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Abstract 

Bolt connection is one of the main fixing methods of cylindrical shell structures. A typical bolted connection model is 
considered as a tuned system. However, in the actual working conditions, due to the manufacturing error, installation 
error and uneven materials of bolts, there are always random errors between different bolts. To investigate the influ-
ence of non-uniform parameters of bolt joint, including the stiffness and the distribution position, on frequency com-
plexity characteristics of cylindrical shell through a statistical method is the main aim of this paper. The bolted joints 
considered here were simplified as a series of springs with random features. The vibration equation of the bolted 
joined cylindrical shell was derived based on Sanders’ thin shell theory. The Monte Carlo simulation and statistical the-
ory were applied to the statistical analysis of mode characteristics of the system. First, the frequency and mode shape 
of the tuned system were investigated and compared with FEM. Then, the effect of the random distribution and the 
random constraint stiffness of the bolts on the frequency and mode shape were studied. And the statistical analysis 
on the natural frequencies was evaluated for different mistuned levels. And some special cases were presented to 
help understand the effect of random mistuning. This research introduces random theory into the modeling of bolted 
joints and proposes a reference result to interpret the complexity of the modal characteristics of cylindrical shells with 
non-uniform parameters of bolt joints.
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1 Introduction
The structure of the cylindrical shell is usually utilized in 
a lot of mechanical systems such as aerospace, subma-
rines, due to its relatively small weight and load carrying 
capacity. However, there are some inherent variations in 
the structure, especially in the geometric parameter and 
the restraint condition of the cylindrical shell. Therefore, 

the random vibration of the cylindrical shell has been 
also a hot topic for researchers. The random problem 
of the cylindrical shell has been reported mainly about 
the material and geometric imperfection or random 
excitations.

Material and geometric imperfection is an impor-
tant source which cause the random shell vibration. For 
example, taking random scatter in the material proper-
ties into account, Yadav et  al. [1, 2] developed a unified 
approach to solve vibration problem of composite cylin-
drical shells, and some specific problems were simu-
lated. Rodrigues [3, 4] studied the nonlinear response of 
cylindrical shells with geometric imperfections. Random 
excitation is another important source which cause the 
random vibration of the structure such as beam [5], plate 
[6] and shell [7]. For example, Dogan et al. [7] reported 
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nonlinear flexural vibration of cylindrical shell under ran-
dom pressure, random point loads or thermal effects.

However, up to now, there are few open articles found 
about the vibration of a single cylindrical shell con-
sidering the random problem about the bolted joints. 
Arbitrary and point support boundary condition was 
considered into the cylindrical shell to study uniformly 
and the non-uniformly supported cylindrical shell by Dai 
et al. [8], Qin et al. [9], Zhou et al. [10], Chen et al. [11], 
Xie et al. [12] and Li et al. [13]. For bolted joined cylindri-
cal shell structure, some literatures have been reported. 
Li et  al. [14] studied the mode frequency and shape of 
the thin cylindrical shell under bolt looseness boundary 
through the FE method and experimental test method. 
Qin et al. [15] studied the influence of bolt loosening on 
the vibration of disk-drum rotor by nonlinear FE simula-
tions and harmonic balance method. The restraint con-
dition on the cylindrical shell structure varies with the 
change of the bolted joint about the preload, excitation, 
distribution, and so on. Liao et  al. [16, 17] established 
a general dynamic model of bolted lap structure and a 
dynamic model of bolted lap structure with viscoelas-
tic layer, and analyzed the influence of Coulomb fric-
tion and excitation level on the harmonic response of 
the system. Zhu et al. [18, 19] put forward an analytical 
model for evaluating the elastic interaction of bolt flange 
contact caused by the tightening process, and an ana-
lytical model for the change of bolt tensile load caused 
by the elastic combination interaction. Farhad et al. [20] 
used the combination of linear translational spring, lin-
ear and nonlinear torsional spring and linear torsional 
damper to establish the model of bolt overlap inter-
face, and used harmonic balance method and numerical 
simulation to analytically solve the coupled nonlinear 
equations. Armand et  al. [21] analyzed the influence of 
surface roughness on the contact pressure distribution, 
local contact stiffness and nonlinear dynamic response 
of bolted connections using multi-scale method. Li et al. 
[22] studied the nonlinear vibration of fiber reinforced 
composite cylindrical shells with bolted boundary con-
ditions from both theoretical and experimental aspects, 
taking into account the material characteristics related 
to the nonlinear amplitude of fiber reinforced composite 
materials and the boundary conditions of partial loos-
ening of bolts. Refs. [23, 24] proposed a semi analyti-
cal modeling method for bolted thin-walled cylindrical 
shells, and further analyzed their vibration response and 
interface contact state. The vibration characteristics of 
bolted cylindrical shells are studied. Li et  al. [25] stud-
ied the free vibration and forced vibration of the cylinder 
cylinder composite shell with partially bolted loose con-
nections from both experimental and theoretical aspects. 
Yang et  al. [26] established the finite element model of 

