly at the λth inspection can be expressed as Eq. (25):

(21)A =
Tup

Tup + Tdown

,

(22)

E(Tup) =

∞
∑

�=1

(T1 + (�− 1)T )× p� +

∞
∑

�=1

(T1 + (�− 1)T )× q�.

(23)

E(Tdown) =E(inspection time)+ E(time required for PM)

+ E(time required for CM).

(24)E(Tdown) =

2
∑

i=1

∞
∑

�=1

Ei,�(Tdown).

(25)

E1,�(Tdown) =






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




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






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

(Ti + Tp)× Pr{Lp < X(T1) < Lf } × p, � = 1,

(2Ti + Tp)× Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf } × p+ (2Ti + 2Tp)× Pr{Lp < X(T1) < Lf l

&Lp < X(T1 + T ) < Lf } × (1− p)p, � = 2,

(�Ti + Tp)× Pr{X(T1 + (�− 2)T ) < Lp&Lp < X(T1 + (�− 1)T ) < Lf } × p+
�−1
�

n=2

(�Ti + (�l

−n+ 1)Tp)× Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T ) < Lf &Lp < X(T1 + (�l

−1)T ) < Lf } × (1− p)�−np+ (�Ti + �Tp)× Pr{Lp < X(T1) < Lf &Lp < X(T1 + (�− 1)T )l

< Lf } × (1− p)�−1p, � > 2,
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The expected downtime when CM is implemented at 
the λth inspection can be expressed as Eq. (26):

4.4 � Calculation of Cost Rate
The calculation of the cost rate is similar to the calcu-
lation of downtime. There are only two things we need 
to do. Firstly, it is needed to replace the inspection time 
with the inspection cost. Then, just need to replace the 

(26)

E2,�(Tdown) =


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
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
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
















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































(Ti + Tf )× Pr{X(T1) > Lf }, � = 1,

(2Ti + Tf )× Pr{X(T1) < Lp&X(T1 + T ) > Lf } + (2Ti + Tp + Tf )× Pr{Lp < X(T1) < Lf &X(T1 + T )

> Lf } × (1− p), � = 2,

(3Ti + Tf )× Pr{X(T1 + T ) < Lp&X(T1 + 2T ) > Lf } + (3Ti + Tp + Tf )× Pr{X(T1) < Lp&Lp < X(T1

+T ) < Lf &X(T1 + 2T ) > Lf } × (1− p)+ (3Ti + 2Tp + Tf )× Pr{Lp < X(T1) < Lf &Lp < X(T1 + T )

< Lf &X(T1 + 2T ) > Lf } × (1− p)2, � = 3,

(�Ti + Tf )× Pr{X(T1 + (�− 2)T ) < Lp&X(T1 + (�− 1)T ) > Lf } + (�Ti + Tp + Tf )× Pr{X(T1 + (�

−3)T ) < Lp&Lp < X(T1 + (�− 2)T ) < Lf &X(T1 + (�− 1)T ) > Lf } × (1− p)+
�−2
�

n=2

(�Ti + (�− n)Tp

+Tf )× Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T ) < Lf &Lp < X(T1 + (�− 2)T ) < Lf
&X(T1 + (�− 1)T ) > Lf } × (1− p)�−n + (�Ti + (�− 1)Tp + Tf )× Pr{Lp < X(T1) < Lf &Lp < X(T1

+(�− 2)T ) < Lf &X(T1 + (�− 1)T ) > Lf } × (1− p)�−1, � > 3.

PM/CM downtime with the PM/CM costs. Therefore, 
the expected maintenance cost when PM is performed 
perfectly at the λth inspection can be expressed as:

(27)

E1,�(Cost) =




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
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



(Ci + Cp)× Pr{Lp < X(T1) < Lf } × p, � = 1,

(2Ci + Cp)× Pr{X(T1) < Lp&Lp < X(T1 + T ) < Lf } × p+ (2Ci + 2Cp)× Pr{Lp < X(T1) < Lf &Lp
< X(T1 + T ) < Lf } × (1− p)p, � = 2,

(�Ci + Cp)× Pr{X(T1 + (�− 2)T ) < Lp&Lp < X(T1 + (�− 1)T ) < Lf } × p+
�−1
�

n=2

(�Ci + (�− n+ 1)Cp)

×Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T ) < Lf &Lp < X(T1 + (�− 1)T ) < Lf } × (1− p)�−np

