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Abstract 

The judgment of gear failure is based on the pitting area ratio of gear. Traditional gear pitting calculation method 
mainly rely on manual visual inspection. This method is greatly affected by human factors, and is greatly affected 
by the working experience, training degree and fatigue degree of the detection personnel, so the detection results 
may be biased. The non-contact computer vision measurement can carry out non-destructive testing and monitor-
ing under the working condition of the machine, and has high detection accuracy. To improve the measurement 
accuracy of gear pitting, a novel multi-scale splicing attention U-Net (MSSA U-Net) is explored in this study. An image 
splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a 
splicing feature map with more semantic information. Then, an attention module is applied to select the key fea-
tures of the splicing feature map. Given that MSSA U-Net adequately uses multi-scale semantic features, it has better 
segmentation performance on irregular small objects than U-Net and attention U-Net. On the basis of the designed 
visual detection platform and MSSA U-Net, a methodology for measuring the area ratio of gear pitting is proposed. 
With three datasets, experimental results show that MSSA U-Net is superior to existing typical image segmentation 
methods and can accurately segment different levels of pitting due to its strong segmentation ability. Therefore, the 
proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of 
gear pitting.
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1 Introduction
Gear is an extremely important core basic component 
of high-end equipment, and it is also one of the most 
failure-prone transmission components. Therefore, in 
order to ensure the normal and safe operation of major 
equipment, it is necessary to carry out the fault detec-
tion research of gear system. Gear pitting is one of the 
common defects in gear faults [1, 2]. At present, the 
mainstream gear fault diagnosis method is to analyze the 
vibration signal for gearbox fault diagnosis  [3–6], and 

the obtained results cannot judge the type, size, shape, 
position and other detailed information of the gear fault. 
According to the standard requirements of “Gear Surface 
Bearing Capacity Test Method” (GB/T 14229-93), gear 
pitting area ratio is an important index to judge whether 
the gear is failure. The traditional measurement of gear 
pitting area rate mainly relies on manual visual inspec-
tion or microscope observation. This method has low 
detection efficiency, and the working time and efficiency 
are easily affected by human factors. Therefore, this study 
discusses how to accurately identify and measure the 
gear pitting rate on the basis of machine vision and deep 
learning (DL).

At present, two kinds of gear pitting detection methods 
exist. One uses vibration signals for diagnosing the pit-
ting, and the other uses images for quantitatively detect-
ing the pitting. Generally, the diagnosis [7] and prognosis 
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[8] of gear pitting rely on vibration signals. However, the 
gear vibration signals collected from rotating machiner-
ies often have a huge amount of noise and are disturbed 
by the vibration signals of other components, making 
the quantitative detection of the degree of gear pitting 
difficult. Thus, gear pitting detection methods based on 
machine vision technology have been explored [9, 10]. 
Actually, the surface defect detection of industrial prod-
ucts is mainly based on machine vision and image pro-
cessing [11, 12]. Traditional image processing methods 
for defect detection include threshold segmentation 
algorithm based on pixel statistics and edge detection 
algorithm based on background reconstruction [13, 14]. 
Although these methods have high segmentation accu-
racy on high-quality pitting images, they have low seg-
mentation accuracy and poor generalization ability and 
robustness on pittings with different gray levels, textures, 
shapes, colors, and severity levels.

With the development of deep learning, deep neu-
ral networks are widely used in object detection, image 
classification, image segmentation and other fields. Deep 
neural networks with strong feature learning abilities 
have been widely used in the field of computer vision. 
Owing to the training of many annotated visual data, 
the features learned by deep neural networks contain a 
wealth of spatial and semantic information that can be 
applied well in object segmentation [15–17]. A new deep 
neural network is explored in this study to improve the 
segmentation precision and generalization ability of DL-
based models and increase the accuracy of gear pitting 
measurement.