the bolted rotating flexible shaft disk drum system based 
on the beam shell spring mixed element and the self-
developed finite element program. The rotation effects, 
such as centrifugal effect, initial tension, gyro moment 
and geometric nonlinearity caused by large deformation, 
are considered. Pirdayr et  al. [27] studied the vibration 
characteristics of six bolt connecting plates by using test 
and finite element methods. Consider the influence of 
bolt looseness on vibration characteristics. Du et al. [28] 
proposed a unified discontinuous variable stiffness model 
to simulate the actual connection of bolts by improving 
the artificial spring technology, which is used to analyze 
the dynamics of rotating cylindrical shells.

Bolted joint is a common restraint method for shell 
structure, and it determines the boundary condition of 
the cylindrical shell. In fact, there are also many uncer-
tainties and random characteristics appearing at the 
bolted joint, which leads to non-uniform parameters of 
bolt joints. These problems may be caused by the follow-
ing source. Firstly, due to manufacturing errors, the con-
tact surfaces of the bolted joint hardly keep consistent. 
Secondly, the distribution of the bolts is not absolutely 
symmetric. Thirdly, the initial preload of the bolts affect 
the connection effect [29]. Fourthly, the external excita-
tion leads to the non-linear characteristic of the bolted 
joint [30]. Fifthly, bolt loosening can also cause the varia-
tion of the restraint stiffness [14]. And there are also lots 
of many other sources for the uncertainty characteristics 
of bolted joints [31], including random bolt distribution 
and random restraint stiffness distribution. The unsym-
metrical bolt distribution and stiffness distribution are 
defined as the mistuning patterns studied in this paper.

Therefore, in this paper, the random theory is con-
sidered into the modeling of bolted joints and the main 
issue is to investigate the effect of random mistuning 
bolted joints, including the bolt distribution mistuning 
and the restraint stiffness mistuning, on the mode char-
acteristics of the cylindrical shell. The dynamic model 
of a single cylindrical shell with bolted joints was estab-
lished and the statistical analysis was done utilizing the 
Monte Carlo simulation method. The frequency’s means 

Figure 1 Sketch of cylindrical shell with bolted joints and coordinate 
establishment
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and probability density, and confidence interval of the 
frequency mean were investigated in the numerical 
simulation.

2  Mathematical Formulation
In aerospace, the aero-engine casings are consist of many 
thin-walled shell structures, some of which are assem-
bled by bolted joints, for example, shown in Figure  1a. 
And Figure  1b present the sketch of a cylindrical shell 
and a coordinate system, which can clearly express the 
motion of the shell wall. The motion of a certain point P 
is expressed as u, v, and w, respectively. The bolts are rep-
resented by a series of springs. 

