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Abstract 

The performance of an integrated thermal management system significantly influences the stability of special-pur-
pose vehicles; thus, enhancing the heat transfer of the radiator is of great significance. Common research methods for 
radiators include fluid mechanics numerical simulations and experimental measurements, both of which are time-
consuming and expensive. Applying the surrogate model to the analysis of the flow and heat transfer in louvered 
fins can effectively reduce the computational cost and obtain more data. A simplified louvered-fin heat transfer unit 
was established, and computational fluid dynamics (CFD) simulations were conducted to obtain the flow and heat 
transfer characteristics of the geometric structure. A three-factor and six-level orthogonal design was established with 
three structural parameters: angle θ, length a, and pitch Lp of the louvered fins. The results of the orthogonal design 
were subjected to a range analysis, and the effects of the three parameters θ, a, and Lp on the j, f, and JF factors were 
obtained. Accordingly, a proxy model of the heat transfer performance for louvered fins was established based on 
the artificial neural network algorithm, and the model was trained with the data obtained by the orthogonal design. 
Finally, the fin structure with the largest JF factor was realized. Compared with the original model, the optimized 
model improved the heat transfer factor j by 2.87%, decreased the friction factor f by 30.4%, and increased the com-
prehensive factor JF by 15.7%.

Keywords Louvered fins, Numerical simulation, Machine learning, Comprehensive performance

1 Introduction
The normal working temperature of the engine of large 
special vehicles running in a plateau area is usually 
around 80–90 °C, but due to the harsh climate in such 
areas, regarding air pressure, oxygen content, etc., cou-
pled with rugged roads, the engine overheats, affect-
ing normal work [1–4]. Further, with the development 
of “high-power, low-emission, lightweight” automobile 
engines, besides the application of new power batteries, 

motors, and other heat-producing components in cars, 
requirements regarding the heat dissipation performance 
of car radiators have increased [5–7].

Therefore, it is important to improve the heat dissipa-
tion performance of vehicle radiators to obtain satisfac-
tory performance for special vehicles running in highland 
areas [8–10].

The cooling technology for automotive louvered radia-
tors has been extensively researched and developed in 
recent decades [11–13]. Many researchers have stud-
ied improved structures and more complex louvered 
radiators, such as corrugated louvered fins [14, 15], 
louvered-fin heat exchangers with variable louver angle 
[16], louvered fins with unequal louver pitches [17], and 
X-shaped louvered fins [18]. The application of nanoflu-
ids in improving the performance of louvered fins has 
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received considerable attention [19, 20]. In addition, 
some scholars have examined the effect of the geomet-
ric parameters of louvered heat sinks on the flow heat 
transfer.

Webb et al. [21] conducted a flow visualization study to 
investigate the characteristics of internal fluid flow under 
different louver angles, louver pitch angles, and spacing, 
and proposed the first empirical formula for fluid flow 
efficiency. Sanders et al. [22] enhanced the heat transfer 
in a louvered fin heat exchanger using winglets placed on 
the louvers with optimized parameters, resulting in a 39% 
enhancement in heat transfer and a 23% increase in the 
coefficient of friction of the heat exchanger.

Park et al. [23] studied the effect of louvered fin struc-
tural parameters on the heat dissipation performance and 
optimized the louvered fin structure, which improved the 
heat dissipation performance by 15.7%. Erbary et al. [24] 
studied the heat dissipation performance and fluid flow 
properties of the air side of louvered fin radiators at low 
Reynolds numbers, and the results showed that the best 
heat dissipation performance was obtained at the Reyn-
olds number of 229 and louvered window opening angle 
of 20. Hsieh et  al. [25] found that the fin spacing is the 
main factor affecting the heat exchanger thermal perfor-
mance, and a set of louver structural parameter combina-
tions were obtained via comprehensive evaluation of the 
index JF maximum.

The main method used to study the heat transfer per-
formance of a louvered fin flow is numerical simulation 
[26, 27]. However, in flow heat transfer analysis, the time 
and computational resources consumed are large owing 

to the large amount of simulation calculations, high 
equipment requirements, long computation time, and 
the need for a large number of models for simulation and 
analysis. In contrast, the proxy model uses the samples of 
the ANSYS numerical simulation as the training data for 
learning. The performance prediction of the new sample 
model can be provided instead of a numerical simulation 
by the agent model that has completed training.