+(�Ci + �Cp)× Pr{Lp < X(T1) < Lf &Lp < X(T1 + (�− 1)T ) < Lf } × (1− p)�−1p, � > 2.
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Likewise, the expected maintenance cost when CM is 
implemented at the λth inspection can be expressed as:

Similar to Eq. (24), the expected cost rate can be 
expressed as follows:

5 � Solution Algorithm
In this study, an optimization model of CBM for gamma 
deteriorating systems under PBC is proposed. Maxi-
mizing the expected profit is the main target of the pro-
posed model. Therefore, it is needed to find the optimal 
decision variables, namely the first inspection inter-
val, repeat inspection interval, and preventive mainte-
nance threshold. From the equations deduced above, 
it is noted that the model is very difficult to be solved 
because the proposed model has three decision vari-
ables, and the expression is very complicated. If we use 
the traditional exact algorithms, such as a discrete algo-
rithm, it will take a lot of time and the accuracy of the 
solution is relatively low. For this reason, the heuristic 
intelligence algorithm is adopted to solve the proposed 
model. Particle Swarm Optimization (PSO)is one of the 
most used heuristic intelligence algorithms which is 
convenient and efficient [48–50]. It can be known from 
Table 1 that PSO is not used in maintenance optimiza-
tion under performance-based contracting, therefore, 
we chose the PSO as the solution algorithm. The corre-
sponding solution steps are illustrated as follows.

Step 1: Input the parameters of the maintenance cost, 
maintenance time, gamma deteriorating process, and 
revenue function. Let φ{T1, T, Lp} be the vector that has 
three decision variables.

(28)

E2,�(Cost) =














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


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

(Ci + Cf )× Pr{X(T1) > Lf }, � = 1,

(2Ci + Cf )× Pr{X(T1) < Lp&X(T1 + T ) > Lf } + (2Ci + Cp + Cf )× Pr{Lp < X(T1) < Lf &X(T1 + T )

> Lf } × (1− p), � = 2,

(3Ci + Cf )× Pr{X(T1 + T ) < Lp&X(T1 + 2T ) > Lf } + (3Ci + Cp + Cf )× Pr{X(T1) < Lp&Lp < X(T1

+T ) < Lf &X(T1 + 2T ) > Lf } × (1− p)+ (3Ci + 2Cp + Cf )× Pr{Lp < X(T1) < Lf &Lp < X(T1 + T )

< Lf &X(T1 + 2T ) > Lf } × (1− p)2, � = 3,

(�Ci + Cf )× Pr{X(T1 + (�− 2)T ) < Lp&X(T1 + (�− 1)T ) > Lf } + (�Ci + Cp + Cf )× Pr{X(T1 + (�

−3)T ) < Lp&Lp < X(T1 + (�− 2)T ) < Lf &X(T1 + (�− 1)T ) > Lf } × (1− p)+
�−2
�

n=2

(�Ci + (�− n)Cp

+Cf )× Pr{X(T1 + (n− 2)T ) < Lp&Lp < X(T1 + (n− 1)T ) < Lf &Lp < X(T1 + (�− 2)T ) < Lf &X(T1

+(�− 1)T ) > Lf } × (1− p)�−n + (�Ci + (�− 1)Cp + Cf )× Pr{Lp < X(T1) < Lf &Lp < X(T1 + (�− 2)T )

< Lf &X(T1 + (�− 1)T ) > Lf } × (1− p)�−1, � > 3.

(29)
EC =

2
∑

i=1

∞
∑

�=1

Ei,�(Cost)

Tup + Tdown

.

Step 2: Set the initial state of each particle. 
For each particle s (s=1,2,…, S), set its position 
ϕs = {ϕT1

s ,ϕT
s ,ϕ

Lp
s } and velocity υs = {υT1

s , υT
s , υ

Lp
s } ran-

domly with ϕT1
s ∈ (0,T1) , ϕT

s ∈ (0,T ) , ϕLp
s ∈ (0, Lf ) and 

υT1
s , υT

s , υ
Lp
s ∈ [−1.5, 1.5].

Step 3: Letτ (τ = 1, . . . , τmax) represent the iteration 
time and denote the fitness value as EP(ϕs(τ )) . Calcu-
lating the EP(ϕs(τ )) at each τ.

Step 4: Compare EP(ϕs(τ )) with EP
(

ϕbest
s (τ )

)

 , where 
ϕbest
s (τ ) represents the best position of each particle s.  