The strain expression of the cylindrical shell, according 
to Sanders’ shell theory, can be expressed as:

The kinetic energy and the strain energy of the bolted 
joined cylindrical shell can be written by:

Therefore, substituting Eqs. (1)‒(2) into Eq. (4):
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For a shell, defining ξ = x/L, the displacements can be 
assumed as:

where U, V, W are the vectors, whose elements are the 
functions about ξ and θ. ϕu

m(ξ) , ϕv
m(ξ) and ϕw

m(ξ) are the 
characteristic orthogonal polynomials [12]. p, q, r are the 
vectors, whose elements are the functions about time. 
pcmn, q

c
mn, r

c
mn, p

s
mn, q

s
mn, r

s
mn are the parameters about 

time.
For bolted joint, the restraint on the boundary of the 

cylindrical shell is always discrete, which causes the char-
acteristics of the large local restraint. To discuss the local 
restraint, the bolted joint will be simplified to be linear 
point restraints to study its natural characteristics (fre-
quency and mode shape). The restraint model of the 
bolt is theoretically established in four directions about 
the axial, circumferential, radial and rotational direc-
tions. The bolt can be numbered as S (S = 1, 2, 3, …, Nb). 
The positions of the bolt in the coordinate system are 
assumed as θS. The energy stored in the bolted joints will 
be expressed:

Substituting Eq. (6) into Eqs. (3), (5), (7), the discretized 
kinetic and potential energy can be got. Then, Substituting 
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∑
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them into Lagrange equation, the free vibration equation of 
the structure can be obtained:

where

The detailed expressions of the matrixes are listed as 
follows:
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3  Random Problem and Statistical Law
For the cylindrical shell structure with bolted joints, ran-
dom mistuning always exists among the bolts due to the 
manufacturing tolerance, installation error and material 
irregularity of the bolts and other conditions. Therefore, 

Table 1 The geometric and material properties of the cylindrical 
shell

Parameter Value

Length L (mm) 100

Thickness h (mm) 2

Radius R (mm) 200

Poisson ratio μ 0.3

Young’s modulus E (GPa) 206

Density ρ (kg/m3) 7850 Figure 2 Bolt distribution in the tuned system
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some random mistuning parameter is considered into the 
dynamic model through a random pattern of discrepan-
cies of the relative parameters of the bolts in this paper. 
The procedure for the random mistuned problem of the 
bolts, the Monte Carlo simulation method (MCS) can be 
applied through four steps.

Step 1: NS samples of mistuned bolt parameters are 
randomly generated by direct MCS technique. In this 
paper, two random parameters are introduced and they 
are the position of the bolts and the restraint stiffness. 
Therefore, assuming the mistuned error of these two 
parameters, ρθ for the position of the bolts and ρk the 
restraint stiffness of the bolts, to be the normal distribu-
tion as

where µθ and σθ are the mean and standard deviation for 
the error of the position of bolts, respectively. µk and σk 
are the mean and standard deviation for the error of the 
restraint stiffness of bolts, respectively. θt and kt are the 
position and the stiffness value of the tuned system. θm 
and km is the random position and the random stiffness, 
generated for the mistuned system.

Step 2: Evaluate the eigenvalues and eigenvectors of the 
cylindrical shell for each random pattern. From Eq. (8), 
frequency equation of the system can be obtained:

where ω is the circle frequency of the system and from 
which the eigenvalues and eigenvectors can be obtained. 
Therefore, calculations can be done for all the random 
samples.

(9)ρθ=
(θm − θt)

2π/Nb

∼ N
(

µθ , σ
2
θ

)

,

(10)ρk=
(km − kt)

kt
∼ N

(

µk , σ
2
k

)

,

(11)
∣

∣

∣
−ω2M+K

∣

∣

∣
=0,

Step 3: Generate the statistics of mode frequency of 
the cylindrical shell according to the samples. The MCS 
method is used to evaluate the probabilistic mode char-
acteristics for all the sample. The mean and standard 
deviation of the statistical parameter can be obtained:

Step 4: Estimate the confidence for reliability analysis. 
The confidence interval is performed to quantify the con-
vergence properties of the MCS methods by using stu-
dent t distribution. A 100(1−α)% confidence interval 
implies the probability that the frequency of a true sam-
ple will fall within the range 2Sσ√

NS
tα/ 2(NS − 1) wide from 

the estimated values will be 100(1−α)%.

