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Abstract 

The development of a battery management algorithm is highly dependent on high-quality battery operation data, 
especially the data in extreme conditions such as low temperatures. The data in faults are also essential for failure and 
safety management research. This study developed a battery big data platform to realize vehicle operation, energy 
interaction and data management. First, we developed an electric vehicle with vehicle navigation and position detec-
tion and designed an environmental cabin that allows the vehicle to operate autonomously. Second, charging and 
heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate opti-
mal charging and heating methods of the batteries in the vehicle. Third, the data transmission network was designed, 
a real-time monitoring interface was developed, and the self-developed battery management system was used to 
measure, collect, upload, and store battery operation data in real time. Finally, experimental validation was performed 
on the platform. Results demonstrate the efficiency and reliability of the platform. Battery state of charge estimation is 
used as an example to illustrate the availability of battery operation data.
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1 Introduction
With the increasing concerns about climate challenges 
and global energy, the utilization of clean energy and 
renewable energy is receiving more and more attention, 
which leads to the rapid development of electrochemical 
energy storage and electric vehicles (EVs) [1]. Due to high 
specific energy, high operating voltage, and environmen-
tal friendliness, lithium-ion batteries (LiBs) are currently 
the most widely used batteries in EVs [2]. To ensure the 
efficient and safe operation of the LiBs, it is an essen-
tial requirement for EVs to equip with battery manage-
ment systems (BMSs) and the development of effective 

management algorithms for BMSs is highly dependent on 
battery operation data [3]. However, the operation data 
for important scenarios such as thermal runaways and 
faults are difficult to obtain.

The data for the development of battery management 
algorithms can be mainly divided into five categories: 
laboratory test data [4], calibration data from battery 
manufacturers [5], network-sharing data [6], actual oper-
ation data [7], and simulation data. In general, laboratory 
test data focus on the characteristics of a battery within a 
certain number of cycles, and it is difficult to reflect the 
actual scenarios; The calibration data and some network 
sharing data are also mainly from laboratory tests, they 
focus on the accumulation of cycle numbers and provide 
limited value for the development of a dynamic algo-
rithm for battery management; The actual operation data 
(e.g., battery operation data in EVs) reflect the real work-
ing conditions which have few with the fully charged or 
discharged batteries, in such conditions state of charge 
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(SOC) interval is narrow and the real capacities of batter-
ies are not clear. The shortcomings of these data severely 
limit the development of management algorithms for 
BMSs.

Battery management requires open circuit voltage 
(OCV) calibration [8] and battery state estimation. Cur-
rently, it mainly relies on laboratory test data. The accu-
rate OCV curves need to be measured under stable open 
circuit conditions and will be affected by battery sam-
ples and battery aging levels [9], so there are problems in 
long-term application; The common model-based filter-
ing methods [10] for state estimation establish a relation-
ship between the voltage, current and the battery state 
based on the laboratory data. Nevertheless, the model 
parameters need to undergo a complex identification 
process. With the change of the environment and the 
aging of the battery, the model structure and parameters 
need to be adjusted accordingly [11], which adds difficul-
ties to developing accurate battery model laboratory test 
data; The machine learning methods extract the complex 
nonlinear relationship between battery state and vari-
ous variables through huge battery operation data. They 
include support vector regression (SVR) [12], random 
forest (RF) [13], neural network (NN) [14, 15], etc. How-
ever, the accuracy of the estimation results depends on 
the quality and quantity of the data used for training. For 
the battery management algorithms in EVs, if the training 
data cannot cover the actual EV driving conditions, the 
algorithms may fail in applications [16].

High-quality network-sharing data can also help to 
develop battery management algorithms [17]. The bat-
tery research group of the University of Maryland has 
published battery data sets related to four EV driving 
cycles [18]. Some other research institutions have also 
published battery data under different driving cycles [19, 
20]. However, the network-sharing data may not be able 
to cover all the working conditions.