At present, some foreign scholars have already used 
algorithms such as the genetic algorithm (GA) [28], arti-
ficial neural network (ANN) [29], and adaptive neuro-
fuzzy inference system (ANFIS) [30] for the calculation, 
prediction, and optimal design of heat transfer and pres-
sure drop of heat exchangers, and few domestic schol-
ars are currently using machine learning algorithms to 
optimize vehicle power performance [31–36]. Thus, the 
purpose of this study was to propose an optimization 
method for louvered window fin heat exchangers; more 
specifically, to employ ANN algorithms to optimize the 
louvered window fin structure and find the optimal fin 
structural parameters to reduce unnecessary repetitive 
modeling and simulation, accelerate the optimal design 
of heat exchangers, and achieve overall optimization with 
few samples.

In the second section of this paper, we introduce the 
sources of sample data used for machine learning, includ-
ing the construction of geometric models, setting of 
boundary conditions, verification of grid independence, 
and comparison of experimental data with simulation 
data. In the next section, the construction of the LMBP 
model and several important parameters considered to 
evaluate the effects of machine learning are discussed. 
In the fourth section of this paper, the prediction results 
obtained by the ANN are evaluated. The louvered fin 
structure with the largest JF factor was determined based 
on the original data and verified.

2  Data Collection and LMBP Modeling
In this section, the sample data used for machine learning 
and the construction of the LMBP model are introduced.

Figure 1 Simplified model of louvered fins

Figure 2 Schematic of structural parameters of the louvered fins

Table 1 Thermophysical properties of heat sink materials and 
coolants (mm)

Parameter Value Parameter Value

Lp (mm) 1.2 Fp (mm) 1.5

Lh (mm) 3 Tp (mm) 4.5

Fh (mm) 3.5 Fd (mm) 18.9

Dm (mm) 1 δ (mm) 0.1

S1 (mm) 0.75 S2 (mm) 3
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2.1  Geometry Structure
The louvered fin radiator is divided into the gas and water 
sides, and the gas side is a louvered fin structure. The 
spacing between the fins was assumed as equal, the lou-
vered fin spacing was also equal, and the angle was kept 
constant. Because the structure of each louvered fin is the 
same, only three could be selected for the study. Space-
Claim software was employed to realize a three-dimen-
sional simplified model of the louvered fins, as presented 
in Figures 1, 2 and Table 1.

The computational domain is divided into fluid domain 
and solid domain, the solid domain part includes lou-
vered fins and flat tubes; the rest is fluid domain, which 
is extended by a certain length on both sides to prevent 
backflow phenomenon in the computational process. 
The final established louvered fin model computational 
domain size is 3 mm × 5.7246 mm × 38.9 mm.

The performance of louvered fins mainly includes the 
heat transfer performance and flow resistance perfor-
mance, and the performance evaluation indexes of lou-
vered fins at home and abroad are generally the heat 
transfer factor j and friction factor f [37, 38]. Therefore, 
in this study, three indices: heat transfer factor j, friction 
factor f, and JF factor, were selected as the evaluation 
indices.

2.2  Louvered‑Fin Performance Parameter Calculation
The formula for calculating heat exchange of the louvered 
fins is as follows:

where, Qf is the louver fin air side heat exchange; ca is the 
specific heat capacity of air; mf is the louver fin air side 
mass flow rate; Taout, Tain are the louver air side inlet and 
outlet temperature respectively

where, Af is the total heat transfer area of the louvered 
fins.

Log mean temperature difference �Tf  is given by:

where, Tfw is the louvered fin wall temperature.
In the louvered fin radiator, the air on the gas side is 

considered an incompressible fluid, the density on the air 
side is treated as a constant, and the air pressure drop ∆P 
on the gas side of the radiator can be expressed as:

(1)Qf = mf ca(Taout − Tain),

(2)hf =
Qf

Af�Tf
,

(3)�Tf =
Taout − Tain

ln
Tfw−Tain

Tfw−Taout

,

(4)�P = Pin − Pout ,

where Pin and Pout are the pressure at the air inlet and 
outlet, respectively.

The heat transfer factor j and the resistance factor f are 
calculated as:

where Pr is the Prandtl number, ρ is the air density, ua is 
the velocity, and L is the basin length.

The integrated Star River evaluation factor considers 
both heat transfer and flow resistance. The integrated 
performance evaluation factor considers both the heat 
transfer and flow resistance performance, as JF=j/f1/3.