2  Related Work
Convolutional neural networks in deep learning tech-
nology [18] are widely used in various fields due to their 
powerful feature extraction capabilities, such as object 
detection, image classification, and image segmentation. 
The advantages of CNN are mainly in three aspects: (1) 
local receptive field (sparse connection): The original 
image is perceived through local convolution operation, 
and the feature image with global information is obtained 
with a greatly reduced number of weight parameters. (2) 
Parameter sharing: Due to the same convolution kernel 
parameters, the complexity of the input high-dimen-
sional data can be reduced. (3) Multi-kernel convolution: 
Multi-layer convolution can be set in the convolution 
operation, and convolution of different convolution ker-
nels can be set in each layer of convolution operation to 
extract different types of features. The FCN proposed by 
Long et al. [19] is a landmark network model in the field 
of image segmentation. Using the convolutional layer to 
replace the fully connected layer of CNNs, it is the first 
end-to-end fully convolutional network for pixel-level 

prediction. The advantage of FCN is that it can accept 
input images of any size, which makes feature extraction 
more efficient and avoids the problems of repeated cal-
culation and space waste caused by the use of neighbor-
hood. After the proposed network, the subsequent image 
segmentation algorithms are basically implemented 
based on this basic framework. For example, Ron-
neberger et al. [20] proposed the U-Net for the medical 
image segmentation processing task. U-Net adopts the 
encoder–decoder structure and splices the down-sam-
pling convolution information with the up-sampling con-
volution information at the same layer, greatly improving 
the accuracy of segmentation. The SegNet network pro-
posed by Badrinarayanan et  al. [21] also inherited the 
encoder–decoder structure, but the decoder network 
used the pooling index of the maximum pooling layer to 
conduct nonlinear up-sampling. The DeepLab network 
proposed by Chen et al. [22] adopted a dilated convolu-
tion structure and optimized the boundary prediction 
through the fully connected conditional random field.

In recent years, attention models have been success-
fully introduced into the field of DL and widely applied 
to various fields, such as image processing and speech 
recognition [23–25]. After quickly scanning the global 
image, the human vision mechanism can apply different 
attentions on the image area. This method can improve 
the efficiency of the visual system in processing informa-
tion by selecting key information from a large amount 
of information. The goal of the attention mechanism in 
DL is the same as the human visual mechanism. With the 
attention mechanism, the segmentation performance of 
U-Net can be also enhanced. In this paper, a novel type 
of U-Net is explored by splicing multi-scale features with 
attention modules, that is, multi-scale splicing attention 
U-Net (MSSA U-Net). The multi-scale splicing atten-
tion operation is essentially to fusing multi-scale features; 
thus, small objects (pittings) can be effectively recognized 
and segmented.

On the basis of MSSA U-Net, an integrated method for 
measuring the area ratio of gear pitting is proposed, and 
its flowchart is shown in Figure 1. The process of gear pit-
ting detection generally includes the acquisition of pitting 
images, preprocessing of pitting images, segmentation 
of pitting images, and measurement of pitting area rate. 
First, a CCD camera and light source are installed on 
the gear contact fatigue testing machine to acquire pit-
ting images. Secondly, the pitting image is preprocessed 
by geometric transformation, morphological operation, 
edge segmentation and other image processing technolo-
gies to obtain high-quality effective tooth surface images. 
Then, the pitting in the image is segmented by the 
trained MSSA U-Net. Finally, the proposed pitting area 
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rate evaluation index is used to quantitatively evaluate 
the gear. The main contributions of this work are listed 
below.

To obtain rich characteristic information, including 
feature maps at different scales, an image splicing module 
is constructed to fuse the features from different convo-
lutional layers.

Combining the image splicing module and an attention 
module, the MSSA U-Net is proposed to improve the 
segmentation precision of pittings.

With the comprehensive evaluation indexes, including 
four typical indexes, the performance and advantage of 
the proposed MSSA U-Net are verified on a gear pitting 
dataset and two public datasets.

