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Abstract 

Visual odometry is critical in visual simultaneous localization and mapping for robot navigation. However, the pose 
estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed 
features because dense features occupy excessive weight. Herein, a new human visual attention mechanism for 
point-and-line stereo visual odometry, which is called point-line-weight-mechanism visual odometry (PLWM-VO), is 
proposed to describe scene features in a global and balanced manner. A weight-adaptive model based on region 
partition and region growth is generated for the human visual attention mechanism, where sufficient attention is 
assigned to position-distinctive objects (sparse features in the environment). Furthermore, the sum of absolute differ-
ences algorithm is used to improve the accuracy of initialization for line features. Compared with the state-of-the-art 
method (ORB-VO), PLWM-VO show a 36.79% reduction in the absolute trajectory error on the Kitti and Euroc datasets. 
Although the time consumption of PLWM-VO is higher than that of ORB-VO, online test results indicate that PLWM-VO 
satisfies the real-time demand. The proposed algorithm not only significantly promotes the environmental adaptabil-
ity of visual odometry, but also quantitatively demonstrates the superiority of the human visual attention mechanism.

Keywords Visual odometry, Human visual attention mechanism, Environmental adaptability, Uneven distributed 
features

1 Introduction
Research pertaining to visual odometry has primarily 
focused on improving its position estimation accuracy 
in various environments [1–4]. To improve the adapt-
ability of visual odometry to low-texture and point-rich 
environments, several algorithms have been developed to 

describe the environment based on different types of fea-
tures, including points [5], lines [6, 7], planes [8], edges 
[9], and cluster feature [10]. However, current methods 
typically do not offer sufficient adaptability to environ-
ments with unevenly distributed features, which are 
ubiquitous in the real world. This may result in the failure 
of robot placement and navigation.

For point-based methods, the extended Kalman filter 
was used to approximate point feature information to a 
linear Gaussian to achieve simultaneous placement and 
map construction in Mono simultaneous localization and 
mapping (SLAM) [11]. In Klein’s parallel tracking and 
mapping algorithm [12], tracking and mapping are cat-
egorized into two parallel threads to realize vision locali-
zation. A depth camera was used to obtain point features 
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with depth information in RGB-D SLAM [13]. The itera-
tive closest point (ICP) algorithm was used to optimize 
the point cloud to obtain an accurate pose estimation. 
In 2015, Mur-Artal et  al. [14] proposed an ORB-SLAM 
algorithm, which is based on oriented FAST and rotated 
BRIEF (ORB) [15]. The pose was estimated by minimiz-
ing the reprojection error of the points using the least-
squares method. However, these methods, which are 
based only on point features, cannot fully describe low-
texture environments. Therefore, point-based methods 
are not suitable for low-texture environments where 
point features are sparse. Point-line fusion methods 
have been proposed to improve the adaptability of visual 
odometry in both point-rich and low-texture environ-
ments. Witt et al. [16] proposed an iterative closest mul-
tiple line algorithm, and the ICP algorithm was used for 
the line segments. This improves the pose estimation 
accuracy, even at a small rotation angle. Lu et al. [17] pro-
posed a visual odometry scheme that combines points 
and line features; it detects line segments in the RGB-D 
camera images. Li et al. [18] proposed a new algorithm to 
integrate key points into line segments. Key points were 
selected by referring to the line segments. To achieve bet-
ter pose estimation performance, Gomez-Ojeda et al. [19, 
20] proposed a point-and-line-based stereo visual odom-
etry (PL-SVO) algorithm, which assigns weights between 
point and line features based on the number of points and 
lines. Meanwhile, the stability of the line-segment detec-
tor (LSD) algorithm [21] was improved by distinguishing 
adjacent line segments and merging them [22]. However, 
because the globality and balance of feature descriptions 
are disregarded, both methods based on point features 
and point-line features cannot adapt well to scenes with 
unevenly distributed features. This reduces the location 
accuracy and robustness of visual odometry in scenes 
that are ubiquitous in real-world environments.

Feature-sparse regions may contain more robust fea-
tures in real-world scenes, whereas feature-dense regions 
may include many invalid features because of feature 
redundancy. In the pose estimation of current visual 
odometry algorithms, many feature-robust regions do 
not receive sufficient priority, whereas many feature-
invalid regions have garnered significant attention. Such 
an unreasonable weight assignment method affects the 
globality and balance of the feature descriptions, thereby 
reducing the accuracy of pose estimation, particularly in 
environments with unevenly distributed features.