If EP(ϕs(τ ))>EP
(

ϕbest
s (τ )

)

 , update ϕbest
s (τ ) and 

EP
(

ϕbest
s (τ )

)

 by ϕbest
s (τ )=ϕs(τ ) and EP

(

ϕbest
s (τ )

)

= 
EP(ϕs(τ )) respectively.

Step 5: Compare EP(ϕs(τ )) with EP
(

ϕbest
g (τ )

)

 where 
ϕbest
g (τ ) represents the best position of all particles. If 

EP(ϕs(τ ))>EP
(

ϕbest
g (τ )

)

 , update ϕbest
g (τ ) and 

EP
(

ϕbest
g (τ )

)

 by ϕbest
g (τ )=ϕs(τ ) and EP

(

ϕbest
g (τ )

)

=EP(ϕs(τ )).
Step 6: Update each particle’s veloc-

ity and position at time τ+1 by 
υs(τ + 1) = υs(τ )+m1r1(ϕ

best
s (τ )− ϕs(τ ))+m1r2

(ϕbest
g (τ )− ϕs(τ )) and ϕs(τ + 1) = ϕs(τ )+ υs(τ + 1) . m1 

and m2 are the learning factors that demonstrate the abil-
ity of self-learning and group learning. r1 and r2 are ran-
dom numbers between 0 and 1.

Step 7: Confirm the termination condition of the cycle. 
If the τ>τmax or the convergence criteria are met, go to 
Step 8. If not, go back to Step 3.

Step 8: Output the globally optimal position 
ϕbest
g = {T1bestg ,Tbest

g , Lpbestg } and the corresponding fit-
ness value EP

(

ϕbest
g

)

.
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The schematic diagram of the steps is shown in Fig-
ure 6. The above is the solution algorithm and steps for 
the proposed model, and the benchmark model to mini-
mize cost can be solved with reference to the proposed 
model. Specifically, because EC can be calculated dur-
ing the calculation of EP according to Eq. (5), the solu-
tion steps of the benchmark model can be obtained just 
by substituting the optimization goal of maximum EP to 
minimum EC and adjusting relevant content and nota-
tions in the PSO solution procedure.

6 � Numerical Example
In this section, we provide a numerical example in order 
to illustrate the superiority of the presented model. 
Firstly, the cost, average availability, and profit are com-
pared between the proposed policy (i.e., profit maximi-
zation) and conventional policy (i.e., cost minimization). 
Then, a sensitivity analysis of different failure conse-
quences’ effects on optimization policy is investigated. 
Finally, a comparative analysis between the first inspec-
tion model and the traditional model (i.e., considering 
the first inspection or not) is presented.

6.1 � Comparison of Proposed Policy and Conventional 
Policy

The parameters used in this part mainly refer to the exist-
ing Refs. [37, 38] with a little change. Other parameters 
are assumed to be typical and reasonable values. Spe-
cifically, the scale parameter and shape parameter of 
the degradation process is supposed to be α=1.8, β=1 
respectively, and the failure maintenance threshold, Lf, is 
set to 50. The maintenance parameters include the prob-
ability of perfect preventive maintenance are provided in 
Table 2. Table 3 gives the parameters of PBC.

In Table 2, we selected different Tf and Cf to that inves-
tigating different failure consequences’ effects on optimi-
zation policy.

Based on the previously proposed models and solution 
algorithm, MATLAB software is used to find the optimal 
variables according to different optimization objectives. 
After substituting the parameters, the calculation results 
of the numerical example are summarized in Table 4.

From Table 4 it can be noted that the profit from the 
proposed policy is more than a conventional policy. It 
should be known that the improvement in profit is per 

Input model parameters (maintenance cost, maintenance time, 

gamma deteriorating process and revenue function)

Start

Initialize the particles. For each particle s, initialized its position 

φs={φs
T1

,φs
T
,φs

Lp
}and velocity υs={υsT1

,υsT,υsLp}

Calculate the fitness value of particle s denoted by EP(φs(τ))

If EP(φs(τ))>EP(φs
best

(τ))

EP(φs
best

(τ))=EP(φs(τ))

End

If EP(φs
best

(τ))>EP(φg
best

(τ))

EP(φg
best

(τ))=EP(φs
best

(τ))

Update the position and velocity of particle s

If the maximum iteration times τmax is reached 
or the convergence criteria is met

