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Abstract 

Continuum robots actuated by flexible rods have large potential applications, such as detection and operation tasks 
in confined environments, since the push and pull actuation of flexible rods withstand tension and compressive force, 
and increase the structure’s rigidity. In this paper, a generalized kinetostatics model for multi-module and multi-
segment continuum robots considering the effect of friction based on the Cosserat rod theory is established. Then, 
the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation 
and load characteristics. Four different in-plane configurations under the external load term as S1, S2, C1, and C2 are 
defined. Taking a bending plane as an example, the tip deformation along the x-axis of these shapes is simulated and 
compared, which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2. Furthermore, 
the deformation experiments and simulations show that the maximum error ratio without external loads relative to 
the total length is no more than 3%, and it is no more than 4.7% under the external load. The established kinetostatics 
model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal 
friction.
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1  Introduction
A slender continuum robot possesses a continuous body 
exhibiting infinitely degree of freedoms, which is unlike 
those traditional rigid body robots [1, 2]. With a large 
slenderness ratio body, they can perform operation tasks 
with various end-effectors in confined and unstructured 

space, such as in-suit aeroengine maintenance [3–5], 
deep cavities [6–8], and medical surgery [9, 10].

To date, numerous continuum robots have been 
designed. Pneumatic driven continuum robots [11, 12] 
utilize three or more three parallel pneumatic “muscles” 
to achieve spatial bending. Several serial-parallel pneu-
matic “muscles” [13] have a large load capacity by adap-
tive envelop grasp. Concentric-tube continuum robots 
[14, 15] are composed of concentric pre-curved elastic 
tubes. The coupling effect of all internal tubes controls 
the robot’s shape. The most common are tendon-driven 
continuum robots [16–18] where a flexible backbone 
is actuated by cabling along the robot’s length. As men-
tioned in Refs. [19, 20], several parallel flexible cables are 
replaced by rigid links in traditional rigid-link robots. 
However, cable only provides pulling force and has low 
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stiffness. Instead of that, rod-driven continuum robots 
use flexible rods [21–24]. The push and pull actuation of 
flexible rods withstand tension and compressive force, 
and increase the structure’s rigidity. To achieve differ-
ent targets such as DOFs or stiffness, several constraint 
structures are applied, which range from discrete to con-
tinuous. Rigid disks [24, 25], bellows [9] and other com-
pliant sheathes [26] are considered applying non-uniform 
contact force on the flexible rods. Besides, pure soft 
materials, wrapping the parallel flexible rods and rigid 
disks, are fabricated to achieve the balanced performance 
[27]. This paper conducts simulations and experiments 
based on our previous designed prototype [24]. The 
development status of the rod-driven continuum robot 
can be found in Refs. [24, 27].

In addition, it is necessary to establish mathemati-
cal models describing the characteristics of the con-
tinuum robot. Kinematic models based on the constant 
curvature assumption reveal the mapping between the 
configuration space and actuator space, and the configu-
ration space and task space [1], where the profile of the 
robot segment is assumed to be a circular arc. However, 
pure kinematics models ignore the effect of gravity, fric-
tion, and external load of the environment. They are not 
accurate in analyzing robot deformation and motion, 
especially when the continuum robot interacts with 
the environment and is subject to out-of-plane exter-
nal loads. Some researchers made efforts to improve the 
modeling accuracy by combining the pure kinematics 
and statics model [28] or virtual work principle [21]. The 
effect of gravity, friction, and external load is considered 
in these models.

To precisely acquire the robot shape and motion, not 
only kinematic parameters such as the actuation rod 
length but also mechanical parameters such as the elas-
tic force, external loading, rod friction, and contact force 
must be characterized in the mathematical model. Sev-
eral non-constant curvature approaches have been pro-
posed to improve the modeling accuracy of continuum 
robots, which can be divided into Cosserat rod theory 
models [29–32], 3D finite element models (FEMs) [33, 
34], and pseudo rigid body models (PRBMs) [2, 35]. 
Approaches based on the 3D FEM have been explored 
for modeling and controlling continuum and soft robots 
[33, 34]. This approach has been limited to quasi-static 
conditions and does not provide geometric insights into 
the dynamic behavior. The 3-R PRBM [2, 35] based on 
the equivalence of elastic potential energy uses the char-
acteristic parameters to describe the kinematics and stat-
ics of the continuum robot. However, the position error 
of the robot with multi rod coupling is still large. This is 
because the characteristic parameters of the 3-R PRBM 
are optimized through two extreme load conditions, so 

its applicability and accuracy are limited. Compared with 
the FEM and PRBM, the Cosserat rod theory, although 
sacrificing the computing efficiency, follows a continu-
ous curve, considers external and internal forces, and 
has achieved higher calculation accuracy. The Cosserat 
rod theory, usually neglecting the effect of friction, has 
been widely used in rod-driven continuum robots [29, 
30, 36, 37], cable-driven continuum robots [16, 31], and 
concentric tube robots [38]. For example, the kinetostat-
ics model of a 6-DOF parallel continuum robot (PCR) 
ignoring the frictions between rods and constrained 
disks was established by Orekhov et al. [37]. Another kin-
ematic model of tendon-driven continuum robots given 
by Amanov et  al. [16] also neglected the frictions. To 
exactly model the continuum robot with winding ropes, 
the internal friction along the rod must be considered. In 
summary, a mathematical model considering the effect of 
gravity, friction, and external load is effective to improve 
the modeling accuracy and is necessary to analyze the 
designed rod-driven continuum robot. Furthermore, to 
the best of our knowledge, no generalized kinetostatics 
model of a rod-driven multi-module and multi-segment 
continuum robot is analyzed.

