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Abstract

This paper presents a cloud-based data-driven design optimization system, named DADOS, to help engineers and
researchers improve a design or product easily and efficiently. DADOS has nearly 30 key algorithms, including the
design of experiments, surrogate models, model validation and selection, prediction, optimization, and sensitiv-

ity analysis. Moreover, it also includes an exclusive ensemble surrogate modeling technique, the extended hybrid
adaptive function, which can make use of the advantages of each surrogate and eliminate the effort of selecting the
appropriate individual surrogate. To improve ease of use, DADOS provides a user-friendly graphical user interface and
employed flow-based programming so that users can conduct design optimization just by dragging, dropping, and
connecting algorithm blocks into a workflow instead of writing massive code. In addition, DADOS allows users to visu-
alize the results to gain more insights into the design problems, allows multi-person collaborating on a project at the
same time, and supports multi-disciplinary optimization. This paper also details the architecture and the user interface

of DADOS. Two examples were employed to demonstrate how to use DADOS to conduct data-driven design opti-
mization. Since DADOS is a cloud-based system, anyone can access DADOS at www.dados.com.cn using their web
browser without the need for installation or powerful hardware.
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1 Introduction

Most engineering design optimization problems require
experiments and/or numerical simulations to evalu-
ate design objectives and constraints as a function of
design variables [1]. For many practical engineering
applications, however, it can take hours, or even days to
conduct a single simulation. As a result, routine tasks
such as design space exploration, design optimization,
and sensitivity analysis tend to be impossible since they
require thousands of simulation evaluations, let alone the
experiments.
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Data-driven design optimization can alleviate this bur-
den significantly by constructing inexpensive approxima-
tion models to replace the time-consuming simulations
and costly experiments. Terminologically, data-driven
design optimization is an engineering design method-
ology using data science algorithms to create approxi-
mation models, also known as surrogate models, to
facilitate quick exploration of design alternatives and
obtain the optimal design [2]. Surrogate models [3, 4]
are constructed using a data-driven approach. The exact
inner working of the simulation code or the mechanism
of the experiment is not necessary to be known or even
understood, only the input-output relationship matters
[5]. A surrogate model is constructed by the samples
comprising a limited number of intelligently chosen data
points and their corresponding outputs of the simula-
tion or experiment. Once the surrogate model is built
successfully, it can be used to predict the performance
of a new design rapidly. Also, it can be coupled with
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sensitivity analysis to identify the impact of each design
variable on the output. In addition, an optimal design
can be obtained efficiently by surrogate and optimiza-
tion algorithms. Data-driven design optimization is
gaining popularity in various engineering fields because
it can significantly reduce the computational budget,
save experimental costs, and accelerate the optimization
process.

To further facilitate the development and applica-
tion of data-driven design optimization, software pack-
ages have been developed. The software package DACE
(Design and Analysis of Computer Experiments) [6] can
be regarded as the most famous early work in the field.
DACE is a Matlab toolbox specialized in constructing
kriging approximation models as surrogates for numeri-
cal simulations. 00DACE [7] is another Matlab toolbox
focusing on the variants of kriging, including simple
kriging, ordinary kriging, universal kriging, blind kriging
[8], and regression kriging [9]. These two software pack-
ages have been popularized in the academic community.
However, these two primarily focus on the approxima-
tion part of the data-driven design optimization, thus,
the entire process of the data-driven design optimization
cannot be fulfilled completely without recourse to other
toolboxes. Subsequently, software packages including
more functionalities are developed, for example, SUR-
ROGATE toolbox [10], SUMO [11], MATSuMoTo [12],
and SMT [13]. The SURROGATE toolbox is a general-
purpose library of multivariate function approximation
and optimization methods for Matlab and Octave. This
toolbox contains the necessary modules to perform data-
driven design optimization, e.g., design of experiments
(DoE), surrogates, model validation and selection, opti-
mization, and sensitivity analysis. Most importantly, it is
free, open-source software. SUMO is a Matlab toolbox
having similar functionalities to the SURROGATE tool-
box. Besides, it has an excellent pluggable and extensi-
ble ability so that it can be used as a common platform
to test and benchmark different sampling and approxi-
mation methods while easily integrating into the engi-
neering design process. The SUMO toolbox is available
in two forms: the fully functional proprietary version
for commercial use and the restricted academic version.
MATSuMoTo is a surrogate global optimization toolbox
for Matlab. It can solve the computationally expensive,
black-box global optimization problems that may have
continuous, mix-integer, or pure integer variables. SMT
is a Python open-source surrogate modeling toolbox that
contains a bundle of sampling methods and surrogate
modeling techniques. SMT is different from the afore-
mentioned toolboxes because it can leverage deriva-
tive information, including training derivatives used for
gradient-enhanced modeling, prediction derivatives, and
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derivatives with respect to training data. In addition,
it also includes its own in-house surrogate techniques:
kriging by partial least-squares reduction, which scales
well with the dimensionality of the problem; and energy-
minimizing spline interpolation, which scales well with
the number of training points.

It is encouraging that there are several software pack-
ages dedicated to the development and application of
data-driven design optimization, however, most of the
above toolboxes have gained popularity solely in aca-
demia rather than the industry. This is because the above
toolboxes only employ command-line interfaces for algo-
rithm configurations and executions, which creates a sig-
nificant barrier for engineers, especially those who do not
familiar with the optimization theory and programming,
to use them. To address this issue, design optimization
tools with a user-friendly graphical user interface (GUI)
have been developed. Liu et al. developed a Matlab GUI
toolbox [14] for surrogate-based design and optimiza-
tion. For the sake of simplicity and easy-to-use, this tool-
box only contains the most fundamental modules, e.g.,
DoE, surrogate model, and optimization, to help users
perform design optimization. In addition, various com-
mercial software has been developed, such as Dassault
Systemes SIMULIA’s Isight, Phoenix Integration’s Model-
Center, Esteco’s modeFrontier, DATADVANCE'’s pSeven,
and PIDOTECH’s PIAnO. These commercial software
products can partially automate complex analysis and
design procedures by integrating cross-disciplinary mod-
els and applications in a simulation process flow. Moreo-
ver, users can explore the design space and identify the
optimal design parameters through a professional GUL
While these commercial software products have made it
easier for users to implement analysis and design optimi-
zation, the built-in algorithms, especially the surrogate
techniques used to approximate the relationship between
system inputs and outputs, are usually not state-of-
the-art. In addition, with the increase in versatility and
functionality, the commercial software products tend
to be cumbersome and steepen the learning curve for
beginners.

