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Abstract 

Machine learning (ML) has powerful nonlinear processing and multivariate learning capabilities, so it has been widely 
utilised in the fatigue field. However, most ML methods are inexplicable black-box models that are difficult to apply in 
engineering practice. Symbolic regression (SR) is an interpretable machine learning method for determining the opti-
mal fitting equation for datasets. In this study, domain knowledge-guided SR was used to determine a new fatigue 
crack growth (FCG) rate model. Three terms of the variable subtree of ΔK, R-ratio, and ΔKth were obtained by analysing 
eight traditional semi-empirical FCG rate models. Based on the FCG rate test data from other literature, the SR model 
was constructed using Al-7055-T7511. It was subsequently extended to other alloys (Ti-10V-2Fe-3Al, Ti-6Al-4V, Cr-
Mo-V, LC9cs, Al-6013-T651, and Al-2324-T3) using multiple linear regression. Compared with the three semi-empirical 
FCG rate models, the SR model yielded higher prediction accuracy. This result demonstrates the potential of domain 
knowledge-guided SR for building the FCG rate model.

Keywords Fatigue crack growth rate, Stress intensity factor range, Threshold stress intensity factor range, R-ratio, 
Symbolic regression, Machine learning

1 Introduction
Fatigue failure is the most prevalent breakdown mecha-
nism in engineering structures that are subjected to 
long-term load disturbances [1, 2]. The fatigue life has 
previously been characterised as two independent pro-
cesses involving “crack initiation” and “crack growth” [3]. 
Fatigue crack growth (FCG) prediction is essential for the 
damage-tolerant design of engineering components [4, 
5]. Stress intensity factor (SIF) is the main characteristic 
of crack growth [6, 7]. Based on the linear elastic frac-
ture method (LEFM), the earliest model was proposed by 
Paris and Erdogan [8] and had a profound impact on the 

field. However, Paris’ model fails to perform well in the 
threshold and fast-fracture regions.

Various studies have suggested improvements to the 
Paris’ model to handle new governing factors impact-
ing the FCG rate, which can be separated into two types. 
First, an effective SIF (ΔKeff) based on the crack closure 
phenomenon was proposed to characterise the effect of 
the stress ratio on the FCG [9–11]. The other methods 
established the FCG rate prediction model directly based 
on the numerical fitting method considering parame-
ters such as R-ratio, threshold value (ΔKth), and fracture 
toughness (KC) [12–17]. Although several semi-empirical 
models have been developed, they have some application 
restrictions, which are discussed in the following section. 
FCG rate prediction is a nonlinear multivariable problem.

Machine learning (ML) has powerful nonlinear pro-
cessing and multivariate learning capabilities. It has been 
widely used for crack growth to solve complex nonlin-
ear prediction problems [18–25]. Indeed, the radial basis 
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function artificial neural network (RBF-ANN), backpropa-
gation neural network (BPNN), extreme learning machine 
(ELM), fully connected neural network, random forest 
(RF), hidden Markov model (HMM), and long short-term 
memory (LSTM) all yield accurate life and crack growth 
predictions [26–31]. However, most current FCG rate 
models based on ML are inexplicable black-box models 
that are difficult to apply in engineering practice. Simulta-
neously, it is often desirable to find interpretable models for 
insight into the FCG models. Schmidt and Lipson [32] used 
symbolic regression (SR) to obtain interpretable formulas 
from pendulum motion test data. Even after removing the 
sin and cos components from the initial function, a Taylor 
series expansion expression with these two terms appeared 
in the final expression. In contrast to ordinary regression 
approaches, SR employs only one assumption: the expres-
sion for the relationship between the target and charac-
teristic parameters can be obtained by combining various 
elementary functions using algebraic operations [33]. More 
importantly, the SR is a white-box model whose output 
comprises a defined initial function sign with constants 
and input variables [34]. At present, SR has been applied to 
the fields of astronomy, materials science, and engineering 
[35–38], demonstrating the prospect of discovering inter-
pretable models from data-driven models.

SR is a violent search method based on genetic pro-
gramming [39]. An infinite set of mathematical func-
tion symbols, input variables, and constants exists and 
the determination of an equation that is both simple 
and accurate for such a large set is time-consuming. To 
constrain the search space, it must rely on the domain 
knowledge and inspiration. In this study, eight existing 
semi-empirical FCG rate models were analysed, and the 
domain knowledge in the existing FCG rate model was 
inherited from the SR. The equation was derived from 
the FCG test data of Al-7055-T7511, which includes 
three variables, ΔK, R, and ΔKth through the SR. The SR 
model is straightforward and suitable for engineering 
applications. This work also provides a fitting method for 
the SR model, which is used to fit the crack growth rate 
test results of six metal materials. The accuracy and uni-
versality of the SR model were evaluated and compared 
with traditional FCG rate model prediction results.

2  Crack Growth Models
The generally accepted FCG theory, based on the relation 
between the FCG rates da/dN and ΔK, was proposed by 
Paris [8], and is given by Eq. (1).

where a and N represent the crack length and number of 
loading cycles, respectively, while C and m are material 

(1)
da

dN
= C · (�K )m,

constants in the Paris’ model. The range of the SIF is 
determined by ΔK = Kmax − Kmin, where Kmax and Kmin 
are the maximum and minimum stress intensity fac-
tors, respectively. In Figure  1, the FCG rates of identi-
cal materials at various R-ratios are shown as a series of 
essentially parallel curves associated with ΔK [14]. The 
FCG rate curve shifts to the left overall as the R-ratio 
increases. The R-ratio is defined by R = σmin/σmax, where 
σmax and σmin, denote the maximum and the minimum 
loading amplitude. It is difficult to reflect the effect of 
the R-ratio on the FCG rate of the materials using only 
ΔK. To overcome this issue, some well-known FCG rate 
models incorporate the contribution of R-ratios, which 
are briefly listed in the following section. Furthermore, it 
is generally assumed that the crack does not grow when 
ΔK < ΔKth. Therefore, ΔKth in the FCG rate model is par-
ticularly important in practical engineering applications.