The internal flow and heat transfer are quite complex 
because of the complex structure of louver heat sinks. To 

(5)j =
hf

ρuaca

2
3

Pr,

(6)f =
2�Pde

ρu2aL
,
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Figure 3 Comparison of simulation results and empirical correlation 
calculation results
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facilitate this study, some assumptions were introduced, 
as follows:

1. The air flowing through the louvered fins is an 
incompressible fluid and the physical properties of 
the air do not change as the temperature increases.

2. The convective heat transfer process between the 
louvered fins and air is a steady-state process.

3. Owing to the small thickness of the louvered fins, the 
thermal conductivity can be neglected, and a uniform 
thickness of these structures can be assumed.

4. The deformation of the fins due to the impact of air 
can be ignored, so the spacing and angle of the lou-
vered fins remain constant. The effect of gravity on 
the heat transfer and flow can also be ignored.

Based on the assumptions above, the continuity, 
momentum, and energy equations for the fluid regions 
were established to describe the flow and heat transfer 
characteristics of louver heat sinks, as shown in Eqs. (7)–
(9), respectively.

where ρ is the density of the fluid, t is time, �u is the veloc-
ity vector of the fluid, p is the pressure of the fluid, ν is 
the kinematic viscosity, cp is the specific heat capacity, T 
is the temperature, k is the thermal conductivity, and Φ is 
the dissipation function.

2.3  Data Validation
In this study, the flow and heat transfer characteris-
tics of louvered fins were investigated using numeri-
cal simulations. In addition, to verify the accuracy of 
the numerical simulation simulations, the results were 
compared and validated with the calculated results of 
the well-known Chang-Wang empirical correlation 
equations [39].

The j factor correlation equation is

When ReLp>150, the f factor correlation equation is

(7)
∂ρ

∂t
+ �∇ · (ρ�u) = 0,

(8)
∂�u

∂t
+

(
�u · �∇

)
�u = −

1

ρ
�∇p+ ν �∇2�u,

(9)ρcp

[
∂T

∂t
+

(
�u · �∇

)
T

]
= k �∇2T +�,

(10)

j = Re−0.49
Lp (

θ

90
)0.27(

Fp
Lp

)−0.14(
Fh
Lp

)−0.29(
Td
Lp

)0.68(
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Figure 4 Variation of j factor and f factor with the number of grids

Table 2 Factors and levels of orthogonal tests

Level θ (°) a (mm) Lp (mm)

1 16 1.05 0.9

2 19 1.2 1.0

3 22 1.35 1.1

4 25 1.5 1.2

5 28 1.65 1.3

6 31 1.8 1.4

Table 3 Thermophysical properties of heat sink materials and 
coolants

Materials Density (kg/m3) Thermal 
conductivity 
(W/m·K)

Specific heat 
capacity (J/
kg·K)

Air 1.225 0.0242 1006.433

Aluminium 2719 202.4 871
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where: ReLp is the Reynolds number based on louver 
pitch; θ is the louver angle; Fp is the fin pitch; Lp is the 
louver pitch; Fh is the fin height; Td is the flat tube depth; 
Lh is the louver height; Tp is the flat tube pitch; δ is the fin 
thickness; Dh is the hydraulic diameter of fin array; Dm is 
the flat tube diameter; Th is the difference between the 
flat tube pitch and the flat tube diameter.

According to the Chang-Wang empirical correla-
tion formula, the heat transfer factor j and friction fac-
tor f were calculated, and the simulation results were 
compared with the correlation calculation results, 
as shown in Figure  3. From the comparison results, 
it can be seen that the simulation results are in good 
agreement with the correlation calculation results, 
and the errors are small, all within 20%. The smallest 
error is approximately 7%. In the comparison of the 
data results, the simulation results had less error with 
the experimental data, so the simulation method was 
found to be reliable and universal.

2.4  Grid Independence Verification
The independence of the grids was verified by selecting 
five representative grid quantities for the 3D model previ-
ously used for verification, namely 1.7×106 grid (sparse), 
2.6×106 grid (sparser), 3×106 grid (denser), 4×106 grid 
(denser), and 5×106 grid (very dense).