In this work, we developed an easy-to-use cloud-based
data-driven design optimization system, named DADOS.
DADOS transforms the tradition of local installation and
single-user operating, to cloud operating, multi-person
and multi-disciplinary optimization. With DADOS, users
can get the optimized performance of products easily and
efficiently. DADOS has the following advantages:

(1) DADOS has a library of state-of-the-art algo-
rithms and is flexible for expanding. DADOS
has nearly 30 key algorithms, including design of
experiments, surrogate models, model validation
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and selection, prediction, optimization, and sensi-
tivity analysis, which help users thoroughly explore
design alternatives and identify the optimal perfor-
mance parameters. In addition, DADOS is flexible
for expanding and allows users to upload their in-
house code.

(2) DADOS is easy-to-use. DADOS employed flow-
based programming that wraps up specific algo-
rithms into a block and integrates these blocks into
a workflow. With DADOS, users don’t need to pro-
gram to conduct performance prediction, optimiza-
tion, and sensitivity analysis. Just by dragging, drop-
ping, and connecting these algorithm blocks, they
can get these jobs done.

(3) DADOS supports multi-person, multi-disciplinary
optimization. An engineering project generally
needs engineers and designers from different fields
of engineering to complete. DADOS allows multi-
person working on a project at the same time and
supports multi-disciplinary optimization. Members
in the same group have access to the work progress
and details at any time because DADOS is cloud-
based and the data is backed up timely.

(4) With DADOS, there’s nothing to upgrade or
install. DADOS is a cloud-based system, there is no
need to download or install it. Just log in with a web
browser, and users can access DADOS at any time,
any place, and for free.

The remainder of this paper is organized as follows.
Section 2 introduces the workflow of conducting data-
driven design optimization. Section 3 presents the archi-
tecture and details the user interface of DADOS. In
Section 4, a numerical example and a real-world engi-
neering application are used to demonstrate how to use
DADOS to conduct data-driven design optimization.
Conclusions and future work are drawn in Section 5.

2 Data-driven Design Optimization

This section details the workflow of conducting data-
driven design optimization and briefly introduces an
exclusive hybrid surrogate technique in DADOS.

2.1 The Workflow of Data-driven Design Optimization
Data-driven design optimization is gaining popularity
in various engineering fields because it can significantly
reduce the computational budget, save experimental
costs, and accelerate optimization process. The workflow
of conducting data-driven design optimization is illus-
trated in Figure 1.
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Figure 1 The workflow of conducting data-driven design
optimization

2.1.1 Problem Formulation

When dealing with a design optimization problem, the
first thing that needs to be done is to formulate the prob-
lem. That is, extracting the design variables and their
ranges from the practical problem, and determining the
quantities of interest, design objectives, and constraints.

2.1.2 Design of Experiments

After the problem formulation is finished, the initial
samples are required to be generated to build the sur-
rogate. Since each sample is corresponding to a single
run of simulation or experiment, the number of sam-
ples is severely limited by the expense of each sample.
As a result, how to choose samples wisely in the given
design space is a key problem. This practice is known as
the design of experiments. It is preferable to have sam-
ples that are distributed evenly across the design space.
A sampling plan possessing this feature is called space-
filling. In this way, the input-output relationship from
all regions of the design space could be captured by the
limited number of samples. There are many DoE tech-
niques to determine the set of sample points, such as full
factorial design (FFD) [15], orthogonal arrays (OA) [16],
central composite designs (CCD) [17], Latin hypercube
sampling (LHS) [18], and optimal LHS (OLHS) [19].

2.1.3 Output Evaluations
Once the initial samples of design variables have been
determined, their corresponding output values should be
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evaluated by running simulations or experiments. Then,
a dataset can be obtained by assembling the pairs of the
inputs (i.e., the samples of design variables) and their cor-
responding outputs.

2.1.4 Construction of Surrogate Models

Surrogate models are, essentially black-box models, built
by a data-driven approach to provide fast approxima-
tions of the relationship between system inputs and out-
puts. The surrogate model plays an important role in the
process of conducting data-driven design optimization.
Because it is the surrogate model that makes great con-
tributions to expedite the design optimization process by
replacing the time-consuming numerical simulations and
expensive experiments. There are many popular surro-
gate modeling techniques, such as polynomial response
surface (PRS) [20, 21], radial basis function (RBF) [22, 23],
Gaussian process (GP) [24, 25], support vector regression
(SVR) [26, 27], artificial neural networks (ANN) [28, 29],
moving least squares (MLS) [30, 31]. In this step, a sur-
rogate model can be constructed by the training dataset
collected from the previous step.

2.1.5 Model Selection and Validation

The accuracy of the surrogate model has a significant
impact on the performance of the following prediction,
analysis, and optimization because their implementation
is based on the surrogate. Therefore, once a surrogate
model has been built, its prediction accuracy should be
examined. There are multiple criteria to assess the predic-
tion accuracy of the surrogate, which can be categorized
into two groups, i.e., the global criteria (e.g., determi-
nation of coefficients R?> and root mean square error
(RMSE)) and the local criteria (e.g., the maximum abso-
lute error (MAE)) [32]. It is worth noting that the testing
dataset used to test the accuracy of the surrogate model
cannot be the same as the training dataset used to train
the model. Otherwise, the performance of the model will
be overestimated. The testing data should not appear in
the training dataset as much as possible, meanwhile, the
training and testing data should follow the same data
distribution to avoid the inaccurate accuracy estimation
incurred by the inadequate train-test split. There are two
commonly used data splitting techniques in the field of
surrogate modeling, split sample (SS) and cross-valida-
tion (CV) [19]. The SS technique is very straightforward,
which just randomly divides the samples into training
and testing sets. Its main disadvantage is that it limits
the amount of data available for constructing surrogates.
The CV, however, allows the use of most of the avail-
able samples, even all the samples but one, to construct
the surrogates. In general, the samples are divided into k
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subsets of approximately equal size. A surrogate model is
built using the k -1 subsets of samples and its accuracy
is tested on the leaving subset. This process is repeated k
times so that each subset of samples is selected as testing
data once. The final accuracy of the surrogate is averaged
over k times. This practice is called k -fold CV. When k
=1, it becomes the leave-one-out CV (LOOCV). When
dealing with practical engineering design optimization
problems, the CV technique is often adopted to split the
samples and test the accuracy of the surrogate because
the expensive samples can be leveraged mostly by CV.

