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Abstract 

The crack fault is one of the most common faults in the rotor system, and researchers have paid close attention to its 
fault diagnosis. However, most studies focus on discussing the dynamic response characteristics caused by the crack 
rather than estimating the crack depth and position based on the obtained vibration signals. In this paper, a novel 
crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function 
(RBF) network and Pattern recognition neural network (PRNN) is presented. Firstly, a rotor system model with a breath-
ing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method, where the 
crack’s periodic opening and closing pattern and different degrees of crack depth are considered. Then, the dynamic 
response is obtained by the harmonic balance method. By adjusting the crack parameters, the dynamic characteris-
tics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall 
plots. The analysis results show that the first critical speed, first subcritical speed, first critical speed amplitude, and 
super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis. Based on 
this, the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respec-
tively by taking the above dynamic characteristics as input. Test results show that the proposed method has high 
fault diagnosis accuracy. This research proposes a crack detection method adequate for the hollow shaft rotor system, 
where the crack depth and position are both unknown.

Keywords  Hollow shaft rotor, Breathing crack, Radial basis function network, Pattern recognition neural network, 
Machine learning

1  Introduction
Rotating machinery is an integral part of modern indus-
try, which has many applications in gas turbines, aero-
engine, wind turbines, and other critical machinery 

equipment. Because the working environment of rotat-
ing machinery is harsh, it is easy to generate mechanical 
failure. The crack fault is one of the most common fail-
ure forms in the rotor system [1], which can seriously 
threaten the reliability of rotating machinery operating. 
Therefore, timely and accurate fault diagnosis of the 
crack fault is of great significance in improving the opera-
tion reliability of rotating machinery. Since the 1970s, 
many researchers have studied the crack fault diagno-
sis of the rotor system in many aspects. Mayes et al. [2] 
first used a more accurate cosine breathing function to 
describe the breath behavior of the crack and studied 
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the dynamic response of the rotor system containing a 
breathing crack. Then Al-Shudeifat et al. [3] proposed a 
new type of breathing function using the Fourier series 
and compared it with Mayes’ results. The comparative 
results show that this respiration function could more 
accurately represent the breathing process of crack. 
Besides, it is found that the super-harmonic resonance 
can be regarded as the vibration characteristics caused by 
the crack, and the phenomenon of the natural frequency 
change with the increase of the crack depth is reported. 
Darpe et  al. [4] analyzed the influence of the interac-
tion of the two cracks on the breathing behavior and the 
dynamic response of the Jeffcott rotor based on the con-
cepts of fracture mechanics. Significant transformations 
in the rotor’s dynamic response are observed when the 
angle between the two cracks’ directions changes. Xiang 
et al. [5] considered an asymmetric rotor-bearing system 
with crack and rub-impact coupling faults under oil-film 
forces. The effects of crack depth on the onset of instabil-
ity and nonlinear responses of the rotor-bearing system 
are studied. Hou et al. [6] found the super-harmonic res-
onance phenomenon of the cracked rotor due to maneu-
ver load. Lu et  al. [7] studied the dynamic response of 
a hollow shaft dual-rotor system with breathing crack 
and unbalanced excitation. In the spectrum, it is found 
that the peak value of the super-harmonic resonance is 
related to the dimensionless depth of the crack. Fu et al. 
[8] reported similar results in the dynamic response of a 
cracked rotor system with uncertain crack parameters. 
Wang et  al. [9] considered the anisotropy in a cracked 
rotor system and analyzed its parameter instability phe-
nomena. Unlike traditional dynamic analysis methods, 
Liu et al. [10] developed a novel Nonlinear Output Fre-
quency Response Functions (NOFRFs) based criterion 
and discussed its application to the cracked rotor sys-
tem. Through simulations and experiments, they found 
that some specific index is sensitive to the degree of 
crack propagation. Most of these studies focus on the 
dynamic response characteristics of the cracked rotor 
system or only qualitative analysis of the influence of the 
crack parameters (such as the depth and location of the 
crack) [11–13]. However, quantitatively identifying the 
fault properties based on the dynamic response is neces-
sary for many practical situations. This type of problem is 
known as fault diagnosis [14].

In recent years, various machine learning methods, 
such as the artificial neural network (ANN) [15], support 
vector machine (SVM) [16], and decision-making tree 
(DT), have been widely applied in various fields. Many 
researchers also adopt these methods to study the fault 
diagnosis of the rotor system. Munoz-Abella et  al. [17] 
used the ANN and a large number of simulation data to 
make the crack fault diagnosis for a simple Jeffcott rotor 

and achieved good results. Guo et  al. [18] proposed a 
fault diagnosis method for a Jeffcott rotor with a breath-
ing crack at the early stage of crack propagation based 
on the empirical mode decomposition (EMD) technol-
ogy combined with ANN and conducted experimental 
verification. Vashisht et al. [19] investigated the effect of 
cracks on a complex rotor system with ball bearing and 
advanced a crack detection method using the switch-
ing control strategy and Short Time Fourier Transform. 
Yan et al. [20] extracted multi-domain features from the 
vibration signals by combining multiple signal process-
ing technologies (such as statistical analysis, Variational 
Mode Decomposition, and Fast Fourier Transform). 
Then, a novel optimized SVM is adopted to study the 
fault diagnosis problem of the rotor system. Fault types 
include a crack in the outer race, an inner race with the 
spall, and pitting in balls. Comparative test results show 
that the proposed method is better than the traditional 
SVM. Bin et al. [21] proposed a new approach for rotat-
ing machinery fault diagnosis based on wavelet packet 
decomposition (WPD)-EMD fault feature extraction 
and the neural network. Ma et al. [22] presented a diag-
nosis method for rotor and bearing faults of rotating 
machinery based on ensemble learning. In this study, the 
method of weighting and integrating the Convolution 
Residual Network (CRN), Deep Belief Network (DBN), 
and Deep AutoEncoder (DAE) obtains a significant effect 
on the problem of multi-fault classification. Wang et  al. 
[23] determined the crack parameters, including crack 
location, depth, and angle for a solid shaft by using Krig-
ing Surrogate Model and improved Nondominated Sort-
ing Genetic Algorithm-III (NSGA-III), which has high 
parameter identification accuracy. Wang et al. [24] used 
the K-means clustering method to classify crack faults 
for a planetary gearbox. Li et  al. [25] studied multiple 
crack identification based on the three steps meshing, 
and experimental verification was also carried out. Most 
researchers’ objects are simple Jeffcott rotors [26–28] or 
solid shaft rotors [29–31]. Nevertheless, to improve the 
rotor operating efficiency in practical problems, most 
large complex rotor systems adopt the hollow shaft. 
There is relatively little research on crack fault diagnosis 
of hollow shaft rotor systems.