(12)ω=
1

N

N
∑

i=1

(

ωi

/

ωt

)

,

(13)
Sσ =

√

√

√

√

√

N
∑

i=1

(

ωi

/

ωt − ω
)2

NS − 1
.

(14)P

(

ω −
Sσ√
NS

tα/ 2(NS − 1) < ω < ω +
Sσ√
NS

tα/ 2(NS − 1)

)

= 1− α,

Table 2 Natural frequencies of cylindrical shell with tuned bolted joints (Hz)

Order 1 2 3 4 5 6

Case I ω from Eq. (11) 404 404 438 438 488 488

ω from ANSYS 401 401 438 438 480 480

Diff. (%) 0.7 0.7 0 0 1.7 1.7

Case II ω from Eq. (11) 349 404 427 438 462 486

ω from ANSYS 347 401 426 438 457 477

Diff. (%) 0.6 0.7 0.2 0 1.1 1.9

Figure 3 Comparison of mode shapes of the cylindrical shell with 
tuned bolted joints for Case I and Case II: a The first order; b the 
second order; c the third order; d the forth order; e the fifth order; f 
the sixth order (subscript 1 represents the results by the presented 
method, subscript 2 represents the results by ANSYS)
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where tα/ 2 is the t-value with NS −1 degrees of freedom 
in the student t distribution and it is determined by the 
sample size and the required confidence level due to the 
unknown variance [32].

4  Model Verification
Before analyzing the vibration of single cylindrical 
shell with random mistuning bolted joints, the first 
step is to verify the present model. Here, the natu-
ral characteristics of the cylindrical shell with bolted 
joints are presented and the obtained results will be 
compared with the results from ANSYS. The values 

of the relative parameters of the structure are listed in 
Table 1.

Normally, according to the restraint condition, the 
cylindrical shell was considered as a tuned case, which 
here means that the bolts have a homogeneous distri-
bution around the circle of the shell end and the con-
straint condition at each bolt is the same as others. 
Here, the mode frequency and shape of the tuned case 
are investigated to provide a reference for the study 
on the mistuned cases in the following section. And 
the case with 16 bolts was discussed in this paper. As 
shown in Figure  2, the bolts are numbered as 1, 2, 3, 
…, S, …, 16. And the positions are assumed as θ1, θ2, 

Figure 4 Means of the first six normalized frequencies for mistuned bolt distribution: a σθ = 1%; b σθ = 5%; c σθ = 10%

Figure 5 Probability density and the 95% confidence interval and mean of the first six frequencies for 1000 random samples about mistuned bolt 
distribution: a The first order; b the second order; c the third order; d the fourth order; e the fifth order; f the sixth order (subscript 1 represents the 
probability density, subscript 2 represents the 95% confidence interval and mean)
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θ3, …, θS, …θ16, and θ1 = π/8 here. The radian distance 
between two adjacent bolts is π/8. These means that all 
the position values can be deduced by a known posi-
tion of any bolt due to the cyclic symmetry structure 
of the system. What’s more, the restraint stiffness at 
the position of bolts can be set by the stiffness value. 
In present case, the stiffness are set to kuθS=1× 107N/m, 
kvθS=1× 107N/m, kwθS=1× 107N/m, kθθS=1× 107N/rad . 
Two cases are present here as follows: Case I for the 
tuned bolted joints and Case II for the mistuned bolted 
joints, in which the No. 16 bolt is missing. Table 2 list 
the first six natural frequency of cylindrical shell for the 
two cases. It is obvious that repeated frequencies exist, 
such as the 1st and 2nd order, with tuned bolted joints. 
As for Case II, the repeated frequencies bifurcate to 
two value, which will be investigated in Section 5.3. Fig-
ure 3 shows the first six order mode shapes. As shown 
for Case I, the repeated frequencies have the same 
mode shapes, and the mode shapes show their symme-
try. For Case II, the mode shape shown different shapes, 
especially for the 1st, 3st and  5nd. At the same time, the 
finite element model is established by using SHELL 63. 