2.1  Forman’s Model
Forman et al. [12] modified Paris’ model to integrate the 
Paris region and fast-fracture region FCG behaviour, as 
shown in Eq. (2).

where Kmax denotes the maximum SIF, and Kc is frac-
ture toughness that denotes the transition to unstable 
crack growth. As Kmax approaches KC, the denominator 
approaches zero and the FCG rate increases significantly. 
Thus, the model matches the fast-fracture region FCG. 
However, Forman’s model is inadequate for forecasting 
FCG behaviour in the threshold region.

2.2  Elber’s Model
Elber [9] introduced the notion of crack closure and 
proposed ΔKeff as a driving force to characterise the 
influence of the R-ratio on the FCG rate. This model is 
expressed by Eqs. (3) and (4).

(2)
da

dN
=

C(�K )m

(1− R)(KC − Kmax)
,

Figure 1 Crack growth rate curves under different R-ratios
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where Kop is the SIF corresponding to the crack open-
ing stress σop, which is determined by the load associated 
with a 2% deviation in the slope of the load–displacement 
curve [40]. The crack closure phenomenon has a more 
significant impact at a low R-ratio. With the crack open-
ing Kop approaching the minimum SIF, the crack closure 
phenomenon can be ignored at a high R-ratio.

2.3  Kujawski’s Model
Kujawski [13] established a new driving force model for 
predicting the FCG rate of aluminium alloys. This model is 
not based on the crack closure effect, but selects the posi-
tive value of the SIF range (ΔK+) and Kmax as the driving 
force to explain the R-ratio effect on crack growth. This 
model can be described using Eqs. (5) and (6).

where ΔK+ = ΔK when R ≥ 0, and ΔK+ = Kmax for R < 0. 
Subsequently, Eq. (6) is expanded into Eq. (7) based on 
the crack growth test data of the other metals [41, 42].

(3)
da

dN
= C · (�Keff)

m,

(4)�Keff = Kmax − Kop,

(5)
da

dN
= C · (�K ∗)m,

(6)�K ∗ =
(

Kmax�K+
)0.5

,

(7)�K ∗ = (Kmax)
αK
(

�K+
)1−αK ,

where 0 ≤ αK ≤ 1 is a fitting parameter determined by the 
material and geometry. Kujawski’s model is based on the 
assumption that when R < 0, negative stress does not con-
tribute to crack growth. The impact of compressive loads 
on crack growth cannot be overlooked, following the 
observations of subsequent studies [43, 44].

2.4  Huang’s Model
To overcome the overestimated results in Kujawski’s model 
at high R-ratios, Huang et al. [14] developed an improved 
FCG model by introducing a correction factor M in the 
form of a piecewise function, as shown in Eqs. (8) and (9).

(8)
da

dN
= C(M�K )m,

where β and β1 are constants that depend on the mate-
rial properties and environmental conditions, and 
β1 = 1.2 × β. For the aluminum alloy and steel, the param-
eter β is approximately set to 0.7, while for Ti-6Al-4V, 
it is set to 0.5. Compared with Kujawski’s model, this 
model not only considers the contribution of the com-
pression load, but also provides more accurate results 
under R > 0.5. More accurate parameters, β and β1 can be 
acquired using numerous sets of test data. However, the 
FCG rate data with varying R-ratios are sometimes inad-
equate for engineering materials.

2.5  Zhan’s Model
Because the da/dN–ΔK curve resembles the parallel line 
under different R-ratios, Zhan et al. [15] proposed a sim-
plified FCG rate prediction model, as shown in Eqs. (10) 
and (11).

where C0 and m0 are the material constants correspond-
ing to R = 0 in Huang’s model, and αZ is the correction 
factor of the R-ratio. It can be solved by Eq. (12).

The solution of Zhan’s model is straightforward, which 
compensates for the limitation that Huang’s model is 
unsuitable for high-strength alloy steel. For most low-
strength alloys, αZ is set to 0.65. For some high-strength 
alloys, such as titanium alloys, αZ is set to 0.75. Zhan 
suggested that the FCG rate curve under an arbitrary 
constant R-ratio could be used as the basic curve in the 
scarcity of test data with R = 0. This model is limited to 
Paris’ region, and the choice of a basic curve with varying 
R-ratios results in erroneous solutions of C0, m0, and αZ.

2.6  NASGRO’s Model
Based on the crack closure theory, Mettu et al. [10] pro-
posed the NASGRO model of crack growth rate suitable 
for the entire process of the threshold, Paris’, and fast-
fracture regions. Its form is shown in Eq. (13).

(9)M =



















(1− R)−β1(−5≤R < 0),

(1− R)−β(0≤R < 0.5),
�

1.05− 1.4R+ 0.6R2
�−β

(0.5≤R<1).