Although ORB-SLAM2 [23], which filters point fea-
tures using a quadtree, has been proposed, it does 
not solve the problem of uneven distributed feature 
descriptions adequately. It can realize a uniform distri-
bution of feature points to a certain extent. However, it 
is easy to produce weak point features by just changing 

the detecting threshold in local regions. This results in 
more mismatched pairs when using these weak point 
features, which reduces the accuracy of the pose esti-
mation of visual odometry. In addition, the algorithm 
is only suitable for point features. This is because the 
selection method for local features in the quadtree can-
not be used for nonlocal features and line segments. 
This limits the capability of ORB-SLAM2 in low-tex-
ture environments, where line features are abundant, 
whereas point features are scarce.

In the human visual attention mechanism, distinctive 
objects that exhibit different characteristics are prior-
itized over the surrounding attributes, such as different 
positions, colors, and shapes [24]. The visual attention 
mechanism enables humans to process information in 
feature-dense and -sparse regions in a global and bal-
anced manner [25, 26]. Therefore, humans can achieve 
good performances in localization, target recognition, 
and scene understanding, including in environments 
with unevenly distributed features. It provides a promis-
ing way to further improve the environmental adaptabil-
ity of the visual odometry.

Inspired by the human visual attention mechanism, we 
herein propose stereo visual odometry, abbreviated as 
point-line-weight-mechanism visual odometry (PLWM-
VO). Our main contributions are as follows:

(1) Human visual attention mechanism that prioritize 
distinctive objects is introduced into visual odom-
etry for improving its adaptability to environments 
with uneven distributed features. A weight adaptive 
model is proposed to achieve good globality and 
balance between feature-dense and -sparse regions.

(2) A modified reprojection error model is developed 
using the sum of absolute differences (SAD) [27] 
algorithm to further improve the accuracy of pose 
estimation in visual odometry.

(3) The human visual attention mechanism for improv-
ing the adaptability of visual odometry is veri-
fied in both low-texture and point-rich environ-
ments through experiments on public datasets and 
online tests. The results indicate that the proposed 
PLWM-VO achieves better performance than the 
state-of-the-art method ORB-VO (ORB-SLAM2 
without loop closing).

The remainder of this paper is organized as follows: The 
proposed PLWM-VO algorithm is described comprehen-
sively in Section  2. Section  3 describes the experiments 
conducted and presents the results obtained. The perfor-
mance of the proposed algorithm is further discussed in 
Section 4. Finally, conclusions and future studies are pre-
sented in Section 5.
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2  Proposed PLWM‑VO Algorithm
Uneven distributions of features are ubiquitous in real 
worlds, where most existing point-line fusion-based 
visual odometry methods demonstrate low adaptability. 
They assign the same weight to all features in both fea-
ture-sparse and -dense regions. Owing to the mass of 
features in feature-dense regions, these areas typically 
feature an excessive weight. Consequently, the feature-
sparse regions are assigned a small weight. In other 
words, the current methods cannot balance the weight 
assignment between feature-dense and -sparse regions 
in the scene. In addition, the features of the entire scene 
are not used reasonably for pose estimation. Conse-
quently, current visual odometry methods cannot accu-
rately perform pose estimation in environments with 
unevenly distributed features. However, the human 
visual attention mechanism exhibits good environmen-
tal adaptability for visual information processing. It pri-
oritizes distinctive objects in the scenes based on their 
position, color, shape, etc. The feature positions in fea-
ture-spare regions are relatively distinctive compared 
with those in feature-dense regions. Thus, the features 

in feature-sparse regions are typically prioritized. Such 
a visual attention mechanism allows humans to use 
both feature-dense and -sparse regions in the scene in 
a global and balanced manner. To improve the adapt-
ability of visual odometry for scenes with unevenly dis-
tributed features, from the perspective of the position 
distinction of features, we introduce the human visual 
attention mechanism into visual odometry. We estab-
lish a PLWM-VO algorithm with improved globality 
and balance of feature description. Figure 1 shows the 
overall framework of the PLWM-VO algorithm.

(1) First, point features and line features are selected 
and associated with the ORB and LSD [21]-LBD 
[28] algorithms in parallel, respectively. Mismatches 
are eliminated using the random sample consensus 
RANSAC [29, 30] algorithm.

(2) Second, a weight-adaptive model is proposed to 
introduce the human visual attention mechanism 
into the cost function, which is used to calculate the 
pose increment between adjacent frames through 
iterative minimization. The improvement in the 

Figure 1 Overview of proposed PLWM-VO algorithm
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globality and balance of the feature description is 
primarily realized using the weight-adaptive model.

(3) Third, a modified reprojection error model is pro-
posed. The accuracy of initialization is enhanced 
by accurately detecting the line endpoints using the 
SAD algorithm.