COMBINE 14 is selected to simulate the restraint con-
dition. The frequencies and the mode shapes obtained 
by ANSYS are list in Table 2 and displayed in Figure 3, 
respectively. By comparing the present results with 
ANSYS, the difference is very small and a good agree-
ment is shown. And the similar agreement can also be 
found from the mode shapes. These means the present 
model is feasible and accurate.

5  Simulation and Discussion
From the forward description, the different position val-
ues and stiffness values of the bolted joint can be set to 
describe the different restraint condition. And the ran-
dom mistuning case with the non-uniform parameter of 
bolt joint can also be obtained in this way. In this section, 
the effects of the bolt distribution random mistuning and 
the restraint stiffness random mistuning will be studied.

5.1  Effect of the Bolt Distribution Random Mistuning
For bolt joints, their cyclic uniform distribution is the 
theoretical condition for the bolted joined cylindri-
cal shell. However, due to the manufacturing tolerance 
or installation error, the position of the bolts may devi-
ate from the optimum location. These phenomena here 
were called as bolt distribution mistuning. In this section, 
the case of all the bolts randomly mistuned is discussed. 
From the investigation above, the case of 16 bolts will be 
selected as the reference for the analysis of the effect of 
the bolt distribution mistuning on the vibration charac-
teristics of the cylindrical shell.

For analysis on the random mistuning feature for the 
position of all the bolts considered into the bolted joined 
cylindrical shell, the Monte Carlo simulation technique 
(called MCS for short in the following) is employed. 
It is assumed the sample number is NS = 1000 and the 
position error of the bolts follows a normal distribu-
tion law N (0, σ 2

θ  ). What should be pointed out is that 

Table 3 A random mistuned bolt distribution with the standard 
deviation σθ = 10%

No. Position No. Position

1 0.41381322 9 3.67481505

2 0.85741465 10 4.03574635

3 1.08939253 11 4.26667996

4 1.60465379 12 4.83157014

5 1.97601329 13 5.13357461

6 2.30484169 14 5.49531098

7 2.73186645 15 5.91855411

8 3.15504748 16 6.27513630

Table 4 The normalized frequencies of cylindrical shell with a random mistuned bolt distribution sample with σθ = 10%

Order 1 2 3 4 5 6

Frequency 383.56 404.60 416.96 443.61 451.56 519.60

Figure 6 Mode shapes of cylindrical shell for a random mistuned bolt distribution sample with σθ = 10%: a The first order; b the second order; c 
the third order; d the fourth order; e the fifth order; f the sixth order



Page 9 of 14Tang et al. Chinese Journal of Mechanical Engineering           (2023) 36:49  

the normalized frequency used in the following works is 
defined as the ratio between the natural frequencies of 
the cylindrical shell with the random mistuned parame-
ters and those of the tuned cases introduced in Section 4. 
To study the effect of the bolt distribution random mis-
tuning on the cylindrical shell’s vibration characteristics, 
the mean value, confidence interval of means and proba-
bility density of the frequencies of the random mistuning 
cases are investigated under the different standard devi-
ations. In the analysis process in this and the following 
section, the normalized frequency means the frequency 
of the tuned system is expressed as the value 1. The mini-
mum and maximum value of the frequency in the sam-
ples were assumed as ωmin and ωmax.

Figure 4 plots the means of the first six frequencies of 
the cylindrical shell with standard deviations σθ = 1%, σθ 
= 5%, and σθ = 10%. As shown, the first, third and fifth 
order normalized frequencies are smaller than 1 and 
the second, fourth and sixth order normalized frequen-
cies are larger than 1. All the frequency means show the 
obvious difference from those of the tuning system. The 
statistics results indicate the random bolt distribution 
plays a significant role on the cylindrical shell’s frequen-
cies. More, as the standard deviation increase, all the 
normalized frequency are away from 1, and the difference 
becomes obvious.