(10)
da

dN
= C0 · (��K )m0 ,

(11)� = exp(αZR), (−1 ≤ R < 1),

(12)
log

(

da

dN

)∣

∣

∣

∣

R  =0

− log

(

da

dN

)∣

∣

∣

∣

R=0

= � log

(

da

dN

)

= m · αZ · R,
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where p and q describe the contribution parameters of 
the threshold and fast-fracture regions, respectively. 
Because only a small fraction of the fatigue life is spent 
in the fast-fracture region, Zhang et al. [45] simplified the 
NASGRO model using Eq. (14).

where ΔKeff and ΔKeff,th denote the effective SIF and its 
threshold value, respectively. This can be expressed by 
Eqs. (15) and (16).

where U is expressed in terms of Newman’s crack closure 
function (f), and R in the form of Eq. (17) [11].

f is given by Eq. (18) as:

while Newman’s crack closure estimations are expressed 
by Eqs. (19)–(22).

ere, Smax represents the maximum stress during the 
load cycle. The flow stress σ0 was calculated as the aver-
age between the uniaxial yield and ultimate tensile 
strength [46]. αN is the constraint value used to account 
for the three-dimensional stress state [47], depending 
on the material. The NASGRO model is highly accurate 
and is applicable to all the three regions of the FCG pro-
cess. However, it must confirm various parameters, and a 
large amount of test data is required to support its estab-
lishment while considering crack closures. The various 
phenomena that cause crack closure include the crack 

(13)
da

dN
= C(�Keff)

m (1−�Kth/�K )p

(1− Kmax/KC)
q ,

(14)
da

dN
= C(�Keff)

m

(

1−
�Keff,th

�Keff

)p

,

(15)�Keff = U�K ,

(16)�Keff,th = U�Kth,

(17)U =

(

1− f

1− R

)

,

(18)

f =

{

max
(

R,A0 + A1R+ A2R
2 + A3R

3
)

(R ≥ 0),
A0 + A1R(−2 ≤ R < 0),

(19)

A0 =

(

0.8613− 0.3387αN + 0.0465α2
N

)

[

cos

(

(π/2)Smax

σ0

)]
1
αN

,

(20)A1 = (1.047− 0.233αN)
Smax

σ0
,

(21)A2 = 1− A0 − A1 − A3,

(22)A3 = 2A0 + A1 − 1,

plasticity region, crack surface roughness, fluid inside the 
crack, and corrosion deposits near the crack tip [48]. The 
crack closure phenomenon cannot be precisely repre-
sented quantitatively, because it is heavily influenced by 
slight variations in the crack path, ambient factors, load-
ing conditions, and test methods [49]. The model must 
be simplified to enhance its applicability to engineering 
problems, considering time and test costs.

3  Symbolic Regression
3.1  High‑Performance Symbolic Regression in Python
As previously mentioned, the existing FCG models are 
either solely applicable to the Paris region or excessively 
complex for considering the crack closure phenom-
enon, and require a large amount of test data for sup-
port. Recently, various scholars have used ML regression 
models to predict FCG rates. Both the ML and traditional 
regression models were based on specific model param-
eters. For example, the standard linear regression model 
is based on the linear relationship between the depend-
ent and independent variables. As a nonlinear technique, 
artificial neural networks (ANN) also depend on the defi-
nition of the activation or transfer functions.

SR does not require assuming a specific form of the 
function between independent and dependent variables 
in advance. Instead, it only requires that the connection 
between the independent and dependent variables be 
described using function expressions. Simultaneously, 
the special mathematical operators, constants, and ana-
lytical functions are introduced to search for the opti-
mal solution using these unique module combinations. 
Any equation inthe SR can be expressed in the form of a 
binary tree. The SR tree structure comprises the terminal 
and internal nodes, which represents the constant and 
variable, and the function and operation symbols, respec-
tively. The SR tree representation equation is presented 
in Figure  2. The model becomes increasingly sophis-
ticated as the length and depth of the tree increase. To 
avoid excessive tree development, the length and depth 
of the trees must be limited. SR is essentially genetic 
programming, which resembles Darwin’s natural selec-
tion principle. In genetic programming, the initial pop-
ulation is randomly generated according to the defined 
function, and individuals are screened according to their 
fitness. It is easier for an individual possessing higher 
fitness to appear in the next generation of individuals. 
Individuals with higher fitness evolve through crosso-
ver and mutation. As shown in Figure 2, crossover refers 
to the random exchange of subtrees between the equa-
tions of the previous generation, which produces new 
offspring individuals. Mutation implies that a node or 
multiple nodes in the equation are randomly adjusted to 
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ensure population variety to explore better data-fitting 
equations. Fitness evaluation, screening, crossover, and 
mutation occur in each generation to produce new indi-
viduals, and this process repeats until it reaches the num-
ber of iterations or is artificially terminated. In this study, 
high-performance symbolic regression in Python (PySR) 
is used for the symbolic regression [50].

The procedure for the domain knowledge-guided SR is 
shown in Figure 3. In PySR, each node has a Complexity 
of one and the Complexity increases with the number of 
nodes. Each variable, constant, or operator in the equa-
tion increases Complexity by one. The equation not only 
requires considering higher accuracy, but also its Com-
plexity [51]. The SCORE is defined by Eq. (23).

where curMSE and lasMSE are the mean square error 
(MSE) of the contemporary and last individuals, respec-
tively, while curComplexity and lastComplexity represent 

(23)SCORE =
−[ln(curMSE)− ln(lastMSE)]

curComplexity− lastComplexity
,

the complexities of the contemporary and last individu-
als, respectively.

The main advantage of SR is that its output results 
are visual formulae with interpretable findings. How-
ever, genetic programming based on SR is essentially a 
random search process, with an almost limitless search 
space, and brute-force search without any precondi-
tions may consume a lot of time and memory. There-
fore, it is necessary to study the existing semi-empirical 
FCG rate model to identify specific conditions that may 
be used to develop an FCG rate model based on sym-
bolic regression.