The crack model of the hollow shaft is more com-
plex than the solid shaft, which leads to a more com-
plex dynamic response, making the crack fault diagnosis 
more difficult. Besides, many researchers focus on the 
pattern recognition of the crack fault in the various 
faults of the rotor system or calculating the crack depth 
with the fixed crack position. However, in practice, the 
crack failure may occur at any shaft position. The depth 
and position of the crack can have a coupling effect on 
the system’s dynamic response, which may confuse the 
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crack diagnosis results. Therefore, identifying the hollow 
shaft crack’s parameters based on the system’s dynamic 
response when the crack depth and position are both 
unknown remains challenging.

The motivation of this study is to develop a novel crack 
fault diagnosis method for a two-disk hollow shaft rotor 
system. In which both the crack depth and location are 
uncharted. Considering the crack’s periodic opening and 
closing pattern and different degrees of crack depth, we 
establish the hollow shaft crack model with the breathing 
function. The dynamic response of the cracked rotor system 
is obtained by adopting the Harmonic Balance Method, and 
some dynamic characteristics related to the crack proper-
ties are summarized. Based on this, the Radial basis function 
(RBF) neural network and pattern recognition network are 
utilized to solve the crack fault diagnosis problem when the 
crack’s depth and location are both unknown. The effective-
ness of the proposed method is verified by simulation.

The paper is organized as follows, in Section  2, the 
motion equations of the dual-disk hollow shaft rotor sys-
tem with a breathing crack are constructed by the finite ele-
ment method. Secondly, in Section 3, the harmonic balance 
method (HBM) is used to solve the dynamic response of the 
rotor system, and the effect of crack depth and position is 
analyzed, respectively. The Runge-Kutta method is used to 
verify the results of HBM. The crack depth estimation prob-
lem is discussed based on the RBF neural network, and the 
problem of crack location is solved using the pattern recog-
nition network in Section 4. Finally, Section 5 summarizes 
the primary results of this paper.

2 � Dynamic Model of a Dual‑disk Hollow Shaft 
Rotor with a Breathing Crack

2.1 � Finite Element Model of the Rotor System
The finite element model of the cracked dual-disk hol-
low shaft rotor system is shown in Figure  1, divided 
into 20 elements and 21 nodes. Each end of the rotor 
(node 1 and node 21) has a bearing and support. There 
are two disks in this rotor system, which locate at node 
5 and node 17, respectively. The shaft of this model is 
hollow, and its inner radius is denoted as r while its 
outer radius is R. To fit the actual failure status better, 

the crack may locate in any element of the shaft. The 
physical parameters of the model are shown in Table 1.

2.2 � Crack Model
The crack in the hollow shaft is more complex than that 
in the solid shaft. Figure  2 shows different crack condi-
tions under disparate depths, and the dashed area repre-
sents the uncracked segment. When the crack is relatively 
shallow, it is a non-penetrating crack (Figure  2a), and 
when the crack depth is large, it is a passthrough crack 
(Figure 1b). A1 and AC represent the cross-sectional area 
of uncracked and cracked segments, respectively. O-xy 
is the fixed coordinate system, and C-xy is the centroid 
coordinate system. C is the centroid of section A1. Ω , h 
and e represent rotor speed, crack depth, and eccentric-
ity. α and α1 is the angle between the crack edge and O.

From Figure 2, the moment of inertia of the non-pen-
etrating crack across the x and y-axis can be obtained 
as follows

Figure 1  Finite element model of a cracked two-disk hollow shaft 
rotor system

Table 1  The physical parameters of the rotor system

Parameters Value

Shaft length L(m) 0.8562

External radius R(m) 0.0441

Inside radius r(m) 0.0110

Material density ρ(kg/m3) 7800

Young’s modulus E(GPa) 2.09

Shear modulus G(GPa) 80.38

Bearing stiffness K(N/m) 5 × 107

Disk 1 diameter d1(m) 0.1215

Disk 1 mass m1(kg) 6.5157

Disk 2 diameter d2(m) 0.1493

Disk 1 mass m2(kg) 3.9543

Amount of unbalance med(kg·m) 5 × 10−7

Unbalance deflection θ 0

Bearing damping cxx(Ns/m) 1000

Figure 2  Cross-section diagram of hollow shaft crack: (a) 
Non-penetrating crack, (b) Passthrough crack. The dashed area 
represents the uncracked segment
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where � = h/R represent the dimensionless crack depth 
and γ =

√
�(2− �) . ICx  and ICy  is the moment of inertia of 

the cracked segment AC across the x and y-axis.
When the crack is deep, the above equations can be 

rewritten as

Supposing R = 1 and r = 0.5, Figure 3 shows the curve 
of ICx  and ICy  when � changes from 0 to 1. It can be seen 
that both ICx  and ICy  increase with the increase of �, but the 
change trends are different. Furthermore, note that ICx  and 
ICy  are the same value at the dimensionless depth of the 
crack � = 1 . This result can be explained by the fact that 
the cross section of the crack element is a semicircle in this 
case which has an equal moment of inertia across the x and 
y-axis. Similar results are also reported in Refs. [3] and [7].