(4) Fourth, the final pose estimation is realized by cal-
culating the cumulative sum of pose increments 
between adjacent frames using the Gauss–Newton 
method.

2.1  Pose Estimation via Iterative Minimization of Cost 
Function

The pose increment ξ between two adjacent frames 
is calculated by the iterative minimization of the cost 
function, as expressed by in Eq. (1). During this pro-
cess, the Gauss–Newton method is used to solve the 
incremental equation linearly, as shown in Eq. (2). The 
probability of observing data becomes the maximum. 
In this process, if iteration increment �xk is suffi-
ciently small, then the calculation is terminated. Other-
wise, we set ξk+1 = ξk +�xk and continue to optimize 
iteratively.

where Jij represents the Jacobian matrix corresponding to 
the cost function E(ξ). H is used as an approximation of 
the second-order Hessian matrix in the Gauss–Newton 
method, as shown in Eq. (3). E(ξ) is the absolute value of 
f(x) squared.

The cost function E(ξ) is composed of the reprojec-
tion error of the point features and the endpoints of the 
line features, as shown in Eq. (6). 

∑−1

e
p
i,k

 and 
∑−1

elj,k
 repre-

sent the inverse of the covariance matrix corresponding 
to the reprojection error of the ith point feature and jth 
line feature, respectively. Hp and Hl are the Huber 
robust kernel functions corresponding to the points 
and lines, respectively. Here, ω represents the weight 
corresponding to the reprojection error of the points 

(1)ξ∗= arg min E(ξ),

(2)H�X = g ,

(3)H = J T
ij J ij ,

(4)g = −J ij f (x),

(5)E(ξ) = ||f (x)||2,

and lines. A reasonable distribution of weights is 
important for pose estimation.

2.2  Proposed Weight‑Adaptive Model
When visual odometry is performed in actual application 
scenes, the features are typically dense in some regions 
but sparse or absent in others. The current visual odom-
etry method assigns the same weight to the extracted 
features. Consequently, the weight of the feature-dense 
regions becomes excessive, whereas the weight of the 
feature-sparse regions is insignificant. The region parti-
tion method was adopted to solve this problem. Images 
were partitioned into n × n grids of the same size. The 
weights of the feature-dense and -sparse regions no 
longer depend on the number of features in the region 
but rather on the size of the region. Therefore, the fea-
ture-dense and -sparse regions have the same weight.

In the human visual attention mechanism, more 
weight is typically assigned to distinctive objects. In vis-
ual odometry, the position of features in feature-sparse 
regions is distinctive compared with that of features 
in feature-dense regions. Furthermore, feature-sparse 
regions contain only a few features distributed sparsely 
in a certain area. Within a certain size range, the smaller 
the number of features, the greater is the degree of spar-
sity of the area. Meanwhile, the greater the distinction 
of the features in the feature-sparse regions, the greater 
is the weight of the feature-sparse regions. Therefore, 
the region-growth method was used in this study. Grids 
without features were merged into effective grids that 
contained features. The weight coefficients of the effec-
tive grids in the sparse region were improved adaptively. 
Hence, the globality and balance of the feature descrip-
tions were realized based on the feature positions. Finally, 
a weight-adaptive model based on region partition and 
region growth was established to adapt to a scene with 
unevenly distributed features. The specific process of the 
weight-adaptive model is as follows: 

(1) Image initialization: The total number of features nf 
(including points and lines) and the corresponding 

(6)
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pixel coordinates are calculated, as shown in Fig-
ure 2a.

(2) Region partition: The image is partitioned into n × 
n small grids. The features are stored in each grid 
unit, Si. The number of endpoints Si is calculated as 
shown in Figure 2b.

(3) Region growth: The region growth method is used 
to merge the grids, as shown in Figure  2c and d. 
Grids without features are defined as near (S). Grids 
that contain features are denoted as Sm, Sm+1…. The 
objects for region growth are near (S) and adjacent 
to Sm, Sm+1…. During region growth, the following 
four principles must be complied:

• Principle 1: When the region near (Si) has no adja-
cent seed grids, the grid near (Si) is considered inva-
lid, as shown in Figure 3a.

• Principle 2: When the region near (S) has adjacent 
seed grids Sm, Sm+1…, then the number of seed grids 
is larger than or equal to two. If the number of fea-
tures (Sm, Sm+1…) in each seed grid is different, then 
the seed grid with the most features is grown, as 
shown in Figure 3b.

• Principle 3: When the region near (S) has an adjacent 
seed grid Sm and the number of seed grids is one, 
then the region is enlarged, as shown in Figure 3c.