If the accuracy of the surrogates is satisfied, then the
surrogates can be directly used in the following analy-
sis and optimization studies. Otherwise, the accuracy of
the surrogates needs to get improved by switching over
to another surrogate or by adding new samples to update
the surrogates. The most straightforward way is to switch
to another surrogate in hope that the new surrogate will
perform better. Since it does not need to conduct new
simulations or experiments, switching to another surro-
gate is generally the first choice to get eligible surrogates
in practical applications. If the accuracy of the surrogates
is still unsatisfactory after switching all available surro-
gates, then adding new samples, which is also known as
infill, is required to improve the accuracy.

2.1.6 Infill

Infill or adaptive sampling is a key strategy that deter-
mines the new sample sites by leveraging response sur-
face information of the existing surrogate model and
information at regions of interest within the design space
to further refine the surrogate model. Generally, the infill
process is repeated until stopping criteria are satisfied,
such as the number of maximum iterations, the thresh-
old of the error, and error tolerance. There are many
infill strategies, for instance, mean squared error based
exploration [9], probability of improvement (PoI) [33],
and expected improvement (EI) [34]. Mean squared error
based exploration adds a new sample at the site where
it presents the maximum estimated error of a Gauss-
ian process based prediction. This is equivalent to add-
ing new samples at the sparsest region. Pol positions the
infill point at the site which will lead to an improvement
in the minimum observed value by maximizing the prob-
ability of the improvement. EI places the infill point at the
site where the maximum amount of improvement can be
obtained. For more information about infill strategies,
readers can refer to Ref. [9].

2.1.7 Prediction, Analysis, and Optimization
Once a surrogate model has been built successfully, it
can be used to not only predict the performance of a
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new design rapidly but also expedite the process of opti-
mization and sensitivity analysis. Optimization refers to
a procedure for finding the input parameters or design
variables to a function that lead to the minimum or
maximum output of the function. There are enormous
optimization algorithms, among which metaheuris-
tic algorithms, such as genetic algorithm [35], particle
swarm optimization [36], and simulated annealing [37],
have been widely used in solving real-world problems
because of their simplicity and easy implementation
[38]. Sensitivity analysis is the study of how the uncer-
tainty in the output of a model or system can be allo-
cated to different sources of uncertainty in its inputs
[39]. In other words, sensitivity analysis can provide
an evaluation of how much each input variable is con-
tributing to the output uncertainty. Sensitivity analysis
can be roughly divided into two groups: local sensitivity
analysis and global sensitivity analysis. Local sensitiv-
ity analysis investigates the impact of a small change
around a nominal value in the input space on model
outputs. Such sensitivity is often evaluated through
gradients or partial derivatives of the output functions
at these nominal values. The local sensitivity analysis
cannot fully explore the input design space, since they
examine small perturbations, typically one variable at a
time. Unlike local sensitivity analysis, global sensitivity
analysis methods evaluate the effect of a variable while
all other variables are varied as well, and thus they con-
sider interactions between variables and do not depend
on the choice of a nominal value [40]. As a result, in
comparison to local sensitivity analysis, global sensi-
tivity analysis methods have been more widely used in
real-world applications. There are many available global
sensitivity analysis methods, such as the Sobol method
[41], Fourier amplitude sensitivity testing (FAST) [42],
Morris method [43], and Delta moment-independent
measure (DELTA) [44]. The details of these methods
can be referred to Refs. [41-44].

2.2 Extended Adaptive Hybrid Function
For most practical engineering problems, the prior infor-
mation is not sufficient and the complexity of the prob-
lem is unknown so it is extremely challenging to choose
the most appropriate surrogate model before optimi-
zation. To address this issue, an ensemble of surrogate
models, also known as a hybrid surrogate model, has
been developed, which aims to make use of advantages
of each individual surrogate, as well as to eliminate the
effort of selecting the appropriate individual.

DADOS has an exclusive and robust hybrid surrogate
modeling technique, named E-AHF (Extended Adaptive
Hybrid Function), which was recently proposed in Ref.
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[45]. E-AHF takes the advantage of both the global and
local accuracy of each individual surrogate. An E-AHF
model can be expressed by:

) =Y 05w, 1)

where, y(x) represents a prediction of the E-AHF model
at the site of x; m is the number of individual surrogates
to be ensemble; w; denotes the weight of the ith individ-
ual surrogate, and ¥;(x) is the prediction of the ith indi-
vidual surrogate at the site of x. The weight w has a great
impact on the accuracy of an ensemble model. In the
E-AHF model, the weight w is a function of x instead of
a constant, which can take advantage of each surrogate in
terms of local performance.

The construction of an E-AHF model is illustrated by
Figure 2, which can be divided into two parts: selection
of individual surrogates and calculation of the adaptive
weights.

2.2.1 Part 1: Selection of Individual Surrogates

Introducing a poorly performing individual surrogate
into the ensemble may significantly reduce the average
prediction accuracy [46]. Therefore, a filtering process
is employed to exclude the poorly performing indi-
vidual surrogates. E-AHF adopts LOOCYV to assess the
performance of each individual and sets a threshold to
select the surrogates. The LOOCYV error of each indi-
vidual surrogate is calculated by:

1
n—1

n—1 _i 2
EL; = ijl 7 _jl\ijl) yi=12m (2)
where, EL; denotes the LOOCV error of the i th indi-
vidual surrogate; y; is the true response at the j th sam-
ple point; ?;} denotes the prediction of the i th surrogate
model at the site of the j th sample point, which is trained
by n — 1 samples except the j th sample. m and # repre-
sent the number of surrogates and samples, respectively.