Output the globally optimal position φg
best

={T1g
best

,Tg
best

,Lpgbest} and 

the corresponding fitness value EP(φg
best

)

Yes

Yes

No

No

Yes

No

Figure 6  Flow chart of PSO algorithm

Table 2  The maintenance parameters

Ti (d) Tp (d) Tf (d) Ci (USD) Cp (USD) Cf (USD) p

0.2 4 6
12
18
24

4 40 200
400
600
800

0.99

Table 3  The PBC parameters

θ π Amin

2 20 0.6
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unit time, therefore the total profit will be greater over 
time. Besides, the proposed policy can also deliver bet-
ter performance (availability). For example, when Ci=4, 
Cp=40, Cf=800, Ti=0.2, Tp=4, Tf=6  (as the bold values 
shown in Table  4), comparing with conventional policy, 
the proposed policy has increased profit by 3.25% and 
availability by 1.11%, while cost increased by 2.68%. Obvi-
ously, the cost will be relatively higher under the pro-
posed policy. Nevertheless, this is understandable given 
keeping high system performance requires more frequent 
maintenance activities under the proposed policy. After 
all, the goal of the conventional policy is to find the opti-
mal decision variable to minimize the cost.

6.2 � Sensitivity Analysis
In this part, we conduct a sensitivity analysis in order to 
research the effect of corrective maintenance cost and 
time required for corrective maintenance on optimiza-
tion policy.

Firstly, a sensitivity analysis of corrective maintenance 
cost, Cf, is performed. We adopted a method that chang-
ing one of the parameters and fixing the others. Spe-
cifically, we fix Ci=4, Cp=40, Ti=0.2, Tp=4, Tf=6, and 
change the Cf. The analysis data comes from Table 4 and 
the comparative analysis is shown in Figure 7. Where the 
percentage values represent the rate of increase in profit.

It can be known from Figure 7 that the presented pol-
icy can get more profit under different values of Cf. Also, 

note that the profit will decrease as Cf increase. And 
more importantly, we noticed that the rate of increase in 
profit from conventional policy to the proposed policy 
is greater with the increase of Cf. Therefore, for the pro-
posed policy, the higher Cf, the more obvious the profit 
increase.

Then, we conduct a sensitivity analysis of the time 
required for corrective maintenance, Tf. Similar to the 
sensitivity analysis of corrective maintenance cost, we fix 
Ci=4, Cp=40, Cf=800, Ti=0.2, Tp=4, and change the Tf. 
The analysis data comes from Table 4 too and the com-
parative analysis is shown in Figure 8.

Table 4  Optimization results under different policy

Ci Cp Cf Ti Tp Tf Conventional policy Proposed policy

T1 T Lp EC A EP T1 T Lp EC A EP

4 40 200 0.2 4 6 19.56 4.35 36.23 2.22 0.8069 3.92 20.64 3.77 39.07 2.27 0.8141 4.01

12 19.56 4.35 36.23 2.22 0.8013 3.81 19.81 3.63 38.51 2.23 0.8037 3.85

18 19.56 4.35 36.23 2.22 0.7957 3.70 19.33 3.51 38.19 2.23 0.7976 3.73

24 19.56 4.35 36.23 2.22 0.7901 3.59 18.99 3.41 37.98 2.23 0.7932 3.63

4 40 400 0.2 4 6 18.54 3.99 35.45 2.35 0.8003 3.66 19.47 3.54 38.28 2.41 0.8089 3.76

12 18.54 3.99 35.45 2.35 0.7971 3.59 19.09 3.44 38.04 2.38 0.8022 3.66

18 18.54 3.99 35.45 2.35 0.7939 3.53 18.82 3.35 37.89 2.37 0.7973 3.58

24 18.54 3.99 35.45 2.35 0.7907 3.46 18.60 3.27 37.78 2.36 0.7933 3.50

4 40 600 0.2 4 6 18.08 3.67 35.29 2.44 0.7969 3.49 18.90 3.38 37.93 2.51 0.8057 3.60

12 18.08 3.67 35.29 2.44 0.7944 3.44 18.67 3.30 37.81 2.49 0.8006 3.53

18 18.08 3.67 35.29 2.44 0.7919 3.39 18.48 3.22 37.72 2.47 0.7965 3.46

24 18.08 3.67 35.29 2.44 0.7893 3.34 18.33 3.15 37.66 2.47 0.7929 3.39

4 40 800 0.2 4 6 17.79 3.38 35.34 2.52 0.7946 3.37 18.54 3.24 37.75 2.59 0.8034 3.48
12 17.79 3.38 35.34 2.52 0.7924 3.33 18.38 3.17 37.68 2.57 0.7992 3.41