• Principle 4: When the region near (S) has adjacent 
seed grids, then the number of seed grids is larger 
than or equal to two. If the number of features in 
each seed grid is the same, then the seed grids and 
the grids near (S) are merged, as shown in Figure 3d.

(4) Weight allocation: The features are weighted based 
on the proportion of the corresponding grid area 
after the region growth, as shown in Table  1. If the 
proportion of a certain grid in the entire picture is q 
and the number of features in the grid (including the 
point features and the endpoints of the line features) 
is Sm, then the weight ω corresponding to each fea-
ture in the grid is expressed as follows:

2.3  Modified Reprojection Error Model Using SAD
2.3.1  Improved Feature Initialization Using SAD
Feature initialization is a prerequisite for the reprojection 
error model prepared for pose estimation. Features must 
be initialized in a three-dimensional space. Subsequently, 
the reprojection error is calculated for pose estimation. 
The triangulation algorithm can be used for initializing 
point features, but not for initializing line features.

For line features, which are generated by the different 
illumination conditions in the left and right cameras, 
the left and right images deviate on the pixels. How-
ever, the line feature regions detected by the LSD algo-
rithm cannot not be accurately matched in the left and 
right images. The results of direct initialization of the 
detected line-segment endpoints are different from the 
actual values. This problem is currently solved using 
the alignment method, which is used to determine the 
approximate corresponding endpoints to reduce the 

(7)ω=q · (1
/
Sm).

Figure 2 Four stages of weight-adaptive model: a Image 
initialization, b region partition, c region growth, d weight allocation 
based on region

Figure 3 Four stages of weight-adaptive model: a Case 1, b Case 2, c 
Case 3, and d Case 4

Table 1 Algorithm for weight-adaptive model

Input Pixel coordinates of xp, xs, and xe; feature number nf

Output Adaptive coefficients of weights ω

1: for i←1 to nf do

2: Cj ← The pixel coordinates(ORB,LSD)

3: if (Cj∈Si) then si++, Si ‹- Cj

4: end

5: for i←1 to n2 do

6: if si ≠ 0 then Sk ← Si, k++
7: end

8: for m←1 to k do

9: if (si·near(S) = 0)&&(sm > si ·near(near(S)))

10: then Sm ← Sm + near(S)

11: end

12: ω=q · (1/sm)

13: return ω
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initialization error. However, because of the different 
viewpoints on the left and right, the shapes and posi-
tions of the same space line are different in the left and 
right images. Consequently, the endpoints obtained 
using the alignment method are different from the 
actual endpoints. The deviation increases with the 
angle between the line segment and vertical direction. 
Therefore, the result of this initialization method is dif-
ferent from the actual value, as shown in Figure 4a.

For improving the accuracy of the initialization of 
line features, ensuring the adaptability of line features 
initialization in different environments, it is considered 
that such a hypothesis is reasonable: if the gray-level 
distribution of a certain local region within an area to 
be tested on the right is the closest to that of the line 
feature endpoint on the left, then it can be regarded 
as the most accurate corresponding endpoint. Such a 
local region can be detected using the SAD algorithm 
[27], which is expressed in Eq. (8). Figure 4b shows that 
the detected point differs significantly from the actual 
point when alignment constraints are used. The end-
points can be accurately detected using the SAD:

The detailed procedure is as follows:
First, the alignment constraint is used to determine 

the two corresponding approximate endpoints after the 
matching process. Second, the center of the right end-
point is defined as the center of the detected block ( 5 
× 21 pixels). Finally, a sliding window of 5 × 5 pixels is 
used to scan the detected block to determine the target 
local region that is the most similar to the left endpoint, 

(8)SAD(u, v) =

5∑

u=1

5∑

v=1

∣∣left(u, v)− right(u, v)
∣∣.

as shown in Figure 4c. Figure 4d shows the pixel differ-
ence curve corresponding to Figure 4c.

2.3.2  Reprojection Error Model
The reprojection error of the point features can be 
obtained by calculating the error between the projec-
tion and detected points. As shown in Eq. (9), xi,k and x′

i,k 
represent the ith detected point and projected point in 
 Framek, respectively.

For line features, the reprojection errors are defined by 
measuring the distance between the two endpoints of the 
projected line segments to the corresponding segments 
detected. As shown in Eqs. (10) and (11), lj,k represents 
the jth detected line segment in  Framek. xs and xe repre-
sent the two endpoints of the projected line segment; elxsj,k 
and elxej,k represent the corresponding reprojection errors 
of the two endpoints, respectively.