3.2  Domain Knowledge‑Guided
The existing method for solving for the parameters of 
the FCG rate model usually uses the logarithm of the 
left and right sides of the equation. The correspond-
ing results for the eight FCG rate models are shown in 
Table  1. The model is represented in SR tree form for 
the convenience of analysis, as shown in Figure 4. Fig-
ure 4 demonstrates that regardless of the type of FCG 
rate model, the compensation function of the constant 
term lnC is included, and values of the different mod-
els vary so that the crack growth rate equation can be 
expressed as ln(da/dN) = g(•). The variables that affect 
g(•), both of which affect the crack growth rate of the 
material, include ΔK, Kmax, Kop, f, ΔK+, R, ΔKth and 
KC. Kmax and ΔK+ can be represented individually by 

Figure 2 Structure trees of SR

Figure 3 Procedure of domain knowledge-guided SR

Table 1 Eight equations of traditional FCG rates prediction 
models

Model 
name

Equation

Paris’ 
model

ln C +m · ln�K

For-
man’s 
model

ln C +m · ln�K − ln [(1− R) · KC −�K ]

Elber’s 
model

ln C +m · ln
(

�K
1−R − Kop

)

Kujaw-
ski’s 
model

ln C +m · αK · ln
�K
1−R + (1− αK)m · ln�K+

Huang’s 
model

ln C +m · ln�K +m · lnM

Zhan’s 
model

ln C +m · ln�K +m · αZ · R

NASGRO 
model

ln C +m · ln�K +m · ln 1−f
1−R + p · ln(1− �Kth

�K )− q · ln(1− Kmax

KC
)

Simpli-
fied 
NASGRO 
model

ln C +m · ln�K +m · ln 1−f
1−R + p · ln(1− �Kth

�K )
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a function that includes ΔK and R. Kop and f are crack 
closure parameters that must be determined by the 
FCG test data. As described above, a precise quantita-
tive description of crack closure was not feasible [52]. 

The threshold and Paris regions dominated the crack 
growth process most of the time. The fast-fracture 
region accounted for only a minor portion of the time 
during crack growth. Therefore, the five parameters 

Figure 4 SR trees of eight traditional models equation for FCG rates prediction and formula structures
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Kmax, ΔK+, Kop, f and KC were excluded from the pre-
sent model. In the above eight FCG rate models, the 
ΔK and ΔKth terms usually appeared in the form of 
lnΔK and ln(1-ΔKth/ΔK). The R term may appear in the 
form of ln(1-R), R or (1-R); therefore, three forms of R 
terms were imported to analyse R-ratio contribution to 
the establishment of the FCG rate model. The remain-
ing lnC, m, αZ, p and q are constant terms that can be 
generated by SR. Moreover, traditional semi-empirical 
FCG rate models contain Paris’ term, lnC+ m × lnΔK. 
Therefore, the equation generated by SR should include 
Paris’ term.

Thus, the FCG rate model established by the domain 
knowledge-guided SR is mainly related to ΔK, ΔKth and 
R, which can be inferred from Eq. (24).

The FCG model established in the present work pri-
marily included three variable parameters, which were 
represented by the SR tree, as shown in Figure 4. Previ-
ously, researchers proposed a connection between the 
three parameters based on experience or test data. The 
artificial introduction of the relationship between the 
three parameters may affect the accuracy of model estab-
lishment. In this study, PySR was used to explore the rela-
tionships between the three variable parameters. Here, 
x0, x1, and x2 represent lnΔK, ln(1-R) or R or (1-R), and 
ln(1-ΔKth/ΔK), respectively.

In the present study, the SR model was established 
using PySR, and the model parameters are listed in 
Table 2. The data used were the Al-7055-T7511 [14] FCG 
test data obtained from other studies. Niteration means 
the number of iteration, which was set to a large value 
(2000) here. PySR can yield optimal offspring individuals 
in real-time. The training process was manually termi-
nated after identifying an interpretable and highly accu-
rate individual. The operators ’ + ’, ’ - ’, ’ × ’, ’ / ’, ’ln_abs() ’ 

(24)

ln
da

dN
= g

(

ln�K , ln (1− R)or R or (1 - R), ln(1−
�Kth

�K
)

)

,

were used. To avoid the overcomplex of individuals gen-
erated by SR, the Complexity is set to 20, which means 
that the total number of operators, constants, and vari-
ables in equations can not beyond 20. A high logarithmic 
term such as ln(ln(•)+•) did not appear in the semi-
empirical FCG rate model; to obtain an interpretable 
solution, there was at most a variable in the constraint 
ln_abs() function. The MSE was used as the loss func-
tion of the SR to judge fitness. The Pearson correlation 
coefficient (r) was adopted to evaluate the fitting degree 
between the predicted and test values [53, 54], which is 
defined by Eq. (25):

where ypre and ytest denote the predicted and test values of 
the output separately, and ypre and ytest denote the mean 
of two variables.

The input characteristic X and output characteristic 
Y were lnΔK, ln(1-R) or R or (1-R), ln(1-ΔKth/ΔK), and 
ln(da/dN), respectively. Moreover, the output feature Y of 
PySR was the logarithmic form of the FCG rates, which is 
ln(da/dN); therefore, the quantitative evaluation param-
eters used in the present work were all based on the value 
of feature Y.

Moreover, integrating other FCG rate models provided 
more information for the SR process. The eight col-
lected FCG rate models were suitable for a wide range 
of R-ratios and exhibited a high prediction ability for a 
variety of materials. Therefore, the eight FCG rate models 
were considered reliable references for establishing the 
SR model.

(25)r =

∑

(

ypre − ypre

)

(

ytest − ytest
)

√

∑

(

ypre − ypre

)2
√

∑
(

ytest − ytest
)2

,

Table 2 Basic settings for PySR

Parameters Value

Material Al-7055-T7511

Niterations 2000

Complexity 20

Operators ‘+’, ‘-’, ‘×’, ‘/’, ‘ln_abs()’

Constraints ‘ln_abs’:(1)

Loss
MSE = 1

n

n
∑

i=1

(

ŷi − y
)2

Input characters ln�K , ln (1− R) or (1 - R) or R, ln(1−
�Kth
�K )

Output character ln da
dN

Figure 5 Pareto front of best equations showing Complexity and 
Loss
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4  Results and Extensions
4.1  Symbolic Regression Results and Analysis
In this section, the FCG test data of the Al-7055-T7511 
are used for the SR. The Pareto front in Figure  5 illus-
trates the trade-off between the equation complexity, as 
defined by the number of nodes in the SR tree, and MSE. 
To make the results more intuitive, we considered the 
logarithmic coordinates of the loss. Figure 5 shows that 
the loss decreases with an increase in the equation com-
plexity, which represents an improvement in the accu-
racy of the regression. As shown in Figure 5, the loss of 
the equation generated by the three approaches is nearly 
identical before the complexity becomes less than 11. 