18 17.79 3.38 35.34 2.52 0.7902 3.28 18.24 3.10 37.63 2.56 0.7956 3.35

24 17.79 3.38 35.34 2.52 0.788 3.24 18.12 3.04 37.59 2.55 0.7924 3.30

Figure 7  Sensitivity analysis of corrective maintenance cost
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From Figure 8, it is noted that the presented policy can 
get more profit under different values of Tf. In addition, it 
can be noticed that the profit will decrease as Tf increase. 
We also observed that, with the increase of Tf, the rate of 
increase in profit from profit maximization policy to cost 
minimization policy is lower. Therefore, for the proposed 
policy, the higher Tf, the less obvious the profit increase.

6.3 � Comparison of Considering First Inspection Interval 
or Not

Different from the traditional models, the first inspec-
tion interval is considered in our model. In this part, we 
conduct a comparative analysis to study the effective-
ness of the proposed model involving the first inspection 
interval.

We select a group of parameters and then calculate 
the optimal decision variables under the two conditions 
(i.e., considering first inspection interval or not). After 
that, the corresponding cost rate, availability, and profit 
are calculated. The calculation results are summarized in 
Table 5. Then, the column comparison chart is made as 
Figure 9 shows, which comparing three aspects, namely 
expected cost rate (shown in Figure 9(a)), average avail-
ability (shown in Figure  9(b)), and expected profit rate 
(shown in Figure 9(c)). Where the percentage values rep-
resent the decrease in cost, increase in availability, and 
increase in profit, respectively.

After observing the data in Table  5 and the column 
comparison chart in Figure  9, it can be concluded that 
our proposed model considering the first inspection 
interval is better than the traditional model. Specifically, 
the proposed model can provide lower cost, higher avail-
ability, and higher profit under the same parameters. 
It demonstrates the necessity of considering the first 
inspection interval.

Figure 8  Sensitivity analysis of the time required for corrective 
maintenance

Table 5  Comparison results of considering first inspection interval or not

Ci Cp Cf Ti Tp Tf Not considering first inspection interval Considering first inspection interval

T Lp EC A EP T1 T Lp EC A EP

4 40 800 0.2 4 6 5.63 33.87 3.19 0.7780 2.37 18.54 3.24 37.75 2.59 0.8034 3.48

12 5.43 34.05 3.17 0.7721 2.27 18.38 3.17 37.68 2.57 0.7992 3.41

18 5.33 33.96 3.15 0.7668 2.19 18.24 3.10 37.63 2.56 0.7956 3.35

24 5.20 34.03 3.14 0.7622 2.10 18.12 3.04 37.59 2.55 0.7924 3.30

Figure 9  Column comparison chart of considering first inspection interval or not
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7 � Conclusions and Future Research
This paper investigated the condition-based optimiza-
tion for gamma deteriorating systems under PBC. In 
this paper, the stepwise revenue function was adopted 
to link the cost and availability to profit, then a main-
tenance optimization model was established. To reduce 
the inspection frequency and the cost, the first inspec-
tion interval was incorporated into the model for-
mulation. In addition, the PSO algorithm was used 
to improve the speed and accuracy of the solution. A 
numerical example was provided, which illustrates the 
superiority of the presented model. According to the 
comparison analysis, it can be verified that the pro-
posed policy can increase profits and improve per-
formance at a certain cost. In sensitivity analysis, we 
observed the effect of different failure consequences on 
optimization policy. For the proposed policy, the higher 
Cf, the more obvious the profit increase; the higher 
Tf, the less obvious the profit increase. The final com-
parative study showed considering the first inspection 
interval can provide lower cost, higher availability, and 
higher profit.

This work can be extended along with several interest-
ing directions. Firstly, this paper investigates the system 
subject to the gamma deteriorating process, it is also 
worth studying another deteriorating process, like the 
inverse Gaussian process and Wiener process, which may 
be more in line with the degradation laws of some com-
ponents. In addition, the proposed model is for the sin-
gle-component system, there are several systems worth 
considering, such as series system, parallel system, and 
hybrid system. These two research directions need more 
attention, which can further expand the research scope of 
maintenance optimization under PBC.
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