3  Multi‑Scale Splicing Attention U‑Net
3.1  Preliminaries
U-Net is an improved image segmentation network 
based on FCN, which is a hot network in the field of 
medical image segmentation. A fully convolutional neu-
ral network with a U-shaped structure is constructed 
through skip connections and splicing operations, so it 
is called U-Net. The cross-entropy loss function it uses is 
written as

(1)E =
∑

x∈T

w(x) log(pl(x)(x)),

where T represents the pixel set of the real label, pl(x)(x) 
denotes the soft-max operation, and w(x) is the weight 
parameter, and its calculation formula is as follows:

where wc is the weight to balance the proportion of cat-
egories, d1 represents the distance from the nearest 
boundary, d2 denotes the distance from the subnearest 
boundary, w0 and η are constant values. In the subse-
quent training process, w0 and η are set to 10 and 5 pix-
els, respectively [20].

U-Net mainly includes two parts: Encoder and decoder. 
The encoder is the down-sampling process, implemented 
by convolutional layers with max pooling operation. 
The decoder is the up-sampling process, implemented 
through deconvolution layers. Its overall structural 
framework is shown in Figure 2 [20]. Specifically, U-Net 
fuses the features of the same layer convolution and 
deconvolution stages through skip connections and 
Concat operations to ensure that more shallow seman-
tic feature information is retained and the segmentation 
accuracy of the model is improved.

3.2  Construction of the Proposed Network
Conventional U-Net directly combines the feature map 
of the down-sampling layer with that of the up-sam-
pling layer at the same stage. Evidently, the up-sampling 

(2)w(x) = wc(x)+ w0 exp

(

−
[d1(x)+ d2(x)]

2

2η2

)

,

Figure 1 Flowchart of the proposed methodology for pittings detection
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operation of U-Net only uses the information of the pre-
vious layer to reconstruct the feature map, and the fea-
ture map of the down-sampling process only copies the 
feature map of the same layer, without considering that 
some important details contained in other layers may be 
lost, which may affect the quality of the recovered feature 
map [26]. To solve this problem, multi-scale supervision 

is realized by integrating the features of different convo-
lutional layers. By introducing the attention mechanism 
and multi-scale splicing, the novel MSSA U-Net is devel-
oped, and its network structure is illustrated in Figure 3. 
The framework of MSSA U-Net also includes four down-
sampling and four up-sampling processes. As the fea-
ture maps at different layers have different dimensions, 

Figure 2 Structure of U-Net

Figure 3 Structure of multi-scale splicing attention U-Net
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the up-convolution operation should be used to concat-
enate the output image information of different convo-
lutional layers into a higher-resolution feature map with 
more semantic characteristics and texture details. “up-
conv 2 × 2” denotes the convolution with 2 × 2 kernel 
and a stride of 2, which can implement the upsampling 
operation. Then, the network uses the attention gate to 
select important information from the splicing feature 
map to improve the segmentation accuracy of the tar-
gets. As shown in Figure 3, the entire training process of 
the MSSA U-Net can be regarded as the encoding and 
decoding process in which the four down- and up-sam-
pling operations are respectively regarded as encoding 
and decoding. The proposed network can combine the 
information of multi-layer feature maps, that is, achieve 
multi-scale critical feature fusion.

Unlike U-Net, an image splicing module is designed 
to splice the features from different convolutional layers 
in MSSA U-Net, as illustrated in Figure 4. To implement 
splicing, up-convolution should be applied first to adjust 
the feature maps of different dimensions to have the same 
dimension, as shown in Figure 3. n feature maps with F0 
channels are concatenated using Eq. (3):

(3)X0 = X1 � . . . � Xn,

where ‖ denotes the splice operator.
Given that the splicing feature map has a different 

dimension from the up-sampling feature map, it requires 
dimensionality reduction. Convolution is performed 
on the splicing feature map for the two feature maps to 
have the same dimension. The convolution operation is 
defined as follows:

where σ denotes the ReLU function. Then, the key fea-
tures of the splicing feature map are selected via an atten-
tion module [23], which is illustrated in Figure  5. The 
attention module uses a feature map with high semantic 
feature (i.e., up-sampling feature map) to obtain a weight 
map ( αl ) of the splicing feature map. As shown in Fig-
ure  5, splicing feature map X and up-sampling feature 
map Y are employed to construct a weight map, and then 
weighting processing is performed on X. According to 
Figure 5, αl can be formulated as

where WT
X X

l and WT
Y Y

l respectively represent the 1 × 1 
convolution results of splicing feature map X and up-
sampling feature map Y, FT denotes a 1 × 1 convolution 
operation, bW and bF are the offset values, σ denotes the 
ReLU function, ϕ denotes the sigmoid function, and 
l indicates that the calculated feature map is located 
at layer l. Then, weight map αl is multiplied by X, and 
weighted splicing feature map Xl  is obtained as