Part I: Selection of surrogates
Part II: Calculation of weights
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Figure 2 Construction of the E-AHF model
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To select the eligible surrogates with small errors, a
normalized LOOCYV error (EN;) is calculated for each
surrogate:

EN; = EL; — EL,iy , 3)

ELmax - ELmin

where, ELy,, and EL,,; represent the maximum and
minimum CV errors of all individual surrogates, respec-
tively. Surrogates with an EN; smaller than the threshold
will be selected to constitute the hybrid model. The indi-
vidual surrogate with the smallest EN; is chosen as the
baseline model for calculating the adaptive weights of the
E-AHF model.

2.2.2 Part 2: Calculation of the Adaptive Weights

The adaptive weights are calculated based on the Gaussian
process estimated error and baseline model prediction at
every point, which can be described in the following three
steps:

2.2.2.1 Step I: Local estimation Calculate the estimated
mean squared error using a Gaussian process based predic-
tion:

— 17w ly)*

1
2(x) =2 [1 —yTuly 4 ( Tu-11 » (4)

where, o is the process variance, ¥ is an #n x n correla-
tion matrix of all the observed data whose entry can be
expressed as:

\Iljk =C0"|:yj,yki|,j= 1, ’nandkz 1’ 1, (5)

¥ is a vector of correlations between observed data and
the new prediction:

¥ = {corly,y@)], -, corlym y@)]} ©)

where y(x) is the prediction at the new point.

2.2.2.2 Step 2: Probability estimation 'The baseline model
can represent the global trend of the hybrid surrogate model
due to its high accuracy across the entire design space.
Hence, the prediction of the baseline model can be regarded
as an expectation of the hybrid model. The probability coef-
ficient of each individual surrogate is formulated as:

2
p; = exp{——‘yl[ Ibase/ | }, (7)

2
25;‘

where, ypase; and S/‘Z are the prediction and estimated
mean squared error of the baseline model at the site of
the j th sample point, respectively.
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2.2.2.3 Step 3: Determination of the adaptive weight 'The
adaptive weight is calculated by normalizing the probabil-
ity coefficient of each individual surrogate:

B Ejn;ﬂ) /" ®)

Wi

More details of the E-AHF can be referred to Ref. [45].

3 Software Description

3.1 Software Architecture

DADOS adopts a hierarchical architecture, as shown in
Figure 3, which includes the following four layers, namely
end user layer, application layer, service layer, and sup-
port layer.

3.1.1 End User Layer

It describes the roles of users and how users access
DADOS. Users can log in to DADOS with just an inter-
net connection and a web browser. There is no need for
them to have powerful hardware or install the software
because DADOS is a cloud-based system. The roles of
users can be divided into two types: ordinary users and
administrators. Administrators have privileges that
ordinary users don't have, for instance, operations and
maintenance, system monitoring, algorithm block man-
agement, and functional testing.

3.1.2 Application Layer

It provides all the applications for users to operate the
platform, which include portal navigation, project man-
agement, algorithm block management, task man-
agement, data visualization, site mailboxes, platform
management, and help files. The portal navigation not
only exhibits the functionality of DADOS, algorithm
introductions, and successful industry solutions, but also
enables users to log in to DADOS. Project management

! PC ()Browser User

Administrator

Portal Navigation ~ Task Mngmt  Project Mngmt  Data Visualization

Paltform Mngmt Site Mailbox Help Files Algorithm Mngmt

Basic Service
s
Platform Monitoring

Core Service

Node.js Vue.js HTMLS5 maven JDK

MySQL MyBatis Python Redis SpringBoot

Figure 3 Software architecture of DADOS
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enables users to easily create, modify, and delete projects.
Algorithm management is used for administrators to
examine and configure the parameters of the algorithm
blocks as well as upload new algorithms. Task manage-
ment enables users to build the workflow of data-driven
design optimization, including the construction of work-
flow, parameter configuration of algorithm blocks, work-
flow monitoring, and display of results. Data visualization
assists users to visualize the results of algorithm blocks
via plots and gain insight into the design problems. Site
mailbox enables users to invite colleagues to join a pro-
ject or accept the invitation. In addition, it also provides
system messages that inform users about changes in the
workflow of design optimization when multi-user col-
laboration is working. Platform management enables
administrators to perform routine maintenance and
monitoring of DADOS. Help files provide detailed infor-
mation on the DADOS interface and functions via case
demonstration and algorithm tutorials.

3.1.3 Service Layer

It organizes business logic and interacts with the appli-
cation layer to accomplish various functions. The ser-
vice layer consists of basic services and core services.
The basic services include log services, platform moni-
toring, sign up/in, message services, data management,
and cache services. The core services include algo-
rithm scheduling, workflow management, chart service,
dynamic deployment, algorithm block management,
documentation service, project management, and system
management.

3.1.4 Support Layer

It contains the tools used to develop DADOS, such as
VUE, Spring Boot, MySQL, and Redis database. VUE is
an open-source front-end JavaScript framework that is
employed to build the user interface of DADOS. Spring
Boot is an open-source Java-based framework that is
used for back-end development of DADOS. MySQL is a
relational database management system based on Struc-
tured Query Language (SQL) which is mainly used for
information storage. Redis (remote dictionary server) is
a fast, open-source, in-memory key-value data store for
use as a database and cache in DADOS.

3.2 Software Interface

DADOS is a cloud-based software platform that provides
performance prediction, design space exploration, sensi-
tivity analysis, and optimization in an easy-to-use GUL
This section introduces the user interface and function-
alities of DADOS from two aspects: project management
and main workspace.
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Figure 4 The project management screen of DADOS

3.2.1 Project Management

When users log in to DADOS, the project management
screen opens by default as shown in Figure 4. The left
pane of Figure 4, i.e., pane 1, shows the projects in which
users are involved, which are categorized into two fold-
ers: leading project and participating project. The differ-
ence between these two kinds of projects lies in the role
that the user played. Currently, there are two roles for
ordinary users, leaders and members. They have different
privileges. Leaders have the paramount privilege of the
project, they can start a project, invite others to partici-
pate in it, assign tasks, create and modify the content of
the project, and even delete the project. Members, on the
other hand, can only manage their own tasks.

In the leading project, the user acts as a leader and he/
she can create a project by clicking the button new in
pane 1. After clicking the button, in the popped dialog,
the leader can fill in the information about the project,
such as the project name, project description, and pro-
ject start and end date. Then, the information will be dis-
played in pane 3. Regarding member management, only
the leader can invite others to participate in the project
and assign roles to them. The information of members
is listed in pane 4. In addition, in pane 2, the left-hand
shows a picture representing the project which can be
uploaded by the user; the right-hand shows a thumbnail
of the workflow of the project.