Figure 5 shows the process to calculate the reprojection 
error:  Framek,  Framek-1, and  Framek-2 represent continu-
ous keyframes, the blue line passing through them rep-
resents the estimated trajectory, Xs and Xe represent the 
projected line segments, and the yellow line segments 
represent the distance from the endpoints of the pro-
jected line segments to the detected lines. This method 
allows the reprojection error to be described steadily 

(9)e
p
i,k = xi,k −x′i,k .

(10)elxs
j,k = d(xs, lj,k) = [l

T
j,k ·x

l′ j,k
s ],

(11)elxe
j,k = d(xe, lj,k) = [l

T
j,k · x

l′ j,k
e ].

Figure 4 Improved feature initialization using SAD: a Initialization of line features, b difference between the two methods, c registration effect of 
two methods, d corresponding value of SAD for line features
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because the projected line segments are obtained from 
space line segments that are initialized by accurately 
detecting endpoints using the SAD algorithm.

In pose estimation, the change in pose between frames 
is generally described by the reprojection error model. 
The cost function is obtained by multiplying the repro-
jection error model established above with the weight 
coefficient ω obtained using the weight-adaptive model 
proposed in Section 2.2. Subsequently, the cost function 
is iteratively minimized to obtain the pose increment 
between frames. Finally, pose estimation is achieved by 
calculating the sum of the pose increments.

3  Experiment and Results
To evaluate the performance of the proposed PLWM-
VO algorithm, comparative experiments on open data-
sets and online tests were conducted. First, the effect 
of the region partition grid number n on the pose-esti-
mation accuracy was analyzed. Second, comparative 
tests between the proposed PLWM-VO and state-of-
the-art methods, ORB-VO (ORB-SLAM2 without loop 
closing) and PL-SVO, were conducted on the KITTI 
[31] and Euroc [32] datasets. The absolute trajectory 
error (ATE) [33] was used as the evaluation metric, 
which is a quantitative representation of the difference 
between the estimated trajectory and ground truth. 
Third, online tests were conducted in several real-
world environments. All experiments were performed 
on a laptop equipped with an Intel Core i7-7500U CPU 
at 2.90 GHz, 8 GB of RAM, and Ubuntu 16.04.

3.1  Experiments on Open Datasets
3.1.1  Effect of Region Partition Grid Number n on Algorithm 

Performance
In this section, we analyze the effect of the region parti-
tion grid number n on the operating time and pose esti-
mation accuracy of the proposed PLWM-VO. We set n 
from 1 to 10. The operating time and ATE were used as 
the evaluation metrics. For convenience, we denote αi 
and βi as the averages of the ratios of timei,j and ATEi,j, 
respectively, in the m sequences of the Kitti and Euroc 
datasets. Here, the time ratio is timei,j divided by time1,j. 
Meanwhile, the ATE ratio is ATEi,j divided by ATE1,j. αi 
and βi can be expressed by Eqs. (12) and (13), respec-
tively, where timei,j and ATEi,j represent the operating 
time and ATE, respectively, of the proposed PLWM-VO 
on the jth dataset when n = i.

αi and βi were calculated separately for the Kitti and 
Euroc datasets. Figure  6 shows the curves of αi and βi 
vs. n. As shown in Figure 6a, as n increases, αi increases 
continuously under the Kitti and Euroc datasets, and 
the growth rate increases gradually. This is because as n 
increases, the number of grids obtained by dividing each 
image in the weight adaptive model increases. Conse-
quently, a higher computational cost is incurred dur-
ing the calculation, which increases the operating time 
significantly.

(12)αi=1
/
m×

m∑

j=1

timei,j

time1,j
,

(13)βi=1
/
m×

m∑

j=1

ATEi,j

ATE1,j
.

Figure 5 Process for calculating reprojection error in point-line 
features

Figure 6 Average timing and ATE results with changes of n: a Timing 
ratios and b ATE ratios
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As shown in Figure  6b, as n increases, βi decreases 
continuously, but the reduction rate decreases. This 
is because as n increases, the distinctive features are 
assigned more weights. A global and balanced manner 
for feature description is gradually realized, and the accu-
racy of pose estimation is improved. As n increased from 
1 to 9, βi decreased significantly; however, the difference 
between β9 and β10 was insignificant. This is because as 
n increases continuously, the feature description can be 
performed in a global and balanced manner. However, 
when n increases to a certain degree, with the aid of the 
weight-adaptive model, the degree of attention to the 
sparse area of the visual odometry stabilizes, and the rate 
of increase in the weight of the sparse area decreases. The 
continued growth does not improve the accuracy of the 
pose estimation, but increases the operating time. There-
fore, n was set to 9 to improve the performance of the 
proposed algorithm.