(4)X = σ

(

WT
X0
X0 + b0

)

,

(5)αl = ϕ

(

FT
(

σ

(

WT
X X

l +WT
Y Y

l + bW

))

+ bF

)

,

Figure 4 Image splicing module

Figure 5 Attention module
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From Eq. (6), the back propagation gradient of MSSA 
U-Net can be written as

(6)Xl = αlXl .

In the traditional U-Net, low-resolution feature maps 
are mainly applied to recognize pittings, while high-
resolution feature maps are mainly used to segment pit-
tings. To detect irregular small pittings, MSSA U-Net 
uses more low-resolution key information at multiple 
scales to achieve object recognition, further improving 
the accuracy of pitting measurement.

4  Methodology for Gear Pitting Measurement
4.1  Pitting Dataset Construction and Preprocessing
First, we obtain gears with different severity levels of pit-
ting by means of a gear contact fatigue testing machine. 
Secondly, the tooth surface image with pitting of each 
gear is collected by the designed gear pitting collection 
device. The gear pitting collection device is shown in 

(7)

∂

(

Xl

)

∂
(

ϕl−1
) =

∂
(

αl f
(

Xl−1,ϕl−1
))

∂
(

ϕl−1
)

= αl
∂
(

f
(

Xl−1,ϕl−1
))

∂
(

ϕl−1
) +

∂
(

αl
)

∂
(

ϕl−1
)X

l−1
.

Figure 6 Schematic of the visual detection platform

Figure 7 Visual detection platform for gear pitting: a visual detection device, b image acquisition, c case with oil baffle-plate, d effect of oil baffle
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Figures  6 and 7. The gear pitting collection device con-
sists of a CCD camera (MER-131-210U3C), a circular 
LED light, and a set of adjustable fixed brackets. The col-
lected original gear image is shown in Figure 8. Finally, a 
trainable pitting data set is produced through image pre-
processing technology, and the severity of pitting in the 
data set is 1%−7%. According to a previous work [27], an 

appropriate lighting method was implemented for col-
lecting clear pitting images.  

During the test, the lubricating oil in the gearbox will 
splash as the gear rotates. This blocks the lens of the 
camera and prevents the gear from being photographed. 
Therefore, a detachable oil baffle mechanism is designed, 

Figure 8 Partial presentation of the gear pitting dataset

Figure 9 Tooth surface of the histogram equalization: a original image, b result image, c gray distribution of acquired image, d gray distribution of 
enhanced image
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and the oil baffle plate is optimized through multiple 
tests, as shown in Figure 7(c) and (d).

To reduce the background interference, the distance 
and focal length between the camera and the single tooth 
surface were adjusted to obtain the image of the single 
tooth surface, as shown in Figure 8.

Due to the unstable indoor ambient light and the vibra-
tion of the test bench, noise will be introduced to the col-
lected images. Therefore, the original gear image quality 
is improved by image preprocessing techniques. First, 
the original image is denoised using a median filter algo-
rithm. Second, use histogram equalization to enhance 
the contrast of the image and make the edges of the 
gears clearer. The image after grayscale enhancement is 
shown in Figure 9. Figure 9(a) and (b) illustrate the origi-
nally acquired and enhanced images, respectively, and 
Figure  9(c) and (d) illustrate their corresponding gray 
distributions.

Figure 9(c) and (d) show that the gray value of the origi-
nal image is relatively concentrated and changes greatly. 
The range of the gray value of the enhanced image 
is expanded, and its distribution is uniform, thereby 
improving the contrast of the image and highlighting the 
key information in the image.