The moment of inertia of the uncracked intact shaft 
section relative to the x and y axes is denoted as I, 
then according to the principle of superposition of the 
moment of inertia, the inertia moment of uncracked 
segment A1 can be given as

(1)A1 = R2
(π− cos−1

(1− �)+ (1− �)γ )− πr2,

(2)
I
C
x =πR

2

8
− R

4

4
((1− �)(2�2 − 4�+ 1)γ

+ sin−1
(1− �)),

(3)ICy = R4

12
((1− �)(2�2 − 4�− 3)γ + 3 sin−1

γ ),

(4)e = 2R3

3A1
γ
3,

(5)
A1 = R2

(π− cos−1
(1− �)+ (1− �)γ )

−(πr2 − α1r
2
/2+ (R− h)

√
r2 − (R− h)2),

(6)ICx = R2
(π− cos−1

(1− �)(2�2 − 4�+ 1)γ + sin−1
(1− �))−

∫ h−R

−r
2x2

√
r2 − x2dx,

(7)ICy = R4

12
((1−�)(2�2−4�−3)γ+3sin−1

γ )−
∫ 0

−
√

r2−(R−h)2
2x2(

√
r2 − x2+h−R)dx,

(8)e = 2R3

3A1
γ
3 − 1

A1

∫ r

h−R
2x2

√
r2 − x2dx,

(9)I1 = I − ICx ,

where I = π(R4 − r4)/4 , subsequently, the area moment 
of inertia of cross-section A1 relative to the fixed coordi-
nate system O-xy need to convert to the centroid coor-
dinate system C-xy , which can be denoted as I1 and I2 

(10)I2 = I − ICy ,

Figure 3  The curve of ICx  and ICy  with respect to � (R=1, r=0.5)

respectively and obtained by the parallel axis shift theo-
rem as follows

During the rotation of the rotor, the crack will periodi-
cally open and close due to the influence of the rotor’s 
weight. It is necessary to introduce a breathing function 
to approximate this process. In this paper, the cosine 
breathing function proposed by Mayes [1] is adopted, 
which is given as

where Ω is the rotational speed. Then the time-varying 
moment of inertia of the crack element can be calculated 
as

(11)I1 = I1 − A1e
2,

(12)I2 = I2.

(13)f (t) = 1

2
(1+ cos(Ωt)),
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When a crack appears at element j, the time-varying 
stiffness matrix of the crack element is calculated as 
follows

where ϕ1 = 12EIx
µAceGl2

 and ϕ2 = 12EIy
µAceGl2

 . µ is the Poisson 
ratio of the material, and l is the element length.

For simplicity, Eq. (16) can also be rewritten in the fol-
lowing form

where K j is the stiffness matrix of the intact shaft ele-
ment, and K j

c is the reduced stiffness matrix representing 
the effect of crack.

2.3 � The Motion Equation of the Cracked Rotor System
According to the rotor dynamics finite element method, 
Timoshenko beam theory, and Lagrange equation, the 
motion equation of a dual-disk hollow shaft rotor with a 
breathing crack can be given as follow

(14)Ix(t) = I − (I − I1)f (t) = I − (ICx + A1e
2
)f (t),

(15)Iy(t) = I − (I − I2)f (t) = I − ICy f (t).

(16)K j
ce =

E

l3





12Ix
1

1+ϕ1
0 0 6lIx

1
1+ϕ1

−12Ix
1

1+ϕ1
0 0 6lIx

1
1+ϕ1

0 12Iy
1

1+ϕ2
6lIy

1
1+ϕ2

0 0 −12Iy
1

1+ϕ2
−6lIy

1
1+ϕ2

0

0 −6lIy
1

1+ϕ2
l2Iy

4+ϕ2
1+ϕ2

0 0 6lIy
1

1+ϕ2
l2Iy

2−ϕ2
1+ϕ2

0

6lIx
1

1+ϕ1
0 0 l2Ix

4+ϕ1
1+ϕ1

−6lIx
1

1+ϕ1
0 0 l2Ix

2−ϕ1
1+ϕ1

−12Ix
1

1+ϕ1
0 0 −6lIx

1
1+ϕ1

12Ix
1

1+ϕ1
0 0 −6lIx

1
1+ϕ1

0 −12Iy
1

1+ϕ2
6lIy

1
1+ϕ2

0 0 12Iy
1

1+ϕ2
6lIy

1
1+ϕ2

0

0 −6lIy
1

1+ϕ2
l2Iy

2−ϕ2
1+ϕ2

0 0 6lIy
1

1+ϕ2
l2Iy

4+ϕ2
1+ϕ2

0

6lIy
1

1+ϕ2
0 0 l2I1

2−ϕ1
1+ϕ1

−6lIy
1

1+ϕ2
0 0 l2Ix

4+ϕ1
1+ϕ1





,

(17)
K j

ce = K j − f (t)K j
c = (K j − 1

2
K j

c)−
1

2
cos(Ωt)K j

c,

(18)

Mq̈(t)+ Ĉq̇(t)+ (K̃ − 1

2
K c cosΩt)q(t)

= F1 cosΩt + F2 sinΩt + F g,

where K̃ = K − 1/2K c , Ĉ = C + G . M , C , G and K  
represent the global mass matrix, damping matrix, rota-
tion matrix, and stiffness matrix of the entire rotor sys-
tem, including flexible shaft element, disk, bearing, and 
support, all of which are 4(N + 1)× 4(N + 1) matrix, 
N is the number of elements. K c is the reduced stiffness 
matrix of the crack element, which is K j

c in the element j, 

and others are 0. q(t) is 4(N + 1) the displacement vec-
tor of nodes. Each node has 2 lateral displacements and 
2 bending angles. F1 and F2 are the components of the 
unbalanced excitation in the x and y direction. F g rep-
resents the equivalent gravity force on the node. The 
specific forms of each matrix and vector in Eq. (18) are 
shown in the Appendix.

3 � Dynamic Response Analysis
3.1 � Equation Solving
This paper uses the Harmonic Balance Method (HBM) to 
solve Eq. (18). HBM supposes that the stable solution of 
the equation has the finite Fourier series solution

where p is the number of harmonics used in HBM, it can 
be determined according to the accuracy requirement. 
This paper takes p = 4 and inserts Eq. (19) in Eq. (18) 
yields

(19)q(t) = A0 +
p∑

j=1

(Aj cos(kΩt)+ Bj cos(kΩt)),

(20)





K̂ P11 P21 0 0 0 0 0
−P11 P31 0 P21 0 0 0 0
P22 0 P32 P12 P22 0 0 0
0 P22 −P12 P32 0 P22 0 0
0 0 P23 0 P33 P13 P23 0
0 0 0 P23 −P13 P33 0 P23

0 0 0 0 P24 0 P34 P14

0 0 0 0 0 P24 −P14 P34









A1

B1

A2

B2

A3

B3

A4

B4





=





F̃1

F2

0
0
0
0
0
0





,
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where K̂ = K̃ −Ω
2M − 1/8K cK̃

−1
K c , 

P1i = iΩĈ , P2i =1/4K c , P3i = K̃ − (iΩ)
2M , 

F̃1 = F1 − 1/2K cK̃
−1

F g , i = 1, 2, 3, 4 . After solving the 
linear equations of Eq. (20) to obtain the coefficients of 
each harmonic component, the direct component A0 can 
be calculated as follow

The dynamic response of the cracked rotor can be 
obtained by Eqs. (19)–(21). When there is no crack fault 
in the dual-disk hollow shaft rotor system, the first 4 
order critical speeds are ω1 = 825.1 rad/s, ω2 = 1359.2 
rad/s, ω3 = 1415.6 rad/s, and ω4 = 2183.0 rad/s according 
to the physical parameters in Table 1.