As shown in Figure 7, we compared and analyzed the 
difference in weights of the feature-sparse and -dense 
regions for n = 1 and n = 9. The ω(s) values shown in Fig-
ure 7d, e, and f are greater than those shown in Figure 7a, 
b, and c by 15.0%, 2.2%, and 2.5%, respectively. The chairs 
and windows of the feature-sparse regions in Figure 7 are 
position specific in the scenes. This shows that the weight 
of the specific features in the sparse region is improved 
when n = 9 compared with that when n = 1. This veri-
fies that the weight-adaptive model is applicable to scenes 
with unevenly distributed features.

The differences between the weight ω(s) of the feature-
sparse regions and the ω(d) of the feature-dense region in 
Figure 7a, b, and c were 28.1%, 31.6%, and 34.8%, respec-
tively. The corresponding differences in Figure 7d, e, and 
f were 5.4%, 15.0%, and 11.3%, respectively. The weight 
gap between the feature-sparse and -dense regions 
was smaller when n = 9 as compared with when n = 1. 
This verifies that the use of the weight-adaptive model 
improves the globality and balance for scenes with une-
venly distributed features.

As shown in Figure 6b, our method reached a general 
optimal state for pose estimation when n = 9. As shown 
in Figures  7d, e, and f, the weights ω(d) of the feature-
dense regions and the ω(s) of the feature-sparse regions 
are not completely equal. This proves that achieving good 
balance does not guarantee an absolute average weight in 
each region. Therefore, the globality and balance of the 
weight distribution in a scene with unevenly distributed 
features is a relative concept.

3.1.2  Method Comparison
As described in Sect.  2, line and point features can be 
detected stably in both low-textured and point-rich envi-
ronments. In this study we selected a region partition 
grid number n of 9. Figure 8 shows some frames in the 
Kitti and Euroc dataset outputs of the proposed PLWM-
VO. They indicate that the environment can be described 
by important geometric information obtained from the 
points and line features.

The performances of PLWM-VO, PL-SVO, and ORB-
VO were compared with those of the Kitti and Euroc 
datasets. Eight heat maps were generated (as shown 
in Figure  9) to compare the trajectory generated by the 
proposed PLWM-VO with the ground truth. In the heat 
maps, red and blue correspond to higher and lower error 
levels, respectively. The gray dashed line represents the 
ground truth, and the other line represents the trajec-
tory yielded by the proposed PLWM-VO. The error is 
expressed in units of meter. A comparison shows that the 
results yielded by the proposed algorithm are similar to 
the ground truth.

The error measures, i.e., the root mean square error 
(RMSE) of PLWM-VO, PL-SVO, and ORB-VO for the 
Kitti and Euroc datasets are listed in Table 2. To verify the 
usefulness of the SAD algorithm for pose estimation, the 
test results of the PLWM-VO-without-SAD algorithm 

Figure 7 Weights of feature-sparse and -dense regions with n set to 
1 and 9: a case 1 with n = 1, b case 2 with n = 1, c case 3 with n = 1, 
d case 1 with n = 9, e case 2 with n = 9 and f case 3 with n = 9 Figure 8 Output of proposed PLWM-VO: a case 1, b case 2, c case 3
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were compared with those of the algorithms above. The 
numbers in bold indicate the best results among the four 
methods. The proposed PLWM-VO algorithm achieved 
the best performance on the test sequences, except for 
Kitti07. PL-SVO demonstrated a significant error accu-
mulation owing to the frame-to-frame pose-estima-
tion method. Compared with the ORB-VO algorithm, 
the proposed method reduced the ATE for the trajec-
tory by an average of 17.88% in the Kitti dataset, which 

corresponds to an average reduction of 36.79% in Europe. 
These results indicate that the proposed algorithm offers 
significant improvement in terms of pose estimation. 
Second, the ATEs of PLWM-VO and PLWM-VO-with-
out-SAD were compared. In the Kitti dataset, the ATE for 
the trajectory generated by PLWM-VO reduced by 3.30% 
on average compared with that generated by PLWM-VO-
without-SAD. In the Euroc dataset, that is reduced by an 
average of 8.87%. In the Euroc dataset, that is reduced by 
an average of 8.87%.  This shows that accurately detect-
ing endpoints using the SAD algorithm can improve the 
accuracy of pose estimation. Scenes with unevenly dis-
tributed features were ubiquitous in the Euroc and Kitti 
datasets. The results of the method comparison show 
that the location accuracy of the proposed algorithm 
improved in different degrees in the Euroc and Kitti data-
sets. This indicates that the environmental adaptability of 
our algorithm improved in environments with uniform 
and unevenly distributed feature distributions.