The probability density function (called PDF for short 
in the following), the 95% Confidence interval and mean 

Figure 7 Means of the first six frequency for mistuned restraint stiffness: a σk = 10%; b σk = 20%; c σk = 30%

Figure 8 Probability density and the 95% confidence interval and mean of the first six frequencies for1000 random samples about mistuned 
restraint stiffness with σk = 20%: a The first order; b the second order; c the third order; d the fourth order; e the fifth order; f the sixth order 
(subscript 1 represents the probability density, subscript 2 represents the 95% confidence interval and mean)
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of the first six frequencies are plotted in Figure 5 through 
the Monte Carlo simulation method by considering the 
standard deviation σθ = 10%. 1000 samples were calcu-
lated here. And a normal curve of N(ω, S2σ ) also is plotted 
to estimate the frequency distribution. As shown, it can 
be found that most of the 1st, 3rd and 5th order normal-
ized frequencies are all lower than 1. And the most of the 
frequencies of the 2nd, 4th and 6th order are larger than 
1. From Figure 5, it can be found the frequency distribu-
tion has a good agreement with the normal curve, which 
indicates that mode frequencies with random mistuned 
bolt distribution follow an approximately normal distri-
bution under the standard deviation σθ = 10%. Moreover, 
a 95% confidence level is considered for reliability anal-
ysis. The means and confidence intervals of the first six 
frequencies with σθ = 10% are also plotted in Figure 5.

Then, an example of a random mistuned bolt distribu-
tion is presented to help understand the mode charac-
teristics of the cylindrical shell. The random mistuning 
pattern of bolt position is tabulated in Table 3. The first 
six frequencies and mode shapes are presented in Table 4 
and are plotted in Figure 6, respectively. Comparing the 
frequencies in Tables 2 and 4, the obvious difference can 

be found, especially for the first, third, fifth and sixth 
order. And it can be also found that the same frequency 
break into two different frequencies. At the same time, 
compared with Case  Ⅰ  in  Figure  3, the mode shapes in 
Figure 6 have significant changes when the bolt distribu-
tion varies from the tuned case. And the obvious changes 
in the shapes have been pointed out in the figures.

5.2  Effect of the Restraint Stiffness Random Mistuning
For bolt joints, the theoretical condition about the 
restraint stiffness of the bolted joints for the cylindrical 
shell is as the absolute same as each other. However, due 
to material property error of the bolts, installation error 
such as preload of the bolts or even the nonlinear char-
acteristics of bolted joints under external excitations, 
the restraint stiffness of these bolts may have a differ-
ence with each other, what’s more, the stiffness differ-
ence is indeterminate. The case that the restraint stiffness 
of the bolts is not equal to each other is defined as the 
restraint stiffness mistuning here. Therefore, this section 
aims to investigate the effect of random restraint stiffness 

Table 5 A random mistuned restraint stiffness in the radial 
direction with the standard deviation σk = 20%

No. Stiffness No. Stiffness

1 9751711.30356738 9 10977787.5406236

2 12979395.2155709 10 12069386.0198357

3 12818068.979601 11 11453770.2667665

4 12834384.8268592 12 9393118.15042797

5 11342994.2672162 13 10587742.9341933

6 7585026.15462992 14 8425434.39248272

7 11434477.3026577 15 11776791.2635153

8 13260470.5783295 16 7705859.7860617

Table 6 The normalized frequencies of cylindrical shell with a random mistuned restraint stiffness sample with σk = 20%

Order 1 2 3 4 5 6

Frequency 404.67 405.19 438.00 438.55 488.40 489.94

Figure 9 Mode shapes of the cylindrical shell with a random mistuned restraint stiffness sample with σk = 20%: a The first order; b the second 
order; c the third order; d the forth order; e the fifth order; f the sixth order

Figure 10 Effect of the position of only one mistuned bolt (No.1 
bolt) on the first six natural frequency
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mistuning of the bolts on the mode characteristics of 
the cylindrical shell. In calculation, the MCS technique 
is employed. It is assumed the sample number is NS = 

1000. The radial restraint stiffness is selected to be the 
mistuned parameter here as an example and the radial 
restraint stiffness error follows a normal distribution law 
N (0, σ 2

k  ). The restraint stiffness in the other directions is 
set to be a constant value.