3.2 � Effects of Dimensionless Crack Depth
The position of the crack cp is fixed at element 10, and 
Figure 4 shows the 3D waterfall diagram of rotor speed-
dimensionless crack depth-amplitude at node 10 under 
the low speed (near the first critical speed ω1 ). Node 
amplitude is defined as

where ai is the amplitude of node i, ui is the horizontal 
displacement of node i, and vi is the vertical displacement 
of node i. Analysis from Figure  4 shows that the rotor 
system has obvious resonance peaks near the first criti-
cal speed. Besides, compared to the rotor system without 
the crack, the cracked rotor system appears super-har-
monic resonances (or called subcritical resonances) near 
1/2, 1/3, or even 1/4 first-order critical speed due to the 
crack’s occurrence. When the crack depth is relatively 
shallow, the rotor system first appears to have apparent 
super-harmonic resonance peaks at 1/2 ω1 and 1/3 ω1 . As 
the crack depth gradually increases, a super-harmonic 

(21)A0 = K̃
−1

(F g −
1

4
K cA1),

(22)ai =
√
u2i + v2i ,

resonance peak appears at 1/4 ω1 . But compared to the 
peaks at 1/2 ω1 and 1/3 ω1 , the resonance peak at 1/4 ω1 
is weak. Furthermore, another pattern we can observe 
in Figure  4 is that with the dimensionless crack depth 
improves, the super-harmonic resonance peaks near 1/n 
ω1 (n=2, 3, 4) tend to be obvious, indicating that the peak 
value of the super-harmonic resonances is closely related 
to � . Moreover, Figure 5 shows the amplitude-frequency 
response curves at node 11 with λ = 0, 0.3, 0.6, 0.9, and 
cp = 10. It can be observed that the crack slightly reduces 
the first-order critical speed of the rotor system, and with 
the increase of crack depth, the super-harmonic reso-
nance peaks become more evident.

Overall, the crack can lead to super-harmonic reso-
nance phenomena near 1/n ω1 (n=2, 3, 4). The first 
critical speed and the peak value of super-harmonic reso-
nance (or called subcritical speed amplitude) are closely 
related to the dimensionless crack depth. These dynamic 
characteristics can be used to estimate crack depth.

Figure 4  3D waterfall diagram of rotor speed-dimensionless crack 
depth-amplitude at node 10 (cp = 10)

Figure 5  Amplitude-frequency response curves for different crack 
depths at node 10 (cp = 10)

Figure 6  3D waterfall diagram of rotor speed-crack 
position-amplitude at node 10 ( � = 0.5)



Page 7 of 18Jin et al. Chinese Journal of Mechanical Engineering           (2023) 36:35 	

3.3 � Influence of Crack Position
The dimensionless crack depth λ is fixed at 0.5, and Fig-
ure  6 shows the 3D waterfall diagram of rotor speed-
crack position-amplitude at node 10 under the low 
speed (near the first critical speed ω1 ) at the different 
crack positions. From Figure 6, it can be seen that when 
the crack is located at both ends of the rotor system, the 
effect on the dynamic response of the rotor system is 
weak, and the peak value of super-harmonic resonance in 
amplitude-frequency response is unobvious. Conversely, 
as the crack gradually approaches the middle of the rotor 
system, the subcritical speed amplitude increases. When 
the crack is located in the middle of the rotor system, the 
super-harmonic resonance is most apparent. The crack 
has the most significant impact on the system’s dynamic 
response. These analysis results indicate that the subcrit-
ical speed amplitude near 1/n (n =  2, 3, 4) first critical 
speed of the rotor system is related to the crack position.

The crack position also has a specific influence on the 
critical speed of the rotor system. Figure 7 shows the ampli-
tude-frequency response curves at node 10 near the main 

resonance area when the crack is located at elements 1, 3, 5, 
and 10, where the corresponding first critical speed is 824.3 
rad/s, 822.1 rad/s, 819 rad/s, and 814.6 rad/s separately. As 
the position of the crack moves to the middle of the rotor 
system, the rotor system’s critical speed decreases. When the 
crack is located in the middle of the rotor system, the critical 
speed of the rotor system is the lowest.

In short, the crack position affects the dynamic 
response of the rotor system. As the crack approaches 
the middle of the rotor system, the shift in the critical and 
subcritical speeds increases. Besides, the more obvious 
main resonance peak and subcritical speed amplitude in 
the amplitude-frequency response can also be observed. 
Similar conclusions have been confirmed in Ref. [3]. 
These dynamic characteristics can be tracked for the 
rotor system to identify the crack position.

3.4 � Numerical Verification
In order to verify the accuracy of the HBM adopted in 
this paper, Section  3.4 uses the Runge-Kutta method 
(R-K) to solve Eq. (18) and compares its results with the 
HBM’s solutions. Figure 8 shows the time history, whirl 
orbits, and frequency spectrum solved by HBM and R-K 
for λ = 0.3, cp = 10, and Ω = 500 rad/s. It can be seen 
that the calculation results match well. The rotor’s orbit 
is an ellipse, and there are no multiple frequency com-
ponents in the frequency spectrum, which indicates that 
there is no super-harmonic resonance phenomenon in 
the rotor system.