Taking into account the impact of the self-vibration of 
the test bench on the acquisition device. It is also taken 
into account that in many different experiments, the 
shooting angles during the image acquisition process will 
be more or less different. Therefore, the image after image 
quality enhancement needs to be corrected for tooth sur-
face inclination to improve the segmentation accuracy of 
the subsequent effective tooth surface. The tooth surface 
correction operation is completed by a powerful Radon 
transformation algorithm. The detailed implementation 
steps are as follows: (1) Use the edge detection opera-
tor to detect the horizontal line in the image to realize 
the enhancement of the gear edge. (2) Obtain the incli-
nation angle of the gear tooth surface compared to the 

horizontal plane by calculating the Radon transformation 
of the image. Among them, the Radon transform is calcu-
lated as follows:

where f (x, y) denotes a binary image matrix, called 
a density function. First, integrate f through the unit 
impulse function δ and the straight line in different direc-
tions 

(

x cos θ + y sin θ = R
)

 to obtain the corresponding 
gθ (R) after radon transformation, that is, the brightness 
value in different spaces. Then, find the local maxima 
of the radon transformation gθ (R) , and the positions of 
these maxima are the positions of the straight lines in the 
original image (Figure 10(a)) (the direction of the straight 
line is θ ). Finally, the inclination correction of the gear 
is completed by the rotation operation, as shown in Fig-
ure 10(b). Figure 8 indicates a satisfactory result. Tilt cor-
rection helped obtain an accurate effective tooth surface 
area, thereby improving the precision of the pitting area 
ratio calculation.

4.2  Tooth Surface and Pitting Segmentation
Next, before segmenting pittings, the effective tooth 
surface is required to be segmented out. The effective 
tooth surface is segmented using traditional image pro-
cessing methods. Firstly, the k-means clustering algo-
rithm is used to cluster the image to determine the gray 
threshold range of the gear surface. Secondly, use the 
Roberts differential operator to detect the edge, and get 
the edge information of the tooth surface that needs to 
be segmented. Since the gear tooth surface area to be 
segmented in the image has obvious characteristics and 
is completely different from the texture features of the 
background, the neural network method is not used to 
segment the effective tooth surface. During the solution 
process, the horizontal difference and vertical difference 
of the image are approximated as:

(8)

gθ (R) =

∫ +∞

−∞

∫ +∞

−∞

f (x, y)δ(x cos θ + y sin θ − R)dxdy,

Figure 10 Comparison of gear tooth surface tilt correction: a original image, b result image
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where f (x, y) denotes the pixel value of point (x, y) in the 
image matrix.

For the tooth surface segmentation of the pitting image 
after image enhancement and tilt correction, the pre-
liminary segmentation results using the above traditional 
segmentation method are shown in Figure  11(a). It can 
be seen from the figure that the effective tooth surface 
area is roughly divided, and there are problems such as 
discontinuous tooth surface edges and many edge frac-
tures. Therefore, it is necessary to perform subsequent 
refinement operations on this result in order to segment 
the complete effective tooth surface area. First, binarize 
the pre-segmented image to obtain a binary image. Then, 
dilate and corrode the binary image to obtain a rela-
tively complete connected area, as shown in Figure 11(b). 
Finally, the original image is segmented according to the 
coordinate information of its maximum connected area 
to obtain an accurate image of the effective tooth surface 
area, as shown in Figure 11(c). The display results of par-
tially segmented effective tooth surfaces in the data set 
are shown in Figure 12(a)–(c).

5  Experimental Results
5.1  Operating Environment and Evaluation Indicators
Python 3.6.8, TensorFlow-gpu 1.7.0, Keras 2.3.1, and 
other common packages (numpy 1.16.4, matplotlib 2.2.2, 

(9)∇f = (f (x, y)− f (x − 1, y), f (x, y)− f (x, y− 1)),

etc.) were used to train and test the MSSA U-Net. The 
training process was implemented in a computer server 
with the following specifications: an Nvidia GeForce 
GTX-1080Ti GPU and an Intel (R) Xeon (R) E5-2687W 
v3 CPU. All neural networks have the same hyper param-
eters, which are listed in Table 1.