When the complexity exceeds 12, the loss of the equation 
obtained by ln(1-R) exceeds that of the other two meth-
ods, indicating that the result obtained by R or (1-R) is 
more accurate than that obtained by ln(1-R). The loss 
obtained using R or (1-R) then decreases only marginally 
with more complex equations after the equation com-
plexity reaches 14.

Tables 3, 4, 5 show the detailed equations obtained by 
the SR. Combined with Table 3, 4, 5, the equations with 
a complexity of less than 11 obtained by the other three 
methods have the same form, except for the equation 
of complexity 9. The equations of complexities 9 and 
12 obtained by R or (1-R) can take the same form after 

Table 3 Best equation obtained by PySR using ln(1-R), where x0, x1, and x2 represent lnΔK, ln(1-R), and ln(1-ΔKth/ΔK), respectively

Complexity Loss SCORE Equation

1 11.95728320 0 −16.64

3 6.85792887 0.506034 x0 − 18.65

4 5.12093165 1.015250 − ln(|x2|)− 17.52

5 1.62683224 5.138852 −0.79
/

x2 − 20.06

6 0.38504615 7.903765 −2.78× ln(|x2|)− 19.08

8 0.26074687 1.355014 −3.66× ln(|x2|)− x2 − 20.76

10 0.18593335 1.515445 −3.33× ln(|x2|)− 0.62×x2 − 20.12

11 0.16588967 1.196780 ln(|x2|)×((− 0.31× ln(|x2|))+ 2.38)− 19.44

12 0.15085690 1.091710 −4.43
/

(x0−x2)− 2.79× ln(|x2|)− 17.41

14 0.12528518 1.204919 (−6.19−x1)
/

(x0−x2)− 2.80× ln(|x2|)− 16.90

16 0.12092982 0.264973 6.19
/

(x0−x2)− 0.44×x1 − 2.80× ln(|x2|)− 16.90

17 0.11267048 1.166901 −0.02
/

(x1 + 0.58)×(0.31× ln(|x2|)− 2.38)+ ln(|x2|)− 19.39

19 0.11246359 0.016524 −0.02
/

(x1 + 0.59)×(0.31× ln(|x2|)− 2.38)− 0.02+ ln(|x2|)− 19.39

Table 4 Best equation obtained by PySR using R, where x0, x1, and x2 represent lnΔK, R, and ln(1-ΔKth/ΔK), respectively

Complexity Loss SCORE Equation

1 11.95728320 0 −16.64

3 6.85792887 0.506034 x0 − 18.65

4 5.12093165 1.015250 − ln(|x2|)− 17.52

5 1.62683224 5.138852 −0.79
/

x2 − 20.06

6 0.38504615 7.903765 −2.78× ln(|x2|)− 19.08

8 0.26074687 1.355014 −3.66× ln(|x2|)− x2 − 20.76

9 0.20797211 1.920022 3.97×x0 + 2.99×x1 − 24.82

10 0.18593337 1.063165 −3.33× ln(|x2|)− 0.62×x2 − 20.12

11 0.16588967 1.196781 ln(|x2|)×((− 0.31× ln(|x2|))+ 2.38)− 19.44

12 0.14459242 1.579150 1.65×(x0 − ln(|x2|))+ 1.12×x1 − 18.17

14 0.11595452 1.431851 2.59×x0 + 1.87×x1 − 1.03× ln(|x2|)− 22.85

16 0.11349541 0.160530 2.61×x0 + x1 + x1 − 0.02
/

x1 − ln(|x2|)− 22.85

17 0.11347807 0.002519 2.62×x0 + x1 + x1 + 0.10× ln(|x1|)− ln(|x2|)− 22.83

18 0.10986783 0.565648 2.67×x0 + 0.16
/

x0 + 1.88×x1 − ln(|x2|)+ 0.44− 22.69

20 0.10930385 0.048846 2.69×x0 + 0.13
/

x0 + x1 + x1 − 0.02
/

x1 − ln(|x2|)− 23.11
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numerical transformation. The complexity 6 equation 
has the highest evaluation SCORE of 7.903765, indicat-
ing that it possesses the optimal value of the improved 
precision-to-complexity ratio when compared to other 
equations. From the standpoint of model efficiency, the 
complexity 6 equation guarantees a lower complexity 
while considering the accuracy and is the optimum solu-
tion for SR. However, the equation contained only one 
characteristic variable x2, without x0 and x1. This study 
aimed at building an FCG rate model with three char-
acteristic variables: ΔK, R and ΔKth. Furthermore, we 
discovered that this equation and the complexity 9 equa-
tion share some similarities with Zhan’s model, which 
confirms the reliability of the SR results. The form of the 
equation derived by the three approaches was dissimilar 
when the complexity exceeds 14. Further, the equations 
derived from the three subtrees are separately analysed.

4.1.1  Symbolic Regression Results by ln(1‑R)
Table 3 lists the detailed equations for ln(1-R). When the 
complexity is less than 11, the characteristic variables 
of each equation appear alone, and there is no x1 term 
related to R. Those equations are inconsistent with the 
purpose of this study. Other equations lack Paris’ term 
which is necessary for traditional semi-empirical equa-
tions. Thus, the equations obtained using ln(1-R) do not 
contain the objective equations of this study.