3.2.2 Main Workplace

The main workspace is the most important part of
DADOS and users perform their tasks primarily on this
interface. This subsection first outlines the interface of
the main workspace and workflow creation, then intro-
duces the modules of the main workspace individually.
(A module consists of algorithm blocks that belong to the
same group. For example, the surrogate module includes
the algorithm blocks of PRS, MLS, RBE, ANN, SVR, KRG
and EAHF)
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DADOS has been designed with ease-of-use in mind,
therefore, the main workspace is made as concise as it
can be, which is displayed on one page. Moreover, flow-
based programming and drag-and-drop capabilities ena-
ble users to conduct analysis and optimization easily and
efficiently.

The main workspace screen becomes available when
users open a project. Figure 5 shows the main workspace
of DADOS on a working project. The left pane contains
all the algorithm blocks needed for conducting perfor-
mance prediction, optimization, and sensitivity analysis.
Moreover, the blocks are categorized and arranged in a
sequence according to the process of conducting data-
driven design optimization. This makes design optimiza-
tion easier for engineers who do not know data-driven
design optimization very well. Because all they need to
do is just drag the blocks from the left pane, dropping and
connecting them sequentially in the canvas to get things
done. Though in most cases, the default parameters of
the blocks work fine, users may want to tune the param-
eters to get better performance. They can click the block
in the canvas and tune the corresponding parameters in
the right pane. Also, users can right-click each block to
visualize the results of the block, access the help file, or
delete the block. History results are available by clicking
the blank area in the canvas. The bottom pane shows the
running log and results of the workflow.

DADOS employed flow-based programming that
wraps up specific algorithms into blocks so that users
can create workflows by connecting these blocks to solve
design optimization problems without writing a mass of
code. The adoption of workflow would greatly reduce the
learning curve for beginners and enables users to con-
duct analysis and optimization easily and efficiently. The
main elements of a workflow are blocks and links. The
input and output of a block are called ports, as shown in
Figure 6. Links connect blocks by ports, transferring data
from the previous block to the next. It is worth noting
that the connection order of the blocks is not arbitrary.
It follows certain rules which are very intuitive. The order
of connections is completely consistent with the process
of conducting data-driven design optimization which is

/DAD0S

A

{Cusme )  (krowon 0 ) {_PRED(pred b) m
00E Surrogate Prediction

suneuy )  (vooeywec®)  {kFouox s vy sasaa)

Optimization

{ 50801 (s0001_a)
Sensitivity -

Figure 5 The main workplace screen of DADOS
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detailed in Section 2. To avoid connecting the blocks in
the wrong order, DADOS has a self-checking mechanism
that automatically examines the order of connections.
For instance, if a user wants to link the surrogate block
directly to the DoE block leaving the output evaluation
block out, the system will not allow this operation and
give a warning ‘Unable to connect these blocks’

The following presents a general introduction for each
module.

(1)
DoE module

First of all, when starting a project, the first block
that needs to be placed is the start block. Then
one of the blocks in the DoE module is needed to
be dragged and dropped on the canvas. When the
user drops the block on the canvas, the parameter
configuration of the block will appear immediately
on the rightmost pane. As shown in Figure 7, the
parameter configuration of the blocks in DoE mod-
ule is so straightforward that only the number and
range of design variables as well as the number of
samples are required to be set by users. Here, we
recommend that the number of the initial sam-
ples should be more than ten times of the dimen-
sion of the design variables. Other parameters, for

Block Y_DOE(y_doe_afg)

!

Y_DOE
ausre s © .
DOE Port Link Surrogate

Figure 6 The algorithm blocks and links

Locked ?

@ No_

Number of Variables

Number of Samples (>=10n)

Optimizer

maximin v

Iterations
20

Figure 7 The parameter configuration pane of the LHS block
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Figure 8 The identifier changes from the question mark to green tick
when a block is implemented successfully

2)

instance, optimizer and the maximum iterations of
the LHS block, are set by default, which also can be
configurable if users want to tune them to get bet-
ter performance, though, in most cases, the default
parameters work fine.

After the parameter is configured, users need to deploy
and run the block to generate samples by clicking
the deploy and run button sequentially. Clicking the
deploy button means that what the users have done
in the front-end (i.e., in the main workspace), such as,
dragging and dropping blocks, and tuning the param-
eters, will be updated to the back-end. When users
ensure that all the operations and settings are correct,
they can click the run button to run the workflow.
During the running process, when a block is imple-
mented successfully, the question mark icon in the
block will turn to a green tick, as shown in Figure 8.
This helps users keep track of the running state of the
workflow.

After the selected DoE block has been implemented
successfully, users can visualize the spatial distri-
bution of the generated samples by right-clicking
the block and then clicking the plot button in the
popped dialog. DoE blocks provide scatter plots,
including 2D and 3D scatter plots, to help users
visualize the samples. For the problems whose
dimensionality is larger than three, users can select
any two or three of the design variables to visualize
the distribution of samples in the design space. In
addition, users can set display options for the scat-
ter plots, such as the color and size of the scatter
points, axis limits, axis names, title, and font size.
The sample data and scatter plot are all available for
download.

Output evaluation module

Users can conduct simulations or experiments, using
the downloaded sample data of design variables, to
obtain the output evaluation. Then the samples of
inputs and their corresponding outputs constitute the
training samples for building a surrogate. There are
two ways to fill in the output values in the parameter
configuration pane of the output evaluation block:
uploading an Excel file or filling out the form manually.
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Data File
[ 5w |
x1 x2 y
2 24 1.9 11.9397359916!¢
3 M 15 5.19755989984¢
4 -0.86 0.9 7.67758933418¢
5 -0.12 25 14.9844749835¢
6 061 1.5 5.48521782963«
7 079 -1.7 0.97559626031(
8 3.36 29 3.39841677000:
9 -1.04 23 20.4176903415¢
10 -0.68 -0.5 -0.1222060124C
x 1

12 -1.28 -1.1 -0.6134843874¢€
13  2.26 2.1 1.94704914311¢

Figure 9 The data entry form of the output evaluation block
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Considering that there may exist invalid output evalu-
ations, for instance, the simulation may not converge
under particular parameter combinations, and some
experimental results may be found incorrect, DADOS
allows users to disable or enable any samples or design
variables by clicking the boxes next to them. As shown
in Figure 9, the 11th sample is disabled by clicking the
box near the number 11. In addition, to make it easy
for users to check the data, the background color of
each row is designed as an alternative and when users
hover over a sample data, the corresponding row and
column will be highlighted.