To demonstrate the superiority of the PLWM-VO algo-
rithm, the trajectories corresponding to PLWM-VO, 
ORB-VO, and PL-SVO in the two Kitti02, v101 data-
sets are compared, as shown in Figures  10 and 11. Red 
represents the ground truth, and blue indicates the tra-
jectories of the three algorithms. The proposed method 
performed better than the other two algorithms. To ren-
der the experiment more convincing, some areas in the 
trajectory (within the area of the black dotted rectangle) 
were aligned, and a comparison was performed with the 
ground truth. As shown in Figure 9, the ATEs of the par-
tial trajectory generated by the PL-SVO, ORB-VO, and 
PLWM-VO algorithms in Kitti 02 are 18.706, 9.007, and 
4.663 m, respectively. Meanwhile, as shown in Figure 10, 
the ATEs of the partial trajectory generated by the PL-
SVO, ORB-VO, and PLWM-VO algorithms in v101 are 
0.178, 0.146, and 0.073 m, respectively. Therefore, the 
proposed algorithm demonstrates good pose estimation 
performance.

Additionally, the average operating time of each frame 
in the Kitti and Euroc datasets was obtained (see Table 3). 
The result shows that the proposed algorithm is more 
time consuming than the ORB-VO and PL-SVO because 
of the addition of SAD line endpoint detection and the 
weight-adaptive model. Although inefficient, it can sat-
isfy the requirements of real-time operations.

3.2  Online Tests
Online tests were performed on the proposed PLWM-
VO method in three environments using a stereo camera 
(MYNT EYE S1030-IR, whose baseline and resolution 
are 120 mm and 640 pixels × 480 pixels, respectively). 
The laboratory represents an environment with numer-
ous points and lines. A building room represents an 

Figure 9 Four heat maps yielded by ORB-VO and the proposed 
method: a results on Kitti00, b results on Kitti05, c results on V101, d 
results on V102

Table 2 Results of method comparison based on ATE RMSE (m)

Bold value indicates the coresponding method achieves best results

Sequences PL‑SVO ORB‑VO PLWM‑VO 
without SAD

PLWM‑VO

Kitti00 13.58 8.35 6.56 6.47
Kitti01 150.53 180.47 110.72 106.56
Kitti02 58.29 19.73 16.37 15.60
Kitti03 13.51 2.66 2.42 2.38
Kitti04 2.31 2.15 1.78 1.69
Kitti05 7.23 4.33 3.53 3.20
Kitti06 11.53 12.37 11.51 11.12
Kitti07 10.38 3.66 4.32 4.24

Kitti08 25.34 11.57 8.89 8.71
Kitti09 11.54 8.57 7.26 7.29

Kitti10 9.58 8.34 6.85 6.64
V101 0.85 0.51 0.33 0.29
V102 1.26 0.73 0.42 0.39
V103 1.83 1.55 1.41 1.38
V201 0.51 0.59 0.43 0.38
V202 0.97 0.86 0.50 0.45
V203 X X 2.15 1.93
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Figure 10 Comparisons of heat maps obtained using ORB-VO, PL-SVO, and the proposed method in Kitti 02: a ORB-VO, b PLWM-VO, and c PL-SVO 
(blue and red lines correspond to lower and higher error levels, respectively)

Figure 11 Comparisons of heat maps obtained using ORB-VO, PL-SVO, and the proposed method in sequence V101: a ORB-VO, b PLWM-VO, and c 
PL-SVO (blue and red lines correspond to lower and higher error levels, respectively)
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artificial environment with low-texture scenes, whereas a 
campus represents a point-rich environment.

The ground truth is difficult to obtain during the online 
tests. Therefore, in the tracking process, the stereo cam-
era begins tracking at an initial point, turns in a circle in 
the target area, and then returns to the origin. The dis-
tance between the endpoint and the origin of the esti-
mated trajectory is measured to obtain the cumulative 
translation error. The specific calculation process is as 
follows: The movement of the experimental equipment 
was controlled during the experiment; subsequently, the 
equipment was shifted to the starting point. The offset 
distance between the starting and end points in the tra-
jectory was drawn via measurement; subsequently they 
were divided by the total distance of the movement to 
obtain the cumulative translation error.

The three environments and the corresponding trajec-
tories generated by the proposed algorithm are shown in 

Figure 12. Top figures show characteristics of three envi-
ronments, bottom figures show trajectories correspond-
ing to the three environments, and red arrows indicate 
direction of movement. Table 4 shows that the cumula-
tive translation errors in all three environments are less 
than 0.8% of the total distance. The PLWM-VO algorithm 
not only exhibited good performance in point-rich envi-
ronments (campus), but also performed well in point-
line-rich environments (the laboratory) and artificial 
environments with low-texture scenes (building room). 
Thus, it can satisfy the usage requirements in various 
environments.