4.1.2  Symbolic Regression Results by R
As shown in Table 4, equations with a complexity of less 
than 11 are consistent with those obtained by ln(1-R) and 

are not analysed in this section. Only the fitting coef-
ficient values differed between the equations of com-
plexities 12 and 14, where the x0 and ln(|x2|) constant 
coefficients of the complexity 12 equation are the same, 
changing them to alternative coefficients reduces the loss 
and has a SCORE of 1.431851. Thus, the complexity 14 
equation was chosen over the complexity 12 equation. 
Equations with complexity greater than 16 contain the 
Paris’ term necessary for the FCG rate model. In contrast, 
the x1 term, conversely, takes the form ln(|x1|) or 1/x1, 
which is singular at R = 0. Therefore, only the complexity 
14 model can be regarded as an SR-undetermined model.

4.1.3  Symbolic Regression Results by (1‑R)
As shown in Table  5, the equations whose complexity 
is less than 12 are consistent with those obtained using 
R. Note that following a numerical operation, the equa-
tions of complexities 12 and 14 given by R or (1-R) can 
assume the same form. As in Section 4.1.2, the complex-
ity 14 model can be regarded as an SR-undetermined 
model. In addition, the complexity 13 equation is sup-
plemented by the threshold subtree of the constant terms 
multiplier x2 compared with the complexity 9 equation, 
and the constant multipliers x0 and x1 are adjusted. 
Therefore, the complexity 13 equation can be chosen as 
an SR-undetermined model. Moreover, the complexity 
20 equation has the highest accuracy in this round of SR. 
Nonetheless, obtaining a hint of x0×x1 from the stand-
ard semi-empirical FCG rate model is problematic. The 
complexity 18 equation also lacks interpretability for the 
term. The complexity 16 equation also lacks an explana-
tion for x1×x2 from the traditional semi-empirical FCG 

Table 5 Best equation obtained by PySR using (1-R), where x0, x1, and x2 represent lnΔK, (1-R), and ln(1-ΔKth/ΔK), respectively

Complexity Loss SCORE Equation

1 11.95728320 0 −16.64

3 6.85792887 0.506034 x0 − 18.65

4 5.12093165 1.015250 − ln(|x2|)− 17.52

5 1.62683224 5.138852 −0.79
/

x2 − 20.06

6 0.38504615 7.903765 −2.78× ln(|x2|)− 19.08

8 0.26074687 1.355014 −3.66× ln(|x2|)− x2 − 20.76

9 0.20797211 1.920022 3.97×x0 − 2.99×x1 − 21.83

10 0.18593335 1.063166 −3.33× ln(|x2|)− 0.62×x2 − 20.12

11 0.16588967 1.196780 ln(|x2|)×((− 0.31× ln(|x2|))+ 2.38)− 19.44

12 0.14459242 1.579150 1.65×(x0 − ln(|x2|))+ 1.12×x1 − 20.32

13 0.13260567 1.081161 3.65×x0 − 2.72×x1 + 0.30×x2 − 21.17

14 0.11579778 1.828878 2.55×x0 − (1.79×x1 + ln(|x2|))
/

0.97− 20.95

16 0.11292975 0.187817 2.55×x0 − (ln(|x2|)+ x1×(1.79− 0.05×x2))− 20.95

18 0.11002615 0.221151 2.64×x0 − 0.04
/

x0
/

x1 + 1.84×x1 − ln(|x2|)+ 0.44− 21.17

20 0.11002614 0.000001 2.64×(x0 − 0.07)− 0.04
/

x0
/

x1 + 1.84×x1 − ln(|x2|)+ 0.44− 20.99
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rate model. Thus, the equations of complexity 13 and 14 
models can be regarded as SR-undetermined models.

4.2  Equation Selection and Extension
Following the description provided in Section 4.1, there 
are currently three SR-undetermined models. The best 
equation is selected as the final model in this section. 
Because the equations of complexity 14 by R and (1-R) 
could be converted to each other numerically, they have 
been treated as complexity 14 equations. The complex-
ity 14 equations had a higher SCORE than the complex-
ity 13 equations, indicating that the former conserved 
more equation space. Moreover, the complexity 14 equa-
tion was more precise than the complexity 13 equation. 
The two equations primarily differed in the processing of 
threshold terms. In the threshold term of the complex-
ity 13 equation, the constant term multiplied by x2 was 
added as compensation, followed by adding the constant 
term multiplied by ln(x2).

Figure 6 shows the effect of the x2 coefficient on the 
FCG process in the two SR-undetermined models. The 
influence of the threshold value on FCG is known to 

Figure 6 Effect of the x2 term coefficient on the Al-7055-T7511(R = − 1) FCG process in two SR-undetermined models, a the x2 term correction 
factor versus ΔK, b predicting curves and test data after removing the x2 term

be mainly concentrated in the threshold region. The 
impact of the threshold value rapidly diminishes after 
the FCG enters the Paris region. Therefore, the x2 
term should approach zero in the second half of crack 

growth. As illustrated in Figure  6a, the x2 correlation 
factor of complexity equation  13 approaches the zero 
baseline as ΔK increases. However, the x2 correla-
tion factor of the complexity 14 equation maintains 
an increasing trend. After removing the x2 term of 
the two SR-undetermined models, the complexity 13 
equation in Figure  6b still reflects a good correlation 
with the test data in the Paris region whereas the com-
plexity 14 equation results deviate significantly from 
the test data. Thus, considering the equation fitness, 
complexity, and interpretability, the complexity 13 
equation was selected as the final model derived from 
the domain knowledge-guided SR, defined as the SR 
model.

The complexity 13 equation maintained the foun-
dation of Zhan’s model and adds a parameter with 
a threshold value. The threshold value parameter 
resembled that of the NASGRO model and could be 
regarded as compensation for the threshold value of 
Zhan’s model. By replacing the constants in the model 
by constant coefficients, the SR model is expressed as 
Eq. (26).