In order to better evaluate the accuracy of the proposed 
model, several widely used classic evaluation indicators 

Figure 11 The result display of the segmentation process of the effective working tooth surface: a preliminary segmentation result, b binary 
image, c segmentation result

Figure 12 Different effective working tooth surfaces: a–c segmented effective tooth surfaces, d–f ground truths of effective tooth surfaces

Table 1 Hyper parameters of all used neural networks

Hyper parameter Value

Learning rate 0.0025

Optimization algorithm SGD

Multiple of learning rate change 0.1

Step of learning rate change 20000

Rotation_range 0.2

Height_shift_range 0.05

Width_shift_range 0.05

Zoom_range 0.05

Shear_range 0.05

Steps_per_epoch 1000

Epochs 400

Batch size 2
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are introduced, including precision P, recall rate R [28], 
and intersection-over-union ratio IoU [29]. Since our 
proposed model is used for the detection and measure-
ment of gear pitting. Therefore, in order to quantitatively 
evaluate the detection accuracy of gear pitting, it is com-
prehensively evaluated by calculating the relative error 
Re between the detected pitting area rate and the actual 
pitting area rate. In addition, the classic evaluation index 
harmonic mean F1 is additionally introduced, so that the 
performance of the proposed method can be comprehen-
sively evaluated:

where TP is the positive sample predicted by the model 
as a positive class. TN is the negative sample predicted by 
the model as a negative class. FP is the negative sample 
predicted by the model as a positive class. FN is the posi-
tive sample predicted by the model as a negative class.

The mean intersection-over-union ratio (MIoU) is one 
of the important indicators for evaluating image semantic 
segmentation networks. It is obtained by calculating the 
IoU of each category [30]. The specific calculation pro-
cess is as follows:

where k + 1 represents the number of categories (count-
ing the number of categories of the background).

5.2  Dataset Introduction
In order to realize the detection task of gear pitting based 
on deep learning technology, a data set of gear pitting 
with different severity pitting was constructed. This data 
set can meet the requirements of model training and 
testing. In addition, two public datasets are used to fur-
ther verify the superiority of the proposed model MSSA 
U-Net. The details of the datasets are shown in Table 2.

Gear pitting dataset: In the contrast experiment, 
all 2200 sample images were divided into a training 
set with 2000 images and a test set with 200 images. 
Then, all the gear pitting areas of the training set were 

(10)P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2× P × R

P + R
,

(11)MIoU =
1

k + 1

k
∑

i=0

TP

FN + FP + TP

,

labeled. Labelme, an open-source image annotation 
tool developed by MIT Computer Science and Artifi-
cial Intelligence Laboratory (CSAIL), was used to gen-
erate the ground truth mask. With the trained MSSA 
U-Net, the test set was used for evaluating the proposed 
methodology.

CrackForest dataset [31]: This dataset has a similar 
defect type to the gear pitting dataset, which is a road 
crack dataset. There are 159 images in this dataset, 6 of 
which are road images without defects. Due to the small 
number of data sets, data expansion methods (random 
flip, mean subtraction) are used to expand the data set. 
After expansion, 1500 images are obtained, of which 120 
are used for training and 300 are used for testing.

Voc2012 dataset [32]: This dataset can be used for 
classification, detection and segmentation. We use the 
enhanced Voc2012 dataset, which has a total of 20 object 
categories. 10582 images are used as training set, 1449 
images are used as validation set, and 1456 images are 
used as test set.

In the experiments, all the images were resized to 
512×512 for fair comparison. Especially for the gear 
pitting dataset, the new resolution can improve the 
measurement efficiency of gear pitting. In addition, 
the minimum and maximum sizes of the segmentation 
objects in three datasets are listed in Table 2.

5.3  Comprehensive Evaluation Indexes
The accurate segmentation of the effective working 
tooth surface is the key to calculate the gear pitting 
area rate. The image is cropped by the crop function to 
obtain the ground truth of the effective tooth surface 
image. The ground truths of the segmented effective 
tooth surfaces shown in Figure 12(a)–(c) are illustrated 
in Figure 12(d)–(f ). If At denotes the predicted effective 
working tooth surface area and Atg denotes the area of 
the effective tooth surface ground truth, then the seg-
mentation accuracy (Pt) of the effective tooth surface is 
defined as follows:

(12)Pt = 1−

∣

∣At − Atg

∣

∣

At
× 100%.