As shown in Figure  4, it can be seen that the j factor 
tends to fluctuate and the f factor tends to decrease with 
an increase in the number of grids, but the magnitude of 
the changes is small. Therefore, to save computational 

(11)f1 = 4.97Re0.6049−1.064/θ0.2
Lp

{
ln

[(
δ

Fp

)0.5
+ 0.9

]}−0.527

,

(12)f2 =
[(
Dh/Lp

)
ln(0.3ReLp )

]−2.996
(Fp/Lh)−0.7931(Tp/Th),

(13)f3 = (Tp/Dm)
−0.0446 ln

[
1.2+ (Lp/Fp)1.4

]−3.553
θ−0.477,

(14)f = f1 · f2 · f3,

time and to consider the accuracy of the simulation, 
2.6×106 meshes were used for the calculation.

2.5  CFD Data
The orthogonal test is a design method for simultane-
ously studying multiple factors and multiple levels at 
the same time. This method selects some typical com-
binations of factors and levels from all the tests to 
study, and by studying few combinations, it can quickly 
understand the whole, which can not only improve the 
efficiency of the study, but also reduce the cost of the 
study.

The three structural parameters of louver angle θ, fin 
length a, and louver pitch Lp were used as experimental 
factors with six levels in this study, and each factor and 
its level are shown in Table 2.

After the mesh is divided, the boundary conditions 
must be set using Fluent. A reasonable boundary con-
dition can make the simulation results more accurate 
and improve the efficiency of the simulation. The spe-
cific boundary conditions were set as follows.

1. The inlet is set as a velocity inlet with air flow veloci-
ties of 2 m/s, 4 m/s, 6 m/s and 8 m/s and a constant 
temperature of 300 K.

2. The outlet was the pressure outlet, and the default 
gauge pressure was 0 Pa.

3. The wall of the flat tube is set as a thermostatic wall 
with a temperature of 363 K, and a thin shell is set for 
heat transfer with a thickness of 0.25 mm.

4. The rest of the wall surface, except for the fluid-solid 
contact surface, is adiabatic.

5. The turbulence model adopted the SST k–ω model, 
the pressure-velocity coupling adopted a coupled 
algorithm, the second-order windward format was 
chosen to discretize the basic control equations, and 
the convergence residuals of energy and momentum 
were set to be less than  10−6.

The fluid in this simulation was air, the solid was a fin 
and flat tube, and the material used was aluminum. Their 
physical parameters are listed in Table 3.

3  Description of the Artificial Neural Network 
Model

Artificial neural network (ANN) is an adaptive nonlin-
ear dynamic system composed of many interconnected 
neurons. They can classify data using the network’s own 
memory and analysis, and the accuracy of the model 
prediction results can be ensured through correlation 
processing. In addition, the unique structure, adaptive 
learning, memory, strong fault tolerance, and robustness Figure 5 Schematic diagram of neural network structure
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of neural networks make them widely used in the field of 
prediction.

The process of machine learning can be briefly summa-
rized as follows: First, a large amount of data is used to 
train the model, then the model is trained by iterating the 
error of the model on the dataset continuously to obtain a 
model that fits reasonably well to the dataset, and finally, 
the trained model can be put into practical application. 
To reduce the generalization error of the trained model, 
we need to divide the dataset into a test set and a training 
set. The data in the training set is used to train the model, 
and the error of the model in the test set can be approxi-
mated as a generalization error; thus, the generalization 
error can be reduced by only reducing the error of the 
model in the test set.

The 36 sets of data provided by the previous CFD were 
divided into training and validation sets. Among them, 
80% (29/36) of the training set was randomly selected 

from the simulation data containing the working points 
under various conditions. The remaining 20% (7/36) were 
selected as the training set to validate the accuracy of the 
machine learning prediction model.

The flow heat transfer performance of the louvered fins 
is affected by structural parameters such as louver angle, 
fin length, and louver spacing, which is a multivariate 
nonlinear complex system. Thus, a BP neural network 
capable of good prediction performance is established, 
as shown in Figure  5, to predict the flow heat transfer 
in louvered fins. In a BP neural network, the weight and 
deviation vectors are trained using a gradient descent 
algorithm, which can be better. During the supervised 
learning process, the learning rate was 0.01 and the mini-
mum error of the training target was 0.001.

When building the neural network model, random 
was used for the data partitioning algorithm, Levenberg-
Marquardt was used for the training algorithm, Mean 
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Squared Error was used for the error algorithm, and 
MEX was used for the compilation algorithm. The maxi-
mum number of training iterations of the model was 
1000, and the target error was 0.001.