Surrogate model module

Surrogate model module includes six individual sur-
rogate techniques (i.e., PRS, MLS, RBF, KRG, SVR,
and ANN) and a unique ensemble surrogate tech-
nique (i.e., E-AHF) proposed by ourselves. To make
it easier for users to configure the surrogate blocks,
DADOS provides default parameter values. In addi-
tion, the details of parameter configuration can
refer to the documentation page of DADOS. The
E-AHF block allows users to select any combination
of the individual surrogate techniques, as shown in
Figure 10.

After the surrogate model has been built successfully,
users can visualize the response surface of the sur-
rogate to gain insights into the relationship between
inputs and outputs of the problem. DADOS pro-
vides 2D, 3D, and contour plots for the surrogate
blocks. For the 3D plot, users can rotate and zoom
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Figure 10 The configuration pane of the E-AHF block

4)

it for a better view. In addition, DADOS supports
data cursor mode, which allows users to select an
individual data point to display its information. All
the plots allow users to set display options and are
available for download.

Model selection and validation module

)

DADOS employs LOOCV and k-fold CV to help
users validate and select surrogate models due to
the fact that CV allows the use of most of the avail-
able samples, even all the samples but one, to con-
struct the surrogates, which saves computational
burden and/or experimental cost to some extent
compared to the split sample method. For the k-fold
CV block, users need to specify the value of k in the
parameter configuration pane. It is recommended
that k should be a divisor of the number of total
samples. That is, each fold has the exact same num-
ber of samples. In some cases, even if the number of
total samples is not divisible by &, the algorithm will
make the number of samples of each fold as even as
possible. In DADOS, there are three available met-
rics, i.e., RMSE, R%, and MAE, to validate the per-
formance of surrogates.

Infill module

Infill module includes three infilling strategies that
are mean squared error based exploration, Pol,
and EI. Apart from choosing the infilling strate-
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Figure 11 The parameter configuration pane of the GA block

(6)

gies, users are also allowed to choose the number of
infilling samples in each infilling.

Y_infill module

(7)

Y _infill is a block that follows infill block to enable
users to fill in the outputs of the infilling samples.
The parameter configuration pane of Y infill is
very similar to that of ¥_DOE block, which also
supports users to upload an Excel file or fill out
the form manually. Since there are just a few, even
a single infilling sample during each infilling pro-
cess, filling out the form manually would be a better
choice. After the Y_infill block is configured, that is,
samples have been updated, the surrogate can be
trained again, using the updated samples, by drag-
ging a new surrogate block into the canvas and con-
necting it to the Y_infill.

Pred module

Pred is a block that provides a fast prediction of the
performance of a new design. Similar to Y_DOE
and Y_infill block, users can fill in new combina-
tions of design variables to get fast predictions by
uploading an Excel file or filling out the form manu-
ally.
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®)
Optimization module

The optimization blocks are linked right behind
the surrogate or CV blocks to provide an optimal
design based on the established surrogate model.
Since an optimization problem can be generally for-
mulated by an objective function and several con-
straint functions, DADOS has a built-in formula
editor for users to edit equations. In the parameter
configuration pane of the optimization blocks, as
shown in Figure 11, users can not only tune the
parameters of the optimization algorithm but also
can specify the number of constraint functions and
formulate the objective and constraint functions
using the established surrogates. In addition, the
iteration step plot is available in the optimization
blocks.

€))
Sensitivity analysis module

Like the prediction and optimization blocks, the sen-
sitivity analysis blocks are also linked right behind
the surrogate or CV blocks. They can provide an
evaluation of how much each input variable is con-
tributing to the output uncertainty. There are four
available SA methods in DADOS, i.e., FAST, Sobol,
Morris, and DELTA, among which, FAST and
Sobol blocks provide a bar plot to show first order
index and total order index.

4 Examples

In this section, a numerical example and a real-world
engineering problem are used to demonstrate how to use
DADOS to conduct data-driven design optimization.

4.1 Numerical Example

The numerical example is an unconstrained global opti-
mization test function adopted from Ref. [47], named
McCormick function. The formula of McCormick func-
tion is expressed as follows:

2/ DAD0S . * 3] & v

Figure 12 The blank main workspace screen of DADOS
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F®) = sin(x1 +x2) + (x1 — x2)> — L.5x1 + 2500 + 1,

)

where, x1 and x; are two design variables and the domain

isx1 € [—1.5,4],x2 € [—3,4]. This function has one global
minimum f(x*) &~ —1.913 at #* = (—0.547, —1.547).

Let us assume that the McCormick function is expen-
sive to evaluate and its formula is unknown. Only the
range of the design space and some samples drawn
from it are available. In the following, what will be done
is using the available samples to build a surrogate to
approximate the true function in Eq. (9), trying to find its
global minimum, and analyzing which variable has more
impact on the output.

First of all, users need to create a project by clicking the
new button as shown in Figure 4. Then, basic informa-
tion about the project should be entered. After the pro-
ject is created, users need to open the project to start the
task. When users open the project, the main workspace
becomes available as shown in Figure 12. Then, step-by-
step instruction for using DADOS to find the optimal
value of the unknown function in Eq. (9) is detailed as
follows:

Step 1: Start. Drag the start block from the left pane
Algorithm blocks and drop it on the canvas. The start
block indicates the beginning of the project and there
is only one start block in a project.