Figure 7 plots the first six frequency means of the shell 
with the random radial restraint stiffness for the sam-
ples. The statistical results show, with the standard devia-
tion σk = 10%, the odd order frequency means of the 
mistuned system are smaller than the frequency of the 
tuned system, and the even order frequency means are 
larger than the frequency of the tuned system. However, 
all the normalized frequency means decreases obviously 
as the standard deviations of the mistuning error of the 
restraint stiffness increases. When the standard deviation 
σk = 30%, the first six normalized frequency means are 
all lower than 1.

Figure  8 shows the distributed characteristics of the 
first six frequencies of the bolted joined cylindrical shell 

Figure 11 Mode shapes of cylindrical shell with different position of No. 1 bolt: a θ1 = π/16; b θ1 = 3π/32; c θ1 = π/8; d θ1 = 5π/32; e θ1 = 3π/16 
(subscript 1 represents the first order mode, subscript 2 represents the second mode)

Figure 12 Effect of the restraint stiffness of only one mistuned bolt 
(No. 1 bolt) on the first six natural frequency

Figure 13 Mode shapes of cylindrical shell with restraint stiffness of No. 1 bolt: a log(kw) = 5; b log(kw) = 6; c log(kw) = 7; d log(kw) = 8; e log(kw) = 
9 (subscript 1 represents the first order mode, subscript 2 represents the second mode)



Page 12 of 14Tang et al. Chinese Journal of Mechanical Engineering           (2023) 36:49 

by using MCS and considering σk = 20% of the restraint 
stiffness error for 1000 samples. The histogram for the 
probability density function (PDF) of the frequency. As 
demonstrated, the probability density function of the odd 
order frequency is an asymmetrical distribution pattern 
about the frequency means and the left frequency band 
[

ωmin

/

ωt,ω
]

 is wider than the right band 
[

ω,ωmax

/

ωt

]

 . 
And the even order similarly follows a symmetrical dis-
tribution pattern about the frequency means. More, a red 
curve of a normal distribution N(ω, S2σ ) was to estimate 
the frequency distribution of the samples of mistuned 
systems. By comparing the frequency distribution and 
normal curve in the figures, the results show the fre-
quency follows an approximately normal distribution. 
And a 95% confidence level is also considered for reliabil-
ity analysis.

Then, an example of a random mistuned restraint stiff-
ness is presented to better understand the cylindrical 
shell’s vibration characteristics. The random mistuning 
pattern of restraint stiffness is tabulated in Table 5. The 
first six frequencies and mode shapes are listed in Table 6 
and are plotted in Figure 9, respectively. Comparing the 
frequencies in Table 2 and Table 6, it is found the random 
mistuned stiffness bring the variation of the frequen-
cies. Although the frequency variation in this example 
is small, it is obvious the same frequency break into two 
different frequencies. At the same time, compared with 
Case Ⅰ in Figure 3, the mode shapes in Figure 9 also have 
a slight change which is hardly intuitively found in the 
present case here, because the restraint stiffness are close 
to the tuned case, which will be further discussed in the 
following section.

5.3  Discussion
To explain the influence of the mistuned bolt position 
on free vibration of the cylindrical shell, a special case 
was presented. The position of the mistuned bolt (No. 
1) is changed in the range from π/16 to 3π/16 and other 
bolts keep unchanged. As shown in Figure 10, it is eas-
ily found that the natural frequencies have obvious vari-
ations as the position of No. 1 bolt was changed. When 
θ1 is π/8, the system is a tuned system, as introduced 
above, there is a pair of two same frequencies, such as the 
1st and the 2nd order, and they have the similar shapes. 
However, as the θ1 deviates from π/8, one of these two 
frequencies (the 1st order) obviously decreases, and the 
other slightly increases (the 2nd order). The variation 
of mode shapes of the first two order is shown in Fig-
ure  11, as shown, when θ1 = π/8, the same frequencies 
and the same mode shapes. However, as θ1 is not equal 
to π/8, the mode shapes are changed and they are not 
the symmetrical shapes, which have been pointed in Fig-
ure 11. As the mistuning value increase, the difference of 