4  Discussion
The aim of this study was to improve the environmen-
tal adaptability of visual odometry for scenes with une-
venly distributed features, which are ubiquitous in visual 
odometry. Current algorithms can easily yield weak-point 

Table 3 Average time of four methods per frame

Dataset Processing time (ms)

PL‑SVO ORB‑VO PLWM‑VO‑
without SAD

PLWM‑VO

Kitti 133.59 116.85 146.89 162.46

Euroc 95.04 86.73 110.21 116.47

Figure 12 Trajectories estimated in three environments: a Laboratory, b campus, and c building room

Table 4 Translation error in three different environments

Experiment scene Distance (m) Translation 
error (m)

Relative 
error 
(%)

Laboratory 32.68 0.21 0.64

Campus 235.16 1.81 0.77

Building room 104.77 0.69 0.66
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features. Moreover, they are unsuitable for environments 
with low-texture scenes. The human visual attention 
mechanism offers good adaptability to scenes with une-
ven feature distributions; it is based on a global and bal-
anced approach for scene understanding. Furthermore, it 
prioritizes distinctive objects with specific features (color, 
location, etc.).

Herein, we propose a weight-adaptive model based 
on region partition and region growth to simulate the 
human visual attention mechanism in visual odometry. 
Figure  7 shows that as the region division parameter n 
changed from 1 to 9, the weight differences between the 
dense and sparse regions reduced significantly (from 
28.1%, 31.6%, and 34.8% to 5.4%, 15.0%, and 11.3%, 
respectively). This indicates that the proposed PLWM-
VO can improve the globality and balance of feature 
descriptions by optimizing the weight distribution 
between the feature-sparse and -dense regions. Further-
more, as shown in Table 2, compared with ORB-VO, our 
algorithm improved the location accuracy for the Kitti 
and Euroc datasets by 17.88% and 36.79% on average, 
respectively. This indicates that the environmental adapt-
ability of visual odometry can be improved in scenes with 
unevenly distributed features by introducing a human 
visual attention mechanism.

Although this study primarily investigates the effect of 
the human visual attention mechanism on visual odom-
etry, particularly on its adaptability to a scene with une-
venly distributed features, it provides a foundation for 
improving SLAM and robot navigation. The improve-
ment in pose estimation accuracy provides a basis for 
improving mapping during SLAM and robot navigation 
in different environments. Furthermore, the mechanism 
can be extended to other robotic fields such as autono-
mous driving, social service robots, security robots, and 
drones. In future studies, we will attempt to extend the 
human visual attention mechanism to location and map-
ping in SLAM and to the navigation technology of robots.

Furthermore, in the physiology field, we plan to provide 
a demonstration and a quantitative approach for inves-
tigating the effectiveness of the human visual attention 
mechanism in visual information processing. Sacrey et al. 
[34] investigated the relationship between the human 
visual attention mechanism and human behavior. The 
accuracy of grasping items was used as a quantitative 
evaluation index to verify the relationship between visual 
guidance and movement coordination. This study dem-
onstrated that the position estimation accuracy of visual 
odometry can be adopted as a quantitative evaluation 
index to further investigate the mechanism of human 
visual attention.

5  Conclusions
To improve the adaptability of visual odometry to envi-
ronments with unevenly distributed features, we pro-
posed a human visual attention mechanism-inspired 
point-and-line stereo visual odometry algorithm known 
as PLWM-VO. The effectiveness of the proposed algo-
rithm was verified using experimental results.

(1) By developing a weight-adaptive model based on 
region partition and region growth, we imple-
mented a human visual attention mechanism 
to rationally assign weights between dense and 
sparse features. Thus, the globality and balance of 
the description of unevenly distributed features 
improved significantly.

(2) A modified reprojection error model was estab-
lished using the SAD algorithm to improve the 
detection accuracy of line endpoints. The results 
showed that the introduction of SAD further 
improved the pose-estimation accuracy of PLWM-
VO.

(3) Compared with the state-of-the-art method (ORB-
VO), the proposed PLWM-VO improved the posi-
tion estimation accuracy by 36.79% in environ-
ments with unevenly distributed features, based on 
the overall results of open datasets and online tests.

The proposed method yielded good results in general 
scenarios and better positioning accuracy. However, 
owing to its unstable line characteristics, it poses chal-
lenges when used in scenes with significant light changes. 
In the future, features can be extracted based on deep 
learning or the conventional edge detection, which can 
overcome the problem of unstable feature detection in 
scenes with significant light changes.
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