Moreover, Figure  9 compares the time history, whirl 
orbits, and frequency spectrum solved by HBM and 
R-K for λ=0.3, cp  =  10, and Ω = 410 rad/s ≈ 1/2ω1 . 
The super-harmonic resonance occurs at this operat-
ing speed. It can be seen from Figure 9 that in the case 
of super-harmonic resonance, the calculation results of 
the HBM and R-K are still close, further demonstrating 

Figure 7  Amplitude-frequency response curves for different crack 
positions at node 10 ( � = 0.5)

Figure 8  Comparison of time history, whirling orbits, and frequency spectrum for λ = 0.3, cp = 10, and Ω = 500 rad/s at node 10: (a) Time history, 
(b) Whirl orbits, (c) Frequency spectrum
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the accuracy of the HBM. The whirling orbits of the rotor 
system present shape with two closed loops. At the same 
time, the 2× frequency component can be observed in 
the frequency spectrum.

4 � The Crack Fault Diagnosis Method for the Hollow 
Shaft Rotor System based on the Neural Network

4.1 � Radial Basis Function Neural Network
The Radial Basis Function (RBF) neural network is a 
feedforward, fully connected neural network. Compared 

with the traditional Background Propagation (BP) neural 
network, the RBF network generally contains only one 
hidden layer. The radial basis function is utilized as the 
activation function in the hidden layer. Note that the RBF 
neural network adopts a direct connection between the 
input layer and hidden layer instead of a weight connec-
tion, as shown in Figure 10.

The output of the RBF network can be defined as

where x is the input vector of the RBF network, and 
ρ(x, cj) is the activation function of the jth hidden layer 
neuron. cj is the center of radial basis function in the jth 
hidden layer neuron. Wij represents the weight between 
the jth hidden layer neuron and the ith output layer neu-
ron, and bi is the bias parameter of the ith output layer 
neuron. q is the number of hidden layer neurons, and yi 
is the output value of the ith output layer neuron. There 
are various forms of the radial basis functions in the RBF 

(23)yi =
q∑

j=1

Wijρ(x, cj)+ bi,

Figure 9  Comparison of time history, whirling orbits, and frequency spectrum for λ = 0.3, cp = 10, and Ω = 410 rad/s ≈ 1/2ω1 at node 10: (a) Time 
history, (b) Whirl orbits, (c) Frequency spectrum

Figure 10  Structure of RBF and BP neural network: (a) RBF neural 
network, (b) BP neural network

Figure 11  The image of the Gaussian function (the input dimension 
is 2)
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network, and the most commonly used is the Gaussian 
function, which is given as

where �x − c�2 represents the Euclidean norm, which 
is used to characterize the distance between the input 
vector and the center of the radial basis function. σ is the 
spread constant of the RBF, affecting the size of the radial 
basis function’s activation region. When the input dimen-
sion is 2, take the spread constant as 1, and the center is 
(0,0), then the Gaussian function is shown in Figure 11. 
It can be seen from Figure 11 that the Gaussian function 
has a relatively sensitive response near the center, while 
the function value in most areas far away from the center 
is almost 0 (which means inactive). The property of local 
activation allows the RBF network to set up more neu-
rons without overfitting.

(24)ρ(x, c) = exp(−�x − c�22
2σ 2

),

4.2 � Calculate the Dimensionless Crack Depth with the RBF 
Neural Network

The dimensionless depth and position of the crack 
are assigned by random numbers. Then the dynamic 
response of the cracked rotor system can be obtained 
by adopting the methodology in Section 3. The dynamic 
characteristics related to the crack parameters (including 
the first critical speed, first subcritical speed, first criti-
cal speed amplitude, and the super-harmonic resonance 
peak at the first subcritical speed) are taken as the input 
of the RBF network. The output of the RBF network is the 
predicted dimensionless crack depth. Take 70% data as 
the training set, 15% as the validation set, and 15% as the 
test set. Some provided data are shown in Tables 2 and 
3. Note that the rotor’s amplitude is generally minimal 
(on the order of 10-6), which is detrimental to the train-
ing and computing of the network. Therefore, this paper 
takes the logarithm (denoted as log in Tables 2 and 3) of 
the first critical speed amplitude and the first subcritical 
speed amplitude.

Table 2  Part of the data used to train the RBF network

λ cp First critical speed 
(rad/s)

First critical speed amplitude 
(log)

First subcritical speed 
(rad/s)

First subcritical 
speed amplitude 
(log)

0.4050 4 822 −5.4783 411 −8.0111

0.3086 10 820 −5.4808 410 −8.0141

0.3149 19 824 −5.5058 412 −8.1428

0.3384 20 825 −5.5032 412 −8.0971

0.3507 13 820 −5.5021 410 −7.9737

0.3919 11 817 −5.4271 409 −7.9061

0.4295 1 824 −5.4968 412 −7.9544

0.4328 3 823 −5.4879 411 −7.9721

0.4749 6 818 −5.3933 409 −7.8852

0.4947 17 821 −5.4587 411 −7.9143

Table 3  Part of the data used to validate and test the RBF network

Λ cp First critical speed 
(rad/s)

First critical speed 
amplitude (log)

First subcritical speed 
(rad/s)

First subcritical 
speed amplitude 
(log)

0.5740 4 820 −5.4097 410 −7.8359

0.3204 6 821 −5.4837 411 −8.0734

0.3889 15 820 −5.4652 410 −7.9463

0.5191 10 813 −5.0707 406 −7.7704

0.32279 5 822 −5.4847 411 −8.0861

0.3319 8 820 −5.4774 410 −8.0090

0.3450 14 820 −5.4742 410 −7.9882

0.3488 3 823 −5.4874 412 −8.0571

0.3512 5 822 −5.4925 411 −8.0536

0.3536 9 819 −5.4659 409 −7.9957
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The mean square error (MSE) function is used as the 
loss function to train the RBF neural network, which is 
described as

(25)MSE = 1

m

m∑

k=1

o∑

j=1

(ŷkj − ykj )
2,

where o is the number of output layer neurons, m is the 
sample size, ŷkj  is the output of the jth neuron for the kth 
sample input, and ykj  represents the actual jth output of 
the kth sample input. The training parameters are sum-
marized in Table 4. The spread constant of the RBF net-
work is 0.8. The steps of validation failure are 6, which 
means that the training process is stopped early when the 
loss function on the validation set is no longer descend-
ing for 6 consecutive epochs. The selection algorithm for 
the radial basis function’s center adopts the k-means clus-
tering algorithm. The training algorithm is the Ordinary 
Least Square (OLS) with a closed-form solution, which 
is very efficient. The RBF network gradually reduces 
the loss function by adding the number of hidden layer 

Table 4  Training parameters of the RBF network

Loss 
function

Max 
epochs

Spread 
constant

Steps of 
validation 
failure

Clustering 
algorithm

Training 
algorithm

MSE 100 0.8 6 k-means OLS

Figure 12  Training and test results of the RBF network when the crack is located in the middle of the rotor system: (a) Loss function curve, (b) 
Regression output

Figure 13  Training and test results of the RBF network when the crack is located at the end of the rotor system: (a) Loss function curve, (b) 
Regression output
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neurons one by one from 0, so there is no need to set the 
initial number of hidden layer neurons in advance.