Exponentiating both sides of the equation, we obtain 
Eq. (27).

(26)

ln

(

da

dN

)

= lnC +m ln(�K )+ q ln

(

1−
�Kth

�K

)

+ α(1− R)

= ln

[

C · eα(1−R) · (�K )m ·

(

1−
�Kth

�K

)q]

,
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Defined α’ = α/m, the SR model was simplified manu-
ally to Eq. (28).

Therefore, an FCG rate model considering ΔK, R and 
ΔKth was obtained using domain knowledge-guided SR. 
The various colour label points in Figure  7 represent 
the FCG test rates of the Al-7055-T7511 under different 
R-ratios, and the corresponding colour curves represent 
the predictions of the SR model. Figure 7 shows that the 
test results are consistent with those predicted by the SR 
model, and the MSE corresponding to ln(da/dN)pre and 
ln(da/dN)test is 0.13260567.

Observing Eq. (28), the explanatory variables ln(da/dN) 
and (lnΔK, 1-R, ln(1-ΔKth/ΔK)) were regarded as a linear 
relationship, implying that there was a multivariate lin-
ear function between the explanatory variables. The SR 
model had four undetermined parameters, which were 
divided into the partial regression coefficient K = (K1, K2, 
K3) and constant term B. Hence, multiple linear regres-
sion (MLR), as shown in Eqs. (29) and (30), can be used 
to obtain the fitting parameters.

(27)
da

dN
= C · eα(1−R) · (�K )m ·

(

1−
�Kth

�K

)q

,

(28)
da

dN
= C · (eα

′(1−R)�K )m ·

(

1−
�Kth

�K

)q

,

(29)Y = B+ KX ,

(30)
ln

(

da

dN

)

= lnC +m ln(�K )

+ α(1− R)+ q ln

(

1−
�Kth

�K

)

,

which partial regression coefficient K = (K1, K2, 
K3) = (m,α,q) and constant term B = lnC. The MLR 
method can extend the SR model to other materials, and 
the next section demonstrates the application of the SR 
model to other materials and evaluates it in comparison 
with the semi-empirical models.

4.3  Performance Evaluation and Model Comparison
To demonstrate the effectiveness of the SR model, the 
following examples used test data for the FCG rate 
from the literature. The material fitting coefficient 
was obtained using the MLR. This section contains 
test data for the titanium alloys Ti-10V-2Fe-3Al [55], 
Ti-6Al-4V [56], Cr-Mo-V steel [57], aluminum alloys 
LC9cs [58], Al-2324-T3 [43] and Al-6013-T651 [59]. 
In this section, the minimum FCG rate corresponding 
to an order of  10-10 m ·  cycle-1 was considered as ΔKth. 
Because the minimum crack growth rate of some test 
data was lower than  10-10 m ·  cycle-1, ΔK, correspond-
ing to the minimum FCG rate, was defined as ΔKth to 
ensure the integrity of the test data. The fitting param-
eters and correlation coefficients of the different mate-
rials obtained by the MLR are listed in Table  6. The 
value of α in Table  6 is the weight term of the R-ratio 
effect. In Zhan’s model, the value of αZ is closer to 
0.75 for some high-strength metallic materials such as 
titanium alloys, and for other metallic materials, αZ is 
set to 0.65[15]. However, the value of α did not have a 
fixed value in the SR model. Zhan’s model ignored the 
threshold value and arbitrarily selected the test data 
under a constant R-ratio as the basic crack growth 
rate curve to solve, whereas the MLR method adopted 
by the SR model more comprehensively considers the 
influence of various variables.

The various colour label points in Figure  8 represent 
the FCG test rates with different R-ratios, and the cor-
responding colour curves represent the prediction of the 
SR model. According to Figure 8, the majority of the test 
data are condensed to the SR model’s predicting curves, 
and the MSE of the prediction and test is less than 0.1. 
Most of the test data points for titanium alloys Ti-6Al-4V, 

Figure 7 SR model predicting curves and test data about 
Al-7055-T7511

Table 6 SR model fitting parameters for various materials

Materials lnC m α q

Ti-10V-2Fe-3Al − 23.08 3.29 − 2.40 0.47

Ti-6Al-4V − 24.90 3.61 − 2.07 0.38

Cr-Mo-V steel − 24.55 3.16 − 2.76 0.26

LC9cs − 20.28 3.23 − 2.29 0.49

Al-2324-T3 − 22.85 4.78 − 4.85 0.55

Al-6013-T651 − 22.93 3.76 − 2.63 0.36
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Figure 8 SR model predicting curves and test data about six materials: a Ti-6Al-4V, b Ti-10V-2Fe-3Al, c Cr-Mo-V steel, d LC9cs, e Al-2324-T3, f 
Al-6013-T651
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Ti-10V-2Fe-3Al are consistent with the predictive 
curves, as shown in Figure 8a and b, indicating that the 
SR model is suitable for titanium alloys. The match-
ing effect between the test data points and predicted 

curves was relatively unsatisfactory when the FCG pro-
cess approached the fast-fracture region because the SR 
model considered only the threshold and Paris regions 
and ignored the fast-fracture region of crack growth. 

Table 7 MSE of the four models with different materials

SR model Kujawski’s model Huang’s model Zhan’s model

Ti-6Al-4V 0.08999753 0.34794424 1.13046593 1.03957789

Ti-10V-2Fe-3Al 0.24147716 0.99731395 0.38633674 0.61096132

Cr-Mo-V 0.12460164 0.39392591 0.33399462 0.28708033

LC9cs 0.17511087 0.32597147 0.35360496 0.35360907

Al-2324-T3 0.32543334 1.26745959 0.94963109 0.82653289

Al-6013-T651 0.12429032 0.29828217 0.36357324 0.42400604

Al-7055-T7511 0.13260567 0.21224501 0.26963431 0.27983963

Average 0.17155109 0.51196363 0.46937770 0.50304010

Figure 9 FCG rates based on four models between the SR model and test data: a SR model, b Kujawski’s model, c Huang’s model, d Zhan’s model
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Figure  8c demonstrates that the predicted curve has a 
good coincidence relationship with the test data for Cr-
Mo-V steel which indicates that the SR model is appro-
priate for steel materials. According to Figure 8d, e, and 
f, the predicted curves for the aluminium alloys LC9cs, 
Al-2324-T3 and Al-6013-T651 have a good coincidence 
relationship with the test data, indicating the suitability 
of the SR model for aluminium alloys.