Step 2: DoE. In this step, the OLHS sampling plan
is chosen to generate the samples. Drag the OLHS
block from the DoE module and drop it on the can-
vas. In the parameter configuration pane of the
block, four parameters need to be configured and
two of them are set by default. Hence, users just
need to configure the other two parameters, that is,
number of variables and number of samples. When
users enter 2 in the box under number of variables,
sub-boxes containing the interval, precision, and
name of variable are shown up just under number

2/ DADOS > : 2] & v

Ous(ome_a)

Stanto

Figure 13 Configuration of the OLHS block for the numerical
example
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Figure 14 Configuration of the Y_DOE block for the numerical
example

2/DAD0S & = 2) & v

Figure 15 Configuration of the E-AHF block for the numerical
example

of variables box, as shown in Figure 13. Users need
to fill these boxes accordingly. Then, users link the
OLHS block to the start block and click the deploy
and run button sequentially to generate the samples
of inputs. Next, click the corresponding name of the
OLHS block in the results pane to view and down-
load the data of samples of inputs.

Step 3: Output evaluations. In this step, users need
to upload the samples of inputs and the correspond-
ing output values to DADOS via Y_DOE block.
Specifically, calculate the output values to samples
of inputs using Eq. (9) and fill them in the Excel file
that is downloaded from Step 2. Then, drag the Y_
DOE block from the left pane, drop it on the can-
vas, and link the Y DOE block to the OLHS block. In
the configuration pane, as shown in Figure 14, click
the cloud icon to upload the Excel file and fill in the
name of responses in the Remarks box.

Step 4: Construction of surrogate models. In this
step, a surrogate model is constructed using the
E-AHF method. Drag the E-AHF block from the
left pane, drop it on the canvas, and link the E-AHF
block to the Y_DOE block. As shown in Figure 15,
in the configuration pane, five individual surrogates
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Table 1 The prediction accuracy of the E-AHF model for the
numerical example

Metrics Prediction
accuracy
R? 0.99
RMSE 0.14
MAE 0.25
PSTTTTY o - 2 (s v
b o
=

Figure 16 Configuration of the GA block for the numerical example

are selected by default to form the ensemble surro-
gate. Click the deploy and run button sequentially
to run the workflow. Note that when the question
mark of each block turns to a green tick, it denotes
that the workflow has been run successfully. There is
something wrong if not all the blocks have a green
tick and users can read the running log to debug the
workflow.

Step 5: Model validation. This step checks the
accuracy of the surrogate model built in the previ-
ous step. Drag the LOOCV block and drop it on the
canvas. There are three metrics available to choose
in the configuration pane: R?, RMSE and MAE. All
three metrics are chosen by default. Then, link the
LOOCYV block to the E-AHF block and, click the
deploy and run button. But before deploying and
running the workflow, it would be better to turn
the lock button on in the configuration pane of the
E-AHF block. The lock button of a block being on
indicates that all the previous blocks and this block
are locked and will not run again to waste com-
putational resources. Because all the information
related to the modeling process will transfer to the
next block by the /link, there is no need to run the
previous blocks again and only the current block
is required to be implemented. After the LOOCV
block was implemented, users can check the accu-
racy of the E-AHF model in results pane, and the
results are listed in Table 1. As mentioned in Refs.
[48] and [9], R?> 0.8 indicates a surrogate with good
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Figure 17 The formula editor in DADOS

Table 2 The optimum solution provided by DADOS for the
numerical example

Variables Global minimum Optimum
X1 —0.547 — 0578
X2 —1.547 — 1578
y —1913 — 1912
Graph X
Function Value
-1.2
14
18
N
\
2
1 3 9 12 15 18 20
Iterations

Figure 18 The iteration plot of the GA block

predictive accuracy. The surrogate model is more
accurate if R? is closer to 1. Therefore, we set R%> 0.8
as a threshold to determine that a surrogate model is
satisfied. For RMSE and MAE, it is difficult or even
impossible to find the threshold to judge whether a
surrogate model is satisfied, because the values of
the RMSE and MAE depend on the problems. For
different problems, the range of RMSE and MAE
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Figure 19 Configuration of the Sobol block for the numerical
example
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@8 ST @l S1 Sensitivity Analysis for McCormick Function
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x2: 0.8582762614618829

Sensitivity Index

Variables

Figure 20 The first-order index and total order index

varies with the responses. However, with RMSE and
MAE, we can determine which surrogate is better
than others.

Step 6: Optimization. In this step, a Genetic Algo-
rithm (GA) was employed to optimize the E-AHF
model. Drag the GA block from the left pane, drop
it on the canvas, and link it to the LOOCV block. As
shown in Figure 16, in the configuration pane, users
need to specify the objective and constraints. To
edit the objective function, users need to click the
edit button next to the objective box to open the for-
mula editor. In the popped formula editor, users can
choose to conduct minimization or maximization
by clicking the drop-down menu, as shown in Fig-
ure 17. Moreover, users can edit the objective func-
tion using the variable names listed in the editor. For
this numerical example, minimization is selected
and the objective function is yI, which denotes
minimizing the response of the E-AHF model. The
other parameters of GA are set to default. Next,
click the deploy and run button sequentially to run
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Figure 21 Structural parameters of lightening holes in a mining
hoist sheave

. 50.7 Max
45.08
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11.32
5.695
0.06888 Min

Figure 22 Stress distribution and the location of maximum stress
under a maximum radial force at 45°

the workflow. After the GA block was implemented,
users can see the optimization results in results pane
and view the iteration step plot by right clicking the
GA block and clicking the plot button in the popped
dialog. The optimization results and the iteration
step plot are shown in Table 2 and Figure 18, from
which it can be observed that the optimized results
are in very good agreement with the global mini-
mum.

Step 7: Sensitivity analysis. In this step, a Sobol
method was employed to conduct sensitivity analy-
sis. Drag the SOBOL block from the left pane, drop
it on the canvas, and link it to the LOOCV block. In
the parameter configuration pane, as shown in Fig-
ure 19, setting the number of samples to 10000. Next,
click the deploy and run button sequentially to run
the workflow. The first-order index and total order
index are shown in Figure 20, denoted by S1 and ST,
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respectively. It can be observed from Figure 20 that
the interaction between x; and x; has a great impact
on the output of the McCormick function.