Figures 12, 13, 14 illustrate the training and test results 
of the RBF network under three conditions: (1) the crack 
is in the middle of the rotor system (cp = 10); (2) the crack 
is at the end of the rotor system (cp = 1); (3) the crack 
position is uncertain.

When the crack is located in the middle of the rotor sys-
tem, it can be seen from Figure 12a that the loss function 
of the training set, validation set, and test set all show an 
oscillating downward trend with the increase in the num-
ber of training epochs. The loss function value of the vali-
dation set is minimized at the 48th step, and the training 
process terminates in advance at the 54th epoch. At the 
end of the training, the loss function value of the training 
set is 1.21× 10−5 , the validation set is 3.16× 10−5 , and 
the test set is 2.24 × 10−5 . All three values are reduced to 
the order of 10−5 and with little difference, indicating that 
the RBF network has great generalization ability. Besides, 
it can be seen from Figure  12b that the scatter points 
of the neural network output almost all fall on the ideal 
regression curve. The correlation coefficient (denoted as 
CC) between the output results of the neural network 
and the ground truth is 0.9985, and the maximum per-
centage error is 1.8%. These results indicate that the RBF 
neural network can accurately estimate the crack depth 
based on the provided dynamic characteristics. Accord-
ing to the analysis results in Section  3, when the crack 
(with the same dimensionless depth) is located in the 
middle of the rotor system, the impact on the system’s 
dynamic response is the greatest. The shift in the critical 
and subcritical speeds is the most obvious, and the sub-
critical amplitude in the amplitude-frequency response 
is the most significant. More specifically, the dynamic 
characteristics related to the crack are the most obvious, 

which is a benefit for the fault diagnosis. Hence, when 
the crack is located in the middle of the rotor system, the 
RBF network can get a satisfactory result for calculating 
the crack depth.

When the crack is located at the end of the rotor sys-
tem, related results are summarized in Figure 13. It can 
be seen from the data in Figure 13a that the loss function 
of the training set, test set, and validation set decreases 
with the increase of training epochs. The RBF neural net-
work achieves the best performance at the 35th epoch, 
and the training process terminates prematurely at the 
41st epoch. At the end of the training, the loss function 
value of the training set is 5.42× 10−4 , the verification set 
is 1.08× 10−3 , and the test set is 8.40× 10−4 . Compared 
with the results in Figure  12a, the loss function value 
is larger. In addition, as shown in Figure  13b, when the 
crack is relatively shallow, many output results of the RBF 
network deviate from the ideal regression curve com-
pared with Figure 12b. The maximum percentage error is 
9.3%, indicating that the network’s performance declined 
slightly. These results are likely related to the bearing and 
support with great rigidity. As mentioned in Section  3, 
when the crack is located at the end of the rotor system, 
its effects on the system’s dynamic response are relatively 
small. Therefore, the dynamic characteristics related to 
the crack parameters may be insignificant, which results 
in a decrease in the RBF network’s fault diagnosis perfor-
mance. However, on the other hand, cracks in this posi-
tion are also less likely to cause serious consequences.

Note that Figures  12 and 13 are the results of esti-
mating the dimensionless crack depth when the crack 
position is fixed. However, in actual engineering prob-
lems, the crack may appear in various positions in the 
rotor system. Figure  14 provides the training and test 
results of the RBF network when cp is uncertain. From 

Figure 14  Training and test results of the RBF network when the crack position is uncertain: (a) Loss function curve, (b) Regression output
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Figure  14, it can be observed that during the training 
process, the loss function value of the training set oscil-
lates and decays in a small range with the number of 
iteration epochs increasing. The loss function value of 
the validation set is minimized at the 48th epoch, and 
the training process terminates prematurely at the 56th 
epoch. When the training is terminated, the loss func-
tion value of the training set is 2.19× 10−4 , and the 
test set is 2.23× 10−4 . Both are relatively small and 
not significantly different, indicating no severe overfit-
ting. The performance of the RBF network can be seen 
more intuitively from the regression output results in 
Figure 14(b). Most regression output results are around 
the ideal regression curve without significant devia-
tion. The correlation coefficient CC between the RBF 
network’s outputs and the sample results is 0.9916, 
indicating an excellent linear correlation. Besides, the 
maximum percentage error is 7.6%, which demon-
strates an accurate estimation result. The above analy-
sis results show that even in the case of uncertain crack 
locations, the RBF network can use dynamic character-
istics to calculate the crack depth and achieve sufficient 
precision.

4.3 � Pattern Recognition Neural Network
The pattern recognition neural network (PRNN) is a kind 
of neural network adopted to solve classification prob-
lems. Its architecture is set out in Figure 15.

The input first undergoes an affine transformation to 
the hidden layer. And then, to achieve the nonlinear map-
ping, an activation function should be introduced. The 
most common activation function used in the PRNN’s 
hidden layer is the Tan-sigmoid function, which is 
described as

Then, another affine transformation is defined in the 
Softmax layer, which is utilized to adjust the dimen-
sion of the hidden layer’s output. Besides, to obtain the 

(26)f (x) = ex − e−x

ex + e−x
.

discrete probability density, there is a so-called Softmax 
function in the Softmax layer, which is given as

where x = [x1, x2, …, xn]T is the input vector. Eq. (27) 
has the following properties: (1) each element in the 
obtained output vector y = [y1, y2, …, yn]T is non-nega-
tive; (2) the sum of all elements in y is 1. Therefore, y can 
represent the discrete probability density, and the posi-
tion of the maximum value in y can be utilized as the 
classification result. For instance, if the PRNN’s output 
result is [0.1, 0.6, 0.3]T, the corresponding input should 
be classified into the second category.