The crack growth rates predicted by the SR model 
were satisfactory for all the above materials and cases. 
Nevertheless, the R-ratios of the FCG test data used 
for prediction were between − 1 ≤ R < 1 in the present 
research work, so it is considered that the model showed 
a good prediction effect when the R-ratios were between 
− 1 ≤ R < 1. However, the prediction effect of the crack 
growth rate for R < − 1 requires further verification.

Furthermore, the three FCG models, namely, Kujaw-
ski’s model, Huang’s model, and Zhan’s model, were 
chosen for comparison with the SR model. Owing to 
the insufficient crack closure and KC test data and Paris’ 
model cannot predict the crack growth rate with differ-
ent R-ratios, other FCG models introduced above were 
not evaluated in the present work. Table  7 summarises 
the MSE values of the various models for various materi-
als and R-ratios, and Figure 9 compares the test and pre-
dicted values of the four FCG rate prediction models.

As shown in Table 7, the MSE of the prediction results of 
the SR model for various materials is smaller than those of 
the other three models, which shows the accuracy of the SR 
model in FCG rate prediction. Figure 9 shows that the other 
three models predict well in the Paris region but not in the 
threshold region. Furthermore, the SR model can predict the 
FCG rates in the threshold region well. In general, as the r 
approaches 1, the global model exhibits better global pre-
diction performance. For 850 groups of FCG test data with 
different R-ratios, the evaluation parameters r of the four 
prediction models are 0.9921 (SR model), 0.9771 (Kujawski’s 
model), 0.9775 (Huang’s model), and 0.9781 (Zhan’s model). 
The SR model continued to exhibit the highest global predic-
tion precision.

5  Discussion
The evaluation and comparison of previous models indi-
cate that the proposed FCG rate prediction model based 
on domain knowledge-guided symbolic regression is 
suitable for predicting the threshold and Paris’ regions 
with different R-ratios. The SR model does not condense 
the FCG test data to a constant R-ratio in the narrow 
band of the crack-growth rate curve. Instead, the FCG 
rate prediction model was built directly based on the test 
data. As previously demonstrated, the SR model provides 
a more accurate prediction in the threshold region than 
the three traditional semi-empirical FCG rate models.

In addition, the domain knowledge-guided symbolic 
regression proposed in this study can serve as a general 
model construction method in research on crack growth 
prediction. The FCG rate-prediction model has the 
advantage of involving fewer subjective factors. Unlike 
the semi-empirical FCG rate prediction model developed 
by researchers for the test phenomenon, the SR model 
is primarily driven by test data under domain knowl-
edge guidance. This reduces human influence in the SR 
model and ensures the interpretability of the model 
within the framework of the traditional semi-empirical 
FCG rate model. The successful implementation of the 
SR model demonstrated the feasibility of domain knowl-
edge-guided SR in the construction of FCG rate models. 
Owing to data-driven adaptability, domain knowledge-
guided SR can develop more accurate models than the 
traditional FCG rate-modelling strategy based on experi-
ence and inspiration. Furthermore, because it considers 
the substructure of the traditional semi-empirical model, 
domain knowledge-guided SR can establish more inter-
pretable models than the pure numerical regression mod-
elling technique. In contrast, traditional ML methods are 
not only less explanatory, but also the training results can 
only be applied to the data space of the training set. In 
this study, the SR model was constructed by training with 
the Al-7055-T7511 FCG test data, and MLR was used to 
extend the SR model to other materials with accuracy. 
The FCG test data R-ratios used to train and evaluate the 
performance of the SR model were between − 1 ≤ R < 1, 
and its prediction performance for R < − 1 requires fur-
ther investigation.

Note that despite being built on the domain knowl-
edge, the SR model is still data-driven. Therefore, more 
research into the physical meaning of each subtree struc-
ture is required for a better understanding of the crack 
growth process. Furthermore, although the present study 
only considers ΔK, R, and ΔKth, other useful domain 
knowledge, such as the crack closure factor f may pro-
vide guidance for extending the application scope of the 
SR model. Other methods, such as XGboost, can be used 
to examine and select the importance of features as the 
number of characteristics increases, thereby reducing the 
spatial dimensions of the model.

6  Conclusions
(1) The proposed domain knowledge-guided SR obtained 
the variable subtree required for SR construction by ana-
lysing traditional semi-empirical FCG rate models. SR 
based on the variable subtree could balance the accu-
racy and interpretability of the data-driven model. This 
method provides a new direction for research on FCG.

(2) The SR model established in this work considered 
the comprehensive relationship between ΔK, R, and 
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ΔKth, and the prediction equation had a concise math-
ematical structure. The model was acquired based on the 
Al-7055-T7511 FCG test data and could be extended to 
other materials using MLR. The prediction curve of the 
SR model had a good correlation with the test results.

(3) In comparison to the other three traditional semi-
empirical FCG models, the SR model exhibited a more 
accurate prediction performance in both the thresh-
old and Paris’ regions. Overall, to seven materials in the 
study, the average MSE of the three conventional mod-
els was about 0.5, while the average MSE of the SR model 
was only 0.171, a more than 60% reduction. These results 
highlight the reliability of the SR model for predicting the 
FCG rate.
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