When building the neural network model, random 
was used for the data partitioning algorithm, Levenberg-
Marquardt was used for the training algorithm, Mean 
Squared Error was used for the error algorithm, and 
MEX was used for the compilation algorithm. The maxi-
mum number of training iterations of the model was 
1000, and the target error was 0.001.

For the evaluation metrics, the coefficient of deter-
mination (R2) and root mean square error (RMSE) 
are used to measure the prediction performance of 
the established neural network for the above three 

metrics. If R2 is very close to 1 and the RMSE value 
is very small, it indicates that the model can learn the 
data very well; to exclude the effect of the data itself 
being too small on the RMSE accuracy, it can be nor-
malized and the NRMSE can be used to replace the 
role of the RMSE. The expressions for R2, RMSE, and 
NRMSE are shown in Eqs. (15)−(17):

where ŷi is the predicted data, y is the average of the 
measured data, yi is the simulated data, ymax is the maxi-
mum value of the measured data, ymin is the minimum 
value of the measured data, and n is the number of data.

4  Results and Discussion
4.1  Neural Network Performance Evaluation
This section presents the ANN model for predicting the 
flow heat transfer performance of louvered fins, includ-
ing the heat transfer factor j, resistance factor f, and the 
overall performance rating factor JF.

Figures  6, 7, 8 show the actual values of the train-
ing dataset compared with the prediction results of the 
ANN-based model. The figure shows that all points in the 
graph of the neural network prediction model are very 
close to the diagonal line, which indicates that the neural 
network model has a good prediction performance. The 
R2 values of j, f, and JF in the training and validation sets 
are 0.9797, 0.9920, 0.9536, 0.9711, 0.9647, and 0.9311, 
respectively, and the NRMSEs are 0.03763, 0.02266, 
0.05454, 0.08357, 0.1079, and 0.1232, respectively. An R2 
value close to 1 indicates that the ANN model can learn 
the intrinsic relationship between the louvered fin struc-
ture parameters and the flow heat transfer performance.

The accuracy of the machine learning prediction per-
formance was determined by measuring the distance 
between the data points on the graph and diagonal line. 
As can be seen in Figure 6(a), the points of the ANN pre-
diction model are relatively close to the 45° line, which 
indicates good agreement between the prediction model 
results and the experimental simulation data. Therefore, 
all the results indicate that the ANN has good generaliza-
tion ability in the prediction of heat transfer in louvered 
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fin flow, and the model can learn the internal connections 
between the relevant parameters of the training data bet-
ter. In general, the R2 values were close to 1, indicating 
that the ANN model successfully learned the relationship 
between the geometric parameters of the louvered-fin 
cross-section and its flow heat transfer performance. If 
properly trained, the errors are acceptable.

Figures 9, 10, 11 show the absolute errors between the 
ANN prediction results and the simulation data of the 
louvered fins, which can be used to analyze the error dis-
tribution of the model training. It can be found that the 
error interval of the neural network model is very close to 
the normal distribution, indicating that the error of this 
neural network model is concentrated around x = 0. The 
absolute error takes the middle line of the normal curve 
as the symmetry axis, and the distribution of the abso-
lute error gradually and uniformly decreases to the left 
and right, respectively. The absolute error distributions of 
the j factor, f factor, and JF factor in the neural network 
model and simulation data were − 0.02~0.02, − 0.5~0.4, 
and − 0.02~0.02, respectively. The prediction errors in 

the training set were more concentrated around x = 0 
than those in the validation set.

To further evaluate the learning degree of the trained 
artificial neural network model on the relationship 
between the louvered-fin structure parameters and per-
formance, 18 groups of experimental data were selected 
as the test sets, and the j, f, and JF values predicted by the 
ANN model were compared with the simulated Ground 
Truth data of the test set. The results are shown in Fig-
ures 12, 13, 14. By analyzing the data in the figures, it can 
be found that the difference between the predicted value 
and the simulation value of the j and f factors in the test 
set is within 10%, among which the error of more than 
half of the j factor is within 5%, and the error of more 
than 40% of the f factor is within 5%. As the JF factor is 
calculated using j and f, the error is large. However, these 
values were within 12%. It can be observed from the 
three figures that the predicted values are in good agree-
ment with the simulation values, which further confirms 
the reliability of the ANN model.
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4.2  Structure Optimization
In this study, we investigated the influence of three 
structural parameters, namely louver angle, fin length, 
and louver pitch, on the performance of louvered fins 
and optimized the structure. This process is not only 
time-consuming but also consumes considerable 
resources, and the repetitive process is tedious to the 
operators. In this section, the trained artificial neu-
ral network model only needs to input the structural 
parameters of 216 models to output the correspond-
ing j, f, and JF factors of the models, and the structural 
parameters of the model with the largest JF factor can 
be found to perform structural optimization.