4.2 Engineering Case

In this section, we use DADOS to conduct structural
optimization in lightweight design for a mining hoist
sheave. In underground mining, a hoist is used to raise
and lower conveyances within the mine shaft. The
sheave is an important part of the hoist system, which is
a wheel with an open groove that a cable fits around so
it can rotate around the exterior. One end of the cable is
attached to conveyances, while the other is attached to
a fixed object. The high demand for mining hoists, such
as high speed, heavy load, and stability, drives the sheave
to be cumbersome, which makes it more challenging to
transport, install, and maintain the sheave. Hence, the
lightweight design of the sheave is of great importance.
To make the sheave lighter, two types of eight lightening
holes are designed in the sheave, as shown in Figures 21
and 22, x; to xg are eight structural parameters of lighten-
ing holes. These structural parameters are optimized to
minimize the weight of the sheave under the maximum
stress constraints. Figure 22 shows the stress distribution
and location of the maximum stress when the sheave is
subjected to the maximum radial force at 45°. This opti-
mization problem can be formulated as Eq. (10):

i N,i=1,2,---
I;él)r(lf(xz)l 8

2100 < x; < 2300,
500 < xy < 800,
300 < x3 < 500,
100 < x4 < 300,

2100 < x5 < 2300,
300 < x¢ < 500,
250 < x7 < 500,
150 < xg < 300,

g1(x) < 51,
S(x) < 51,

s.t.

where f(x) is the weight of the designed hoist sheave,
g1(x) and gr(x) are the maximum stresses when the
sheave is subjected to the maximum radial force at 0" and
45°, respectively.

A step-by-step instruction of using DADOS to con-
duct this structural optimization problem is presented as
follows:
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Step 1: Start. Drag the start block from the left pane
Algorithm blocks and drop it on the canvas.

Step 2: DoE. In this step, the OLHS sampling plan
is chosen to generate the samples. Drag the OLHS
block from the DoE component, drop it on the can-
vas, and link it to the start block. In the parameter
configuration pane of the OLHS block, set the num-
ber of design variables and samples to 8 and 175,
respectively. The domain of the 8 design variables is
set according to Eq. (10). Then, click the deploy and
run button sequentially to generate the samples of
inputs.

Step 3: Output evaluations. In this step, users need
to upload the samples of inputs and the correspond-
ing output values to DADOS via Y_DOE block.
Conducting simulations according to the samples
of inputs generated in the previous step to obtain
the corresponding mass and maximum stress when
the maximum radial force is applied at 0" and 45,
respectively. Drag the Y_DOE block from the left
pane, drop it on the canvas, and link it to the OLHS
block. Repeat this process three times to have three
Y DOE blocks on the canvas. Upload the data of
mass, maximum stress to these three Y_DOE blocks,
respectively. Then, click the deploy and run button
sequentially to run the workflow.

Step 4: Construction of surrogate models. In this
step, one E-AHF and two RBF models are con-
structed to approximate the relationship between
the design variables and the mass, maximum stress
when the maximum radial force at 0° and 45,
respectively. Drag an RBF block, an E-AHF block,
and another RBF block from left pane, drop them
on the canvas, and link them to the three Y DOE
blocks respectively. For parameter configurations,
the multiquadratic function was chosen as the basis
function for the two RBF models, and the param-

Table 3 The accuracy of the three surrogate models for the
engineering case

Surrogate models R? RMSE MAE
The RBF model for f 0.99 16.36 12.30
The E-AHF model for g; 0.90 230 172
The RBF model for g, 0.92 3.75 2.54
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eters of the E-AHF model are set to default. Then,
click the deploy and run button sequentially to run
the workflow.

Step 5: Model validation. In this step, the 10-fold
CV was employed to evaluate the accuracy of the
three surrogate models and the results are shown in
Table 3.

Step 6: Optimization. In this step, a GA method
was employed to optimize the weight of the hoisting
sheave with stress as constraints. Drag a GA block
from the left pane, drop it on the canvas, and link the
three surrogate blocks to it. In the parameter config-
uration pane of the GA block, click the edit button
next to the objective box, then type yI, which repre-
sents the mass of the sheave, in the popped formula
editor and choose min from the drop-down menu.
Next, specify two inequality constraints and type y2-
51 and y3-51 in the formula editor. Then, click the
deploy and run button sequentially to run the work-
flow. By running the simulation according to the opti-
mized structural parameters, the weight and maxi-
mum stresses of the optimized sheave are obtained
and listed in Table 4. Compared to the initial sheave
weight of 4844.78 kg, the optimized weight is 4599.60
kg, which is a reduction of 5.06%.

5 Conclusions

This paper introduces a cloud-based data-driven design
optimization system, DADOS, to help engineers,
researchers and especially beginners improve a design or
product easily and efficiently. The architecture and inter-
face of DADOS were detailed in the paper. A numerical
function and a practical problem were used to demon-
strate how to use DADOS to conduct data-driven design
optimization in a step-by-step way. DADOS has the fol-
lowing features.

(1) The current version of DADOS has nearly 30 key
algorithms, including design of experiments, sur-
rogate models, model validation and selection,
prediction, optimization, and sensitivity analysis,
which are fundamental for users to conduct design
optimization. DADOS has an exclusive robust
hybrid surrogate technique that seeks to make use
of advantages of each individual surrogate and to

Table 4 The optimum solution provided by DADQS for the engineering case

Design variables Objective Constraints
X1 X2 X3 X4 X5 X6 X7 X3 f g1 g2
2200 551 378 199 2275 366 289 263 4599.60 50.24 50.58
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eliminate the effort of selecting the appropriate
individual.

(2) DADOS employed flow-based programming so
that users can conduct design optimization easily
just by assembling drag-and-drop algorithm blocks
and without the need to write any code.

(3) Since DADOS is cloud-based software, there is no
need to download and install it, users can apply it
via a web browser at any time, any place, and for
free, as long as they can be linked to the internet.

(4) DADOS allows multi-person working on a project
at the same time and supports multi-disciplinary
optimization.

Apart from the above-mentioned features, DADOS is
now in its first version. There is still a long way for it to
go. We will continuously maintain and develop DADOS
in the future. On the one hand, aesthetics of the user
interface and usability of DADOS will be improved fur-
ther. On the other hand, more algorithm blocks will be
added to expand the existing modules in DADOS, and
new modules will be developed to provide more func-
tions for users, such as multi-fidelity surrogate models,
uncertainty quantification, reliability-based optimization,
etc. We hope DADOS can be an effective tool to help
engineers and researchers conduct design optimiza-
tion, and we sincerely welcome peers to join us to shape
DADOS for better functionality and usability.
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