To improve the adaptability and effectiveness of the bat-
tery management algorithm, actual operation data under 
the real-world driving scenarios of EVs are desired [21]. 
Jimenez-Bermejo et al. [22] designed a nonlinear autore-
gressive neural network with external input (NARX) to 
estimate the SOC using real data extracted from an EV 
during its daily trips. The network has been tested using 
54 different real driving cycles, obtaining highly accu-
rate results. Hong et al. [21] designed the state of health 
(SOH) estimation method for the battery system of EVs 
in the real world based on the actual data during EV driv-
ing within a year, and better performance is achieved. Li 
et al. [23] built a data set of EV operation and extracted 
accurate SOH estimation of EVs in the real world. Fang 
et al. [24] collected real-world driving data from twenty 
all-electric buses over many years and proposed a fault 

diagnosis method based on density-based spatial clus-
tering of applications with noise algorithms, which has 
shown better effectiveness and accuracy. In addition, 
the simulation data also has a certain application value. 
In Ref. [25], the author combines vehicle simulation and 
LiBs multi-physical electrochemical and thermal models 
and uses Matlab/Simulink platform to simulate and gen-
erate data. The proposed multi-physical modeling frame-
work for generating simulation data can be extended to 
many aspects, such as the thermal runaway trigger or the 
internal chemistry of the battery pack.

However, the test data of batteries in real EV scenar-
ios now belongs to EV owners, this is private data so it 
is difficult to access. Developing a large real EV test plat-
form will consume huge resources and costs. In addition, 
safely obtaining battery operation data during various 
faults for battery safety and fault early warning research 
is another issue to be addressed. Considering the need of 
BMS for actual operation data, an intelligent connected 
vehicle prototype test platform is built to obtain high-
quality battery experimental data at a low cost. The over-
all framework of the platform is shown in Figure 1. The 
platform mainly includes equivalent EV, the energy and 
data interaction system, and an environment cabin. The 
EV is equipped with a self-designed BMS, which can run 
autonomously and intelligently in the environment cabin. 
Different EV driving conditions can generate different 
working conditions for the battery. With the automatic 
wireless charging function, the vehicle can automatically 
go to the charging sites and turn on the automatic wire-
less charging system to charge the batteries. Before start-
ing, it can turn on alternating current (AC) heating to 
raise the battery temperature [26]. In this way, the auto-
matic alternating cycle of charging and discharging can 
operate continuously to accumulate long-term operation 
data, supporting the research on battery management 
algorithms. It also collects battery parameter information 
in real time and uploads it through the data interaction 
system. The upper computer interface can display this 
information. The main contributions of this paper are as 
follows:

(1) The intelligent connected vehicle prototype test 
platform is built. The experiment is carried out 
under different artificially set road conditions and 
temperatures. Compared with the way of obtain-
ing data from real vehicles, it greatly reduces the 
experimental cost and enriches the experimental 
scenarios;

(2) The platform is equipped with automatic wireless 
charging and AC heating systems, which ensures 
extensive energy interaction. It obtains rich data for 
wireless charging and discharging of the batteries;
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(3) The experimental data are obtained by a specially 
designed data interaction system, and battery SOC 
estimation is carried out based on the data-driven 
method using experimental data, which shows a 
good result.

The remainder of this paper is organized as follows: 
Section 2 introduces the overall composition of the plat-
form; Section  3 introduces the control principle of the 
platform; Section 4 describes the data interaction system; 
Section 5 shows and verifies the experimental results of 
the platform; Section 6 gives the conclusions.

2  Platform Composition
2.1  Design and Implementation of Equivalent EV
The equivalent EV is a core part of the overall experimen-
tal platform. To implement a prototype experiment, there 
are some specific requirements for the EV in terms of its 
speed and turning radius. In addition, we adopt a coax-
ial design for the two rear wheels of the vehicle, whose 

drive system is designed with a single-motor rear-drive 
scheme. The battery system uses twelve 18650 cylindri-
cal batteries connected in series to meet the voltage and 
power requirement of the drive system and its rated 
capacity is 2.4 A·h. The model and appearance of the 
vehicle are shown in Figure 2. The vehicle is composed of 
three modules: rear drive system, vehicle body, and steer-
ing system. This modular design makes the assembly and 
tuning process easy.