4.4 � Identification of the Crack Position with PRNN
Similar to Section 4.2, the dynamic characteristics related 
to the crack position (the first critical speed, first critical 
speed amplitude, first subcritical speed, and first subcriti-
cal speed amplitude) are taken as the PRNN’s input. The 
output of the PRNN is the discrete probability density of 
the crack position (20 elements). The training, validation, 
and test sets are the same as in Section 4.2.

Calculating the dimensionless crack depth can be con-
sidered a regression problem, so MSE (shown in Eq. (25)) 
is adopted as the loss function to train the RBF network. 
Unlike this, identifying the crack position is a pattern 
recognition problem (known as a classification problem), 
so an additional loss function should be introduced to 
train the PRNN. Cross entropy is a popular candidate, 
which meaning is to characterize the similarity of the 
probability distribution of two events. Its formula can be 
calculated as

where P(xi) is the actual probability distribution of 
event xi, and Q(xi) is the discrete probability density of 
event xi obtained by the PRNN. In particular, in the clas-
sification problem, P(xi) is a sparse vector, where the 
position of the actual category is 1 and all the other ele-
ments are 0 (known as the one-hot encoding).

(27)
yi = softmax(xi) =

exp(xi)
n∑

i=1

exp(xi)

,

(28)Crossentropy(P,Q) = −
n∑

i=1

P(xi)log(Q(xi)),

Figure 15  The structure of the pattern recognition network

Table 5  Training parameters of the PRNN

Loss 
function

Number 
of hidden 
neurons

Max 
epochs

Steps of 
validation 
failure

Initial 
learning 
rate

Training 
algorithm

Cross 
entropy

15 100 6 0.001 L-M
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Some other training parameters are summarized in 
Table 5. The number of hidden neurons is 15. The steps 
of validation failure are 6, which means that the train-
ing process is stopped early when the loss function of the 

validation set is no longer descending for 6 consecutive 
times. The initial learning rate is 0.001, and the training 
algorithm adopts Levenberg-Marquardt backpropagation 
(L-M), which takes up more storage space but is faster.

Based on these parameters, the loss function curves of 
the training and test sets are shown in Figure 16. It can be 
observed that the loss function of the training set oscil-
lates and decreases with the training epochs increasing. 
Similar patterns are also presented in the validation and 
test sets. The loss function value of the validation set is 
minimized at the 66th epoch, and the training process 
terminates in advance at the 72nd epoch. When the 
training process is finished, the loss function values on 
the training, validation, and test sets are 0.0147, 0.0390, 
and 0.0415, respectively. The loss function values on the 
training and test sets are close, indicating that the trained 
PRNN has good generalization ability. The recognition 
accuracy in the test and validation sets is 78.6%, which 
achieves the basic requirements for identifying the crack 
position.

Furthermore, in pattern recognition problems, in addi-
tion to the obtained recognition accuracy, the causes of 
classification errors also need attention. Figure 17 shows 

Figure 16  The loss function curve of the PRNN in the training 
process

Figure 17  The confusion matrix between the PRNN’s output results and the actual crack position
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the confusion matrix between the PRNN’s output results 
and the actual crack positions. Note that only the part 
containing the misclassified results is provided for sim-
plicity. As can be seen from Figure 17, most of the non-
zero elements of the confusion matrix are concentrated 
on the diagonal (dashed area), which means that the 
PRNN accurately identifies the crack position in most 
cases. Moreover, careful analysis of the misclassified ele-
ments in the confusion matrix can be found that most of 
the incorrectly classified PRNN output values are only 
one unit away from the actual crack position. For exam-
ple, as shown in row 14 in Figure 17, there are 4 cracks 
in element 15. However, they are misclassified in element 
14 by the trained PRNN. A possible explanation for this 
might be that the dynamic characteristics of the PRNN’s 
input are related to both the crack depth and position. 
This coupling effect confuses the results of crack location. 
Nevertheless, when the shaft is divided into 20 elements, 
the element length is very small. Therefore, the deviation 
of 1 element length in determining the crack position 
may not cause a severe problem. Based on this considera-
tion, the condition for evaluating the recognition accu-
racy can be extended to the recognition deviation within 
1 element length. For instance, if the predicted crack 
position of the PRNN is 12 or 14, while the actual crack 
position is 13, it can also be considered that the PRNN’s 
output is approximately accurate. Accordingly, it can be 
seen from Figure  17 that almost all the elements in the 
confusion matrix fall in the approximately accurate area 
(red line region). Only 1 instance of the 56 samples has 
a recognition deviation of 2 element lengths (the actual 
crack location is 15, but the PRNN’s output is 13). The 
approximate recognition accuracy of the crack position 
is 98.2%, which is a brilliant result. The above analysis 
shows that PRNN can utilize the dynamic characteris-
tics of the cracked rotor system to determine the crack 
position and achieve a high approximate identification 
accuracy.

4.5 � Comparison with Other Crack Diagnosis Methods
To further illustrate the effectiveness and superiority 
of the proposed method, several alternative machine 

learning-based methods for crack diagnosis are imple-
mented. As mentioned previously, calculating the dimen-
sionless crack depth can be considered a regression 
problem. Correspondingly, the following methods are 
utilized to conduct a comparison test: (1) multiple linear 
regression (denoted as MLR); (2) support vector regres-
sion (denoted as SVR); (3) support vector regression with 
kernel function (denoted as KSVR). Similarly, identifica-
tion of crack position is a pattern recognition problem, 
so the following methods are considered: (1) K-nearest 
neighbor algorithm (denoted as KNN); (2) support vector 
machine (denoted as SVM); (3) support vector machine 
with kernel function (denoted as KSVM).

The crack diagnosis results obtained from different 
methods on the test set are summarized in Tables 6 and 
7. Note that for a fair comparison, all mentioned methods 
share the same training set, and their hyperparameters 
are optimized based on the validation set. As can be seen 
from Table  6, MLR gives the worst results for calculat-
ing the dimensionless crack depth under the same con-
ditions, which indicates that the relationship between 
the dimensionless crack depth and the system’s dynamic 
response characteristics cannot be represented by a sim-
ple linear equation. More accurate diagnosis results can 
be obtained by adopting the support vector regression, in 
which introducing the kernel function can improve the 
nonlinear mapping capability of SVR, thus enhancing its 
diagnosis performance. However, the maximum percent-
age error of SVR and KSVR on the test set is still greater 
than 10%, which is higher than the proposed method 
(RBF). 