the mode shapes between the mistuned system and the 
tuned system gets larger. The results indicate the bolt 
position plays an important role in natural frequency and 
mode shape of the cylindrical shell. Moreover, the vibra-
tion characteristics of the cylindrical shell will be more 
complex with the mult-bolts mistuning or even random 
mistuning. These are why the frequency means are larger 
than 1 or less than 1 in Figure 4 and also the explanation 
of the frequency distribution of the samples in Figure 5. 
Therefore, it is necessary to study the vibration charac-
teristics of cylindrical shell with the bolt distribution ran-
dom mistuning case with different the standard deviation 
and it will help for design, fabrication, and installation.

In the same way, to explain the influence of the ran-
dom stiffness mistuning on the mode characteristic of 
the cylindrical shell, a special case was presented. The 
restraint stiffness log(kw) of the mistuned bolt (No. 1) is 
changed in the range from 5 to 9 and other bolts keep 
unchanged. As shown in Figure 12, it is easily found that 
the natural frequencies have obvious variations as the 
stiffness of No. 1 bolt was changed. When log(kw) = 7, 
the system is a tuned system, as introduced above, there 
is a pair of two same frequencies and mode shapes. How-
ever, as the log(kw) deviates from 7, the same frequen-
cies are changed to two different value. As the stiffness 
decreases, the frequency decrease obviously. However, 
as the stiffness increase, the variation of the frequency is 
not so obvious. That is to say when the stiffness is beside 
log(kw) = 7, the increment of frequency per stiffness get 
less as the stiffness increase. These can be used to explain 
the frequency means decrease as the standard deviation 
increase in Figure 7, and the wider distribution at the left 
hand of means in Figure 8. The variation of mode shapes 
of the first two modes is shown in Figure  13 to help 
understand the effect of restraint stiffness on the mode 
characteristics.

6  Conclusions
The dynamic model of a cylindrical shell with bolted 
joints was established. The artificial spring technology 
was used to simulation the linear restraint effects of the 
bolted joints. The natural frequency and mode shape 
were focused on to interpret the mode characteristics 
of cylindrical shell with non-uniform parameters of bolt 
joint, which was expressed as two mistuning forms, such 
as bolt distribution and restraint stiffness. The effects of 
random bolt distribution mistuning and random restraint 
stiffness mistuning on natural frequencies were studied 
by the Monte Carlo simulation and based on statistical 
theory. And discussions were made. The conclusions can 
be obtained as follows.
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(1) The mistuning patterns, such as the bolt distribu-
tion mistuning and the bolt restraint stiffness mis-
tuning, not only impact the natural frequency, but 
also the mode shape. When a random mistuning 
pattern occurs, the symmetry of the restraint condi-
tion of the cylindrical shell is broken, which causes 
the repeated frequencies and mode shapes split into 
two different frequencies and the mode shapes.

(2) Considering the random bolt distribution mistun-
ing, the frequency means deviate from the tuned 
system as the standard deviation increase. In the 
present sample, the frequency follows an approxi-
mately normal distribution. Therefore, the reason-
able and symmetrical distribution will help reduce 
the complexity of mode characteristics of the cylin-
drical shell.

(3) Considering the bolt restraint stiffness mistuning, 
in the present case, the frequency means of the 
mistuned samples decrease as the standard devia-
tion of the mistuning error increases, and the fre-
quency follows an approximately normal distribu-
tion. Moreover, the tightening torque, tightening 
sequence, and other factors, which mainly affect the 
restraint stiffness, should be further discussed in 
the following study to help reduce the complexity of 
dynamic characteristics of shell structures.
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