2.2  Orbit Road and Environmental Cabin
To allow the vehicle to run for a long time in the given 
condition, it is necessary to set up an orbit road and an 
environmental cabin. The orbit road gives the maximum 
utilization of space, the richness of working conditions, 
and the set of wireless charging sites. It has various uphill 
and downhill sections with different slopes to simulate 
various EV driving conditions. The design of several 
branch roads also provides more paths for vehicle opera-
tion, and the wireless charging sites are set on the branch 

Figure 1 Overall structure of the platform

Figure 2 Model and photo of the developed Intelligent connected electric vehicles
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roads, which are shown by the green in Figure 3(a). This 
design ensures that the vehicle can operate in a reliable 
closed-loop on the road for a long time. To simulate vari-
ous ambient temperatures, the whole system is placed in 
a large-scale environmental cabin. The cabin can set the 
indoor temperature in a wide range of − 40 °C to 60 °C. 
The actual scene of the platform is shown in Figure 3(b).

3  Design of System Control
In the experiment, the vehicle needs to operate automati-
cally for a long time without continuous human guidance 
and intervention. To this end, it is necessary to carry out 
automatic control of the system which includes:

(1) The vehicle can automatically adjust the speed and 
steering angle to ensure that it runs autonomously 
in the correct state.

(2) The vehicle can judge the road position informa-
tion, which is convenient for the implementation of 
the operation strategy.

(3) The vehicle can automatically realize wireless 
charging if the battery is at low SOC.

(4) The vehicle can obtain information and take meas-
ures to ensure safety when facing dangerous situ-
ations, and can also be shut down in time when a 
fault occurs.

3.1  Autonomous Navigation Based on Electromagnetic 
Signals

The vehicle needs to detect a target and perceive a road 
when it operates autonomously according to a certain 
trajectory. Road perception relies on lidar and deep 
learning, and pattern recognition. Target detection relies 
on a camera. They are two mainstream methods, which 

are reflected in today’s intelligent vehicles. However, con-
sidering the usage, development cost and actual needs, 
we use electromagnetic sensing to realize detection and 
perception in this experimental platform.

According to the Biot-Savart law, the magnetic induc-
tion intensity around an infinitely long conductor with 
direct current at a certain point is:

where µ0 represents the magnetic permeability in a vac-
uum, and r represents the distance from the point to the 
conductor. It can be seen that the magnetic induction 
intensity is inversely proportional to the distance from 
the point to the current flowing through the conductor.

Furthermore, the alternating current (AC) will gener-
ate an alternating magnetic field around the conductor. If 
a coil is placed at a certain point in the magnetic field, 
electromotive force can be induced in the coil, and an 
electromagnetic sensor can be developed based on this. 
Electromagnetic sensors can detect different electro-
motive forces at different positions, thus providing the 
relative position information between the point and the 
conductor. Based on this principle, we set AC current 
along the center line of the road, place electromagnetic 
sensors perpendicular to the driving direction of the 
vehicle in the front of it, and obtain the relative position 
and deviation between the vehicle and the center of the 
road. The layout of the electromagnetic detection system 
is shown in Figure 4.

Based on the signals detected from the four-channel 
sensors, the available signals are obtained after the nec-
essary anti-pulse filter, moving average filter, and nor-
malized process. The vehicle steering can be adjusted in 
combination with PD control [27]. Under the influence 

(1)B =

µ0I

4πr
,

Figure 3 Environmental cabin
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of these processes, the stability and robustness of the 
control effect on the vehicle are significantly enhanced, 
which can form an effective and reliable navigation for 

vehicle operation. Such a control scheme can effectively 
reduce the influence of temperature and lighting condi-
tions on the detection effect. The signal process flow is 
shown in Figure 5.

3.2  Extraction of Position Information Based on Radio 
Frequency Identification (RFID)

To allow the operating vehicle to perceive position infor-
mation such as intersection, it is necessary to design a 
vehicle-road wireless sensing system. This platform uses 
RFID technology to achieve wireless communication [28] 
between the identification module and the sign module, 
where the sign module is preset at a specific position 
on the road and the identification module is installed in 
the vehicle. When the vehicle runs to the specific posi-
tion, the expected communication can be realized and 
the position information can be obtained by reading the 
information in the sign module.