Table 2 Details of three datasets

Name Number of 
images

Number of testing 
images

Resolution Minimum object size Maximum object size

Gear pitting 2200 200 1280 × 1024 15 × 15 pixels 1213 × 235 pixels

Crackforest 1500 300 480 × 320 57 × 37 pixels 480 × 246 pixels

Pascal VOC 13487 1456 500 × 375 54 × 43 pixels 489 × 334 pixels
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The Pt value of each image in the gear pitting data set 
can be calculated by using Eq. (12), and then added and 
averaged to obtain the segmentation accuracy of the 
effective tooth surface in this paper, 96.3%. Next, the 
method MSSA U-Net proposed in this paper is used to 
segment the pitting area.

According to the segmented tooth surface and pit-
ting, effective working tooth surface area At and pitting 
area Ap are computed by counting the number of pixels 
in the segmented regions, and then the calculation for-
mula of gear pitting area ratio (AR) is as follows:

Figure 13 Pitting segmentation results of different neural networks

Figure 14 Typical segmentation results of the “Crackforest” dataset obtained by various neural networks
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By calculating the intermediate value of the ratio of the 
predicted pitting area to the actual pitting area (Eq. (13)), 
this paper proposes a relative error (Re) evaluation index. 
This index can not only obtain the pitting area ratio, but 
also evaluate the accuracy of the proposed method. The 
relative error is calculated as follows:

where ARp denotes the detected pitting area ratio. ARa 
represents the actual pitting area ratio.

5.4  Results Visualization
For comparison, several U-types of neural networks, such 
as U-Net and attention U-Net, were trained on the same 

(13)AR =
Ap

At
× 100%.

(14)Re =

∣

∣

∣

∣

ARp − ARa

ARa

∣

∣

∣

∣

× 100%, training sample set, and then the test sample set was used 
for comprehensive evaluation. The segmentation results 
obtained by three neural networks are illustrated in Fig-
ures  13, 14, and 15. To further verify the superiority of 
our proposed model, two open datasets were used for 
comparison. Figure  13 shows that MSSA U-Net could 
capture more minor details on the irregular pittings and 
has a better segmentation performance than the other 

Figure 15 Several examples of segmentation results obtained by different neural networks

Table 3 Comparison results of different network models

Bold values indicate that the detection accuracy of the proposed method is 
significantly better than that of other methods

Model Re P R MIoU

U-Net 7.80 86.93 90.56 79.80

Attention U-Net 10.55 87.84 83.11 74.41

MSSA U-Net 6.23 87.97 89.82 80.17
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U-Nets. Attention U-Net directly employs the attention 
module in the concatenation of one layer but does not 
adequately mine the key semantic information of the fea-
ture maps at different scales. Consequently, some minor 
details of pitting cannot be correctly identified. Owing to 
the lack of multi-scale semantic feature fusion and atten-
tion mechanism, the segmentation performance of the 
classical U-Net is also worse than that of MSSA U-Net.

The comprehensive evaluation indexes obtained by 
the three U-nets are listed in Table 3. Evidently, MSSA 
U-Net has the highest measurement accuracy among 
the U-nets. The proposed MSSA U-Net has a higher 
precision rate than U-Net, but its recall rate is slightly 
lower, mainly because the precision and recall rates are 
mutually contradictory, and the improvement of one 
will lead to the relative decrease of the other. In this 
research, we focused on improving the precision rate 
while ensuring a high recall rate. With MSSA U-Net, 
the Re index decreased to 6.23%, that is, the measure-
ment accuracy reached 93.77%, which can meet the 
gear pitting measurement requirement. Moreover, 
MSSA U-Net has a stronger robustness in pitting seg-
mentation even though the acquired gear teeth images 
suffer from oil pollution. Only 28 pitting images in the 
test set has a relative error rate of more than 10%, of 
which the largest is 16.22%. Table  4 shows that all the 
four indexes obtained by MSSA U-Net are superior to 
those obtained by attention U-Net. Similarly, the tra-
ditional image segmentation method (threshold seg-
mentation) was used to measure the pitting area ratio; 
the obtained Re is as high as 31.79%, and its precision 
is much lower than that of the proposed methodology, 
further demonstrating the superiority of MSSA U-Net 