In a similar manner, it can be seen from the data in 
Table 7 that the distance-based KNN method has a poor 
property for crack position identification. Only 44.6% 
accuracy is achieved. In contrast, SVM demonstrated 
better diagnosis performance on the test set, and the 
nonlinear kernel function is beneficial. However, the 
crack position identification accuracy of the KNN, SVM 
and KSVM is not higher than 50%, while our proposed 
method (PRNN) reaches 78.6%.

Overall, compared with other crack diagnosis methods, 
RBF neural network and PRNN model realize the best 
diagnosis results in dimensionless crack depth calculating 

Table 6  Dimensionless crack depth calculating results obtained 
by different crack diagnosis methods on the test set

Method MSE
on the test set

Maximum
percentage 
error(%)

MLR 9.75×10-4 16.2

SVR 5.56×10-4 13.2

KSVR 3.28×10-4 10.6

RBF (proposed) 2.23×10-4 7.6

Table 7  Crack position identification results obtained by 
different crack diagnosis methods on the test set

Method Accuracy(%)

KNN 44.6

SVM 48.2

KSVM 50.0

PRNN (proposed) 78.6
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and crack position identification, respectively. The above 
comparison further illustrates the effectiveness of our 
proposed method.

5 � Conclusions
In this paper, a dual-disk hollow shaft rotor system model 
with a breathing crack is established, where two different 
crack forms (non-penetrating and passthrough crack) are 
considered. Then, the dynamic response of the cracked 
rotor system is obtained through the HBM, and the 
dynamic characteristics related to the crack parameters 
are summarized by analyzing the amplitude-frequency 
curve and waterfall plot. Based on this, a novel crack fault 
diagnosis and location method based on the RBF net-
work and PRNN is proposed. The main conclusions are 
as follows.

(1)	 Due to introducing the time-varying stiffness, the 
crack can cause the super-harmonic resonance phe-
nomenon in the rotor system near 1/n (n = 2,3,4) 
first critical speed. Besides, the crack can reduce the 
stiffness of the system, resulting in a decrease in the 
system’s critical speed.

(2)	 The analysis results of the cracked rotor system’s 
amplitude-frequency curves and waterfall plots 
with different crack parameters reveal the dynamic 
characteristics related to the crack depth and posi-
tion. The first critical speed, first subcritical speed, 
first critical speed amplitude, and first subcritical 

speed amplitude can be utilized to detect the crack.
(3)	 Based on the RBF network and PRNN, the quan-

titative crack fault diagnosis method is proposed. 
In the case where both the crack depth and posi-
tion are uncertain, Adopting the analyzed dynamic 
characteristics as input, the maximum percent-
age error between the trained RBF network’s out-
put results and the ground truth is 7.56%. Besides, 
the approximate recognition accuracy of the crack 
position obtained by the PRNN can reach 98.2%. 
The requirements of crack fault diagnosis are satis-
fied preliminarily.

(4)	 Several alternative machine learning-based crack 
fault diagnosis methods are considered in the 
comparison experiment. The results show that the 
approach developed in this paper achieves the opti-
mal fault diagnosis performance, further demon-
strating its effectiveness.

In future work, further research should focus on the 
following aspects. Firstly, the proposed method relies 
on the analyzed dynamic characteristics, such as the 
super-harmonic resonance peak, which maintain its 
theoretical basis and interpretability. However, at the 
same time, noise and nonlinearities can introduce dis-
turbances to these dynamic characteristics and thus 
confuse the diagnosis results. The robustness of the 
proposed method regarding interference needs to be 
further improved. Combining the signal processing 
methods with the proposed approach may be a good 
solution. Secondly, limited by the finite element model, 
the proposed method can only give the approximate 
crack position. Modeling technology that can accu-
rately describe the crack’s location should be further 
studied. Finally, experimental verification is necessary. 
In this paper, the validation of the proposed method is 
based on simulation data. In the future, we will estab-
lish the cracked rotor system experiment bench and 
validate our proposed method with experimental data.
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Timoshenko beam finite element matrices in Eq. (18)
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s =

EIϕs

(1+ ϕ2
s )l

3





Ks
s1 sym.
0 Ks

s1
0 −Ks

s2 Ks
s3

−Ks
s2 0 0 Ks

s3
−Ks

s1 0 0 Ks
s2 Ks

s1
0 −Ks

s1 Ks
s2 0 0 Ks

s1
0 −Ks

s2 Ks
s3 0 0 Ks

s2 Ks
s3

−Ks
s2 0 0 Ks

s3 Ks
s2 0 0 Ks

s3





Mc
s =

ρsl

(1+ ϕ2
s )





Mc
s1 sym.
0 Mc

s1
0 −Mc

s4 Mc
s2

−Mc
s4 0 0 Mc

s2
Mc

s3 0 0 −Mc
s5 Mc

s1
0 Mc

s3 −Mc
s5 0 0 Mc

s1
0 Mc

s5 −Mc
s6 0 0 Mc

s4 Mc
s2

Mc
s5 0 0 −Mc

s6 Mc
s4 0 0 Mc

s2





Mc
s1 = 13/35+7/10ϕs+ϕ

2
s

Mc
s6 = (1/140+ 1/60ϕs + 1/120ϕ2

s )l
2

Ms
s =

jd

(1+ ϕ2
s )l





Ms
s1 sym.
0 Ms

s1
0 −Ms

s4 Ms
s2

−Ms
s4 0 0 Ms

s2
−Ms

s1 0 0 −Ms
s4 Ms

s1
0 −Ms

s1 Ms
s4 0 0 Ms

s1
0 −Ms

s4 Ms
s3 0 0 −Ms

s4 Ms
s2

−Ms
s4 0 0 Ms

s3 −Ms
s4 0 0 Ms

s2





J s =
jp

30(1+ ϕ2
s )l





0 antisym.
Js1 0
−Js2 0 0
0 −Js2 Js4 0
0 Js1 −Js2 0 0

−Js1 0 0 −Js2 Js1 0
−Js2 0 0 Js3 Js2 0 0
0 −Js1 −Js3 0 0 Js2 Js4 0





Js1 = 36

Js2 = 3l − 15lϕs

Js3 = l2 + 5l2ϕs − 15l2ϕ2
s

Js4 = 4l2 + 5l2ϕs + 10l2ϕ2
s
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