3.3  Automatic Wireless Charging System
Since the vehicle needs to run for a long time, the auto-
matic charging system is also essential. In this platform, 
the wireless charging coils are set on the ground at the 
designated sites of the road, and a wireless charging coil 
is also set at the bottom of the vehicle. Wireless charg-
ing can be realized through matching the coil with the 
inverter, rectifier, and other modules. Once the battery 
system is at low SOC, the vehicle can run to a charging 
site to allow the battery system to be charged. The auto-
matic charging system can be realized by encoding the 
vehicle state and performing actions in each state. The 
control flow is shown in Figure 6.

Figure 4 Layout of the electromagnetic detection system

Figure 5 Flowchart of signal processing

Figure 6 Flowchart of automatic charging system
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3.4  Autonomous Safety Protection System
Considering that this experimental platform is a large-
scale dynamic unmanned system, it is necessary to set up 
a safety protection system to deal with a certain danger in 
the event of abnormal failure. The safety protection sys-
tem needs to shut down the vehicle when it encounters 
an obstacle, resume operation if the obstacle is removed, 
and stop in time when the control program is abnormal. 
To this end, this platform sets up multiple protections in 
time and space dimensions and active and passive safety 
dimensions.

During operation, the vehicle will automatically detect 
the distance to surrounding obstacles, update status 
information in time and space, and this information will 
be synchronized to both the main control board and the 
slave control board. Once an abnormal or dangerous 
situation occurs, multiple security protections allow the 
system to respond in time and take effective measures 
quickly. The practical application has verified its reliable 
effect. In fact, a single control chip can surely complete 
such detection and execution tasks. However, to avoid 
unexpected downtime as much as possible, a protection 
link is added here, i.e., redundant design. The protec-
tion function will be lost only when both the main con-
trol board and slave control board fail at the same time, 
which almost never exists in actual operation.

In addition, the main control chip receives differ-
ent types of sensing signals to form and output signals 
through corresponding operations. At the same time, the 
main control chip is also interconnected with other mod-
ules, which can realize the communication function and 
various expansion functions. The overall control struc-
ture of the vehicle is shown in Figure 7.

To improve electrical and electromagnetic reliability, 
on the premise of meeting the working performance, 
the components are selected as low working frequency 
as possible and arranged reasonably to reduce the 
intensity of interference radiation. In practical applica-
tion, the propagation of electromagnetic interference 
is suppressed by reasonably arranging the direction of 

high-speed signal lines, adding filters or decoupling 
capacitors, and special packaging. Furthermore, the 
modular design and redundant safety design for each 
functional part also provide a guarantee for the reliability 
of the whole system.

4  Data Acquisition and Interaction
For the experimental platform, it is necessary to design 
the data acquisition and communication systems, which 
are also part of the BMS. Their tasks mainly include:

(1) Accurately collect various parameters of the battery 
system, including voltage, current, temperature, 
and other information.

(2) Realize reliable communication with the upper 
computer.

4.1  Battery Data Acquisition
LTC6811 is a chip specially designed by Linear Technol-
ogy for EV battery voltage acquisition. Each LTC6811-1 
chip can measure the voltages of 12 cells in series within 
290 μs. The parallel use between chips is also very con-
venient. In specific use, the LT6811-1 is connected 
to the four pins of the control chip to realize the serial 
peripheral interface (SPI) communication between 
the chips [29]. In a specific process, once the initializa-
tion and open-circuit check are completed, the analog-
to-digital converter (ADC) function will be turned on 
by sending the start command from the control chip to 
the LTC6811-1 chip. Then the control chip sends a read 
command to receive the voltage data when the ADC is 
completed, and a verification step is set to ensure the reli-
ability of the data. Temperature and current acquisition 
use the thermistor and hall element, respectively, and its 
application in software is similar to voltage acquisition. 
Then, the voltage, temperature, and current acquisition 
modules are integrated into the same electrical network 
to collect data and send them to the upper computer for 
storage and display, thereby obtaining the experimental 
data. The precision of voltage and current data acquisi-
tion is 12 mV and 0.1 mA respectively.