over the conventional image segmentation method. 
According to the comparison of the comprehensive 
evaluation indexes, the proposed vision measure-
ment methodology based on MSSA U-Net has a high 
accuracy and can be effectively applied in engineering 
practice. 

The training time of each model is obtained and listed 
in Table  4. After training the three models, the run-
ning time of each model for processing a test image 
is also listed in Table  4. Given its highly complex net-
work structure, the calculated amount of the proposed 
MSSA U-Net is larger than those of U-Net and Atten-
tion U-Net.

For Attention U-Net and MSSA U-Net, the obtained 
typical segmentation results on the gear pitting data-
set are shown in Figure  14. This figure shows that the 
segmentation result is very near the real objects. Then, 
the comprehensive evaluation indexes of various neural 
networks are calculated and listed in Table  5. Table  5 
indicates that the proposed MSSA U-Net has a higher 
segmentation ability than U-Net and Attention U-Net.

For the “VOC2012” dataset, U-Net, attention U-Net, 
and MSSA U-Net were trained under the same hard-
ware and software. Several examples of segmentation 
results obtained by different neural networks are shown 
in Figure  15. Then, the comprehensive evaluation 
indexes of the three networks were calculated, as listed 
in Table 6. This table shows that the MIoU obtained by 
MSSA U-Net is approximately 2.6% higher than that 
obtained by U-Net, and the values of the four indexes 
obtained by MSSA U-Net are significantly higher than 
those obtained by Attention U-Net. The comparative 
results further demonstrate the superiority of the pro-
posed MSSA U-Net over the classical image segmenta-
tion network.

6  Conclusions
This study addresses the development of U-Net neural 
networks and successfully constructed a MSSA U-Net 
with a high segmentation performance. On the basis of 
MSSA U-Net and computer vision, a new gear pitting 
measurement methodology is proposed to accurately 

Table 4 Training and running times of three models for the gear 
pitting dataset

Model Training time (h) Running 
time (s)

U-Net 12.10 2.95

Attention U-Net 13.58 3.42

MSSA U-Net 15.44 3.71

Table 5 Comprehensive evaluation indexes of “Crackforest” 
dataset segmentation obtained by several networks

Bold values indicate that the detection accuracy of the proposed method is 
significantly better than that of other methods

Model P R MIoU F1

U-Net 90.37 89.74 85.01 90.05

Attention U-Net 88.16 86.10 82.43 87.12

MSSA U-Net 93.61 91.02 88.75 92.29

Table 6 Comprehensive evaluation indexes obtained by three 
networks for the “VOC2012” dataset

Bold values indicate that the detection accuracy of the proposed method is 
significantly better than that of other methods

Model P R MIoU F1

U-Net 80.81 79.77 70.85 78.38

Attention U-Net 77.48 76.49 67.72 75.51

MSSA U-Net 82.54 81.80 73.43 80.40
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measure the area ratio of gear pitting. Particularly, the 
proposed method can be applied in recognizing tiny 
irregular pittings. The main contributions of this work 
are as follows:

(1) A new image splicing module was first designed for 
fusing multi-scale semantic features.

(2) Combining the image splicing and attention mod-
ules, the MSSA U-Net model was built to improve 
the accuracy of pitting segmentation.

(3) Using comprehensive evaluation indexes, the com-
parative results illustrate that the proposed meth-
odology has a higher segmentation performance 
than U-Net, attention U-Net, and traditional image 
segmentation methods.

(4) The proposed method has great potential in the 
quantitative evaluation of the gear pitting degree. 
On the basis of the proposed method, we will 
develop an on-line visual measurement system in 
future work.
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