After inputting 216 sets of structural parameters, the 
structural parameters with the largest set of JF factors 
in the output data are louver angle θ = 25°, fin length 
a = 1.05 mm, and louver pitch Lp = 1.3 mm. The j, f, 
and JF factors of this structure are 0.0308, 0.3618, and 
0.0433, respectively. The j factor of the initial model is 
0.0285, the f factor is 0.5322, and the JF factor is 0.0351. 
This model improved the heat transfer factor j by 2.87%, 
reduced the friction factor f by 30.4%, and improved the 

overall performance factor JF by 15.7% compared to the 
initial model.

To demonstrate the plausibility of the optimization, 
216 sets of data output from the neural network model 
can be analyzed in relation to the structural parameters 
of the louvered fins to determine whether they are con-
sistent with the flow and heat transfer laws simulated by 
the simulation.

From the 216 sets of data, the louver angle θ = 25°, the 
fin length a = 1.05 mm, and the louver pitch Lp = 1.3 mm 
were selected to plot the variation of the evaluation index 
with the other two structural parameters when changing 
a certain structural parameter. As shown in Figures  15, 
16, 17.

When the louver angle θ = 25°, it can be seen from 
the figure that when the fin length is certain, with the 
increase of the louver spacing, j factor and f factor are 
gradually increased, and JF factor is first increased and 
then decreased; when the louver spacing is certain, with 
the increase of the fin length, j factor and JF factor are 
gradually decreased, and f factor is gradually increased.

According to these figures, it is apparent that when the 
fin length a is 1.05 mm and the louver spacing is fixed, 
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an increase in louver angle causes a gradual increase 
in both the j factor and f factor. Meanwhile, the JF fac-
tor initially increases but subsequently decreases. If the 
louver angle is held constant, increasing the louver spac-
ing yields gradual increases in the j factor, f factor, and JF 
factor when the louver angle is small. However, when the 
louver angle is large, increasing the louver spacing results 
in a gradual increase in the j factor, an increase followed 
by a decrease in the JF factor, and a decrease followed by 
an increase in the f factor.

When the louver pitch is 1.3 mm, if the fin length is 
certain, with an increase in the louver angle, the j factor 
and f factor will gradually increase, and the JF factor will 
first increase and then decrease; if the louver angle is cer-
tain, with the increase in the fin length, the j factor grad-
ually decreases, the f factor will gradually increase, and 
the JF factor will gradually decrease.

Through the above analysis, it can be observed that 
the heat transfer and flow laws of the neural network 
predicted data are roughly consistent with those of the 
36 sets of simulated data in the orthogonal tests in Sec-
tion 4 of this study, which indicates that the optimization 

results of the neural network model in this study have a 
high degree of confidence.

5  Conclusions
The aim of this study was to evaluate whether the ANN 
model can be used to predict the flow and heat transfer 
capacity of a louvered-fin heat exchanger and to opti-
mize the louvered-fin structure. The results showed that 
the predicted j factor, f factor, and JF factor agreed well 
with the simulated values, and the predicted trends for 
the different indicators were the same as the true pat-
tern. This indicates that the machine prediction model 
can learn the relationship between the three structural 
parameters of louver angle, fin length, and louver spac-
ing on the flow heat transfer of the louvered fins from a 
series of linearly uncorrelated data. Because laboratory 
measurements are expensive and difficult to measure 
accurately and numerical simulations are demanding 
and time-consuming, the use of neural network models 
to assist laboratory measurements or numerical simula-
tions to analyze the flow and heat transfer performance 
can reduce the number and cost of experimental cases 
and significantly reduce time costs. The application of 
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artificial neural network models in the field of louvered 
fins is beneficial for the progress and optimization of 
louvered fins.

Therefore, it is of great significance to improve the 
heat dissipation performance of vehicle radiators to 
obtain satisfactory performance for special vehicles 
running in plateau areas.
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