4.2  System Communication Structure
In this platform, there are multiple modules that need 
to generate or receive data and communicate with each 
other. The stationary and nearby modules can use serial 
communication, controller area network (CAN), SPI, 
and other wired methods to communicate, while mobile 
modules need wireless communication [30]. For exam-
ple, wireless communication is required between the 
control system of the vehicle and the upper computer 
so that the vehicle can be controlled and intervened by Figure 7 Overall control structure of the vehicle
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the real-time monitoring interface in the operating pro-
cess, and the upper computer can also receive vehicle 
operation data and battery operation data. The WiFi 
communication method based on ESP8266 is used. It 
has a built-in communication protocol and can send or 
receive data wirelessly through the serial port. In prac-
tical application, both the vehicle-mounted communi-
cation module and the upper computer are connected 
to the same network, and wireless communication can 
be realized after configuring the IP address. The over-
all communication structure of the system is shown in 
Figure 8.

The real-time monitoring interface of the upper 
computer is shown in Figure  9. It includes the display 
of voltage, temperature, current, and other operating 
information, and has the function of data storage. The 
vehicle can also be controlled and intervened through 
the operation of some buttons on the interface.

5  Data Generation and Verification
5.1  Data under Different Conditions
When the vehicle runs under cyclic working conditions 
along the road, the battery operation data under the same 
cycle can be generated as shown in Figure  10(a). When 
the vehicle runs under the random working conditions 
along the road, the battery operation data can also be 
generated as shown in Figure 10(b).

It can be seen that the discharge conditions in each 
cycle are different. Different from the test in the labo-
ratory, this experimental platform can be adjusted to 
achieve different working conditions which can simulate 
more real-world EV driving on the road.

5.2  Analysis and Application
We operate the platform with cyclic and random working 
conditions and conduct the standard DST, respectively. 
The data generated are shown in Figure 11. It can be seen 
that the experimental data generated by this platform are 
closer to the real world, and have higher practicability 
and universality.

In order to show the data application of the experimen-
tal platform, the verification work is carried out based on 
the data-driven method. In this work, the NARX is used 
to predict the SOC of the battery system. NARX is a kind 
of neural network model for describing the nonlinear 
discrete system. It adds input delay and output feedback 
mechanisms to enhance the memory ability of histori-
cal data and is suitable for time series prediction. In this 
work, seven hours of data (about 25000 sample points) Figure 8 Overall communication structure of the system

Figure 9 Real-time monitoring interface of upper computer
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Figure 10 Experimental data under different working conditions

Figure 11 Data obtained from the experimental platform and the standard laboratory
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generated under cyclic working conditions are used as 
the training set, and 1.5 h of data (about 5000 sample 
points) generated under random working conditions 
are used as the test set. The way to obtain the true value 
of SOC is to calibrate the initial SOC, and then use the 
ampere-hour integration method to generate a complete 
sequence of SOC values.

The input delay, feedback delay, and the size of the hid-
den layer are set at 1:100, 1:10, and 16, respectively. The 
closed-loop mode is used to verify after 40 epochs of 
training. The training set and test set are shown in Fig-
ure  12. The test result is shown in Figure  13. It can be 
seen that the trained model achieves high accuracy, and 
the root mean square error (RMSE) of SOC estimation is 
about 0.15%.

6  Conclusions

(1) This study develops an intelligent connected vehi-
cle prototype test platform. The vehicle is indepen-
dently designed and applied to meet the require-
ments of the experiment. The vehicle can run 
autonomously in the environmental cabin and col-
lect data from the battery system. Several modules 
have been developed inside the vehicle to ensure its 
stable and safe operation.

(2) The platform can obtain the battery operation data 
in real-world EV scenarios by setting the working 
conditions of the vehicle, and a series of commu-
nication methods are set to realize data interac-
tion. A large amount of battery operation data will 
be obtained from the continuous operation of the 
vehicle, and the battery operation data generated 

under different working conditions show the effec-
tiveness of the platform.

(3) The platform realizes energy interaction between 
vehicles and battery systems through automatic 
wireless charging and AC heating system, which 
endows the platform with rich functions and higher 
application value.

(4) The experimental data generated under different 
working conditions can reduce the cost of data 
acquisition in real-world EV scenarios, and is con-
ducive to excavating the key parameters of power 
batteries. The data can be applied in modeling and 
state estimation, fault diagnosis, and energy man-
agement, etc.

Figure 12 Experimental data for training and test

Figure 13 SOC estimation error
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