In this paper, a general kinetostatic modeling and 
deformation analysis for rod-driven continuum robots 
are developed. The contributions of this work include 
the followings. (1) To analyze the deformation and load 
characteristics, a generalized kinetostatics model with 
the consideration of friction is constructed, which can 
be applied to the rod-driven continuum robot with 
multi-module and multi-segment. (2) The shape of in-
plane deformation for a two-module continuum robot 
is defined. Taking a bending plane as an example, the tip 
deformation along the x-axis of the defined four in-plane 
shapes is analyzed and compared. (3) The designed two-
module rod-driven continuum robot with winding ropes 
was used to verify the established kinetostatics model.

The paper is organized as follows. The kinetostatics 
model based on Cosserat rod theory with the considera-
tion of internal friction considered is presented in Sec-
tion 2, while Section 3 shows the rod-driven two-module 
continuum robot with winding ropes. Section 4 analyzes 
the results of simulation and experiment with the conclu-
sions summarized in Section 5.

2 � Kinetostatic Modeling of a Multi‑Module 
Continuum Robot

A generalized kinetostatics model based on Cosserat rod 
theory is established to describe the characteristics of the 
rod-driven continuum manipulator with multi-module 
and multi-segment.

The coordinate system is defined as follows:
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The base disk coordinate system {wb} = {Xb, Yb, Zb} is 
located on the base disks. Its origin is the center of the 
base disk, Xb points from the origin to the first actuation 
rod, and Zb is perpendicular to the disk surface.

The end disk coordinate system {we} = {Xe, Ye, Ze} is 
located on the end disks. Its origin is the center of the 
end disk, Xe points from the origin to the first actuation 
rod, and Ze is perpendicular to the disk surface.

The global coordinate system {g} = {Xg, Yg, Zg} is fixed, 
and its position coincides with coordinate system {wb}.

The intermediate disk coordinate system {wi} = {Xi, Yi, 
Zi} is located on the intermediate disks.

The nomenclature for describing the modeling param-
eters is shown in Table 1.

The general constraints on disks and rods of a continuum 
robot with multi-module and multi-segment are shown in 
Figure 1. Figure 1 (b1) and (c1), Figure 1 (b2) and (c2), and 
Figure 1 (d1)—(d3) give the detailed constraints on DiskwN, 
Diskwi and rods, respectively. The forces and moments on 
each disk should be statically balanced. Boundary values on 
each rod are applied to the differential equation system. As 
shown in the overview (Figure 1 (a)), the continuum robot 
is composed of one central backbone, two adjacent mod-
ules, three actuation rods and N disks for each module. 
Three actuation rods of Module w pass through all disks 

of Module w. SegwN is located between DiskwN and Diskwi. 
All actuation rods for all segments are calculated by the 
Cosserat rod mechanics. Point A is the connecting point 
between the actuation rod and disk. Point B is the connect-
ing point between the spring and disk. As shown in the 
subgraph of Figure 1, all forces and moments on the disks 
have the same magnitude and opposite direction as those 
on the rod. The frictions shown as brown arrows and text 
are not applied to Rodwej in DiskwN. The springs shown as 
blue symbols are connected to DiskwN and Diskwi. Detailed 
explanations for the symbols and letters in Figure 1 can be 
found in Table 1.

2.1 � Cosserat Rod Differential Equation
To describe the deformation of a rod-driven continuum 
robot taking account of rod elasticity, friction, gravity, and 
external load, Cosserat rod theory is used to construct the 
kinetostatics model.

Each point on the backbone is denoted by position  
p(s) ∈ R3 and orientation R(s) ∈ SO(3) with respect to arc 
length s, which are deduced as follows:

(1)
Ṙ(s) = R(s)û

l
(s),

ṗ(s) = R(s)vl(s),

Table 1  Nomenclature

For the intermediate disks, the internal forces and moments of rods undergo a step change when they pass through a disk.

Superscript (+) denotes constraints of Diskwi applied by Segwi. Superscript ( − ) denotes constraints of Diskwi applied by Segw(i+1).

Symbol Definition

w, i, j Module w, w = 1, 2 …, W; Disk or segment i, i = e denotes end disk of each module; jth 
actuation rod (j = 1, 2, 3)

Owb-XwbYwbZwb, Owe-XweYweZwe, Owi-XwiYwiZwi Base disk, end disk, and intermediate disk coordinate of module w

Diskwi ith intermediate disk of module w. i = e means end disk

Rodwej jth actuation rod connected with end disk e of module w

RodC Central backbone rod

Segwi ith segment of module w is between Diskw(i-1) and Diskwi

Awej,wi Connection point of Rodwej and Diskwi

Awej,b Connection point of Rodwej and base disk

Bwej,wi Connection point of Diskwi and spring which provides force for winding rope of Rodwej
Bwej,b Connection point of base disk and spring which is on the same branch as Rodwej
swej,wi Arc length of Rodwej or RodC from Awej,b to Awej,wi
rwej,b Position vector of denoted in Owb-XwbYwbZwb

rspring,wej,b Position vector of denoted in Owb-XwbYwbZwb

w = [1,W]

w = [w ,W]
n+wej,wi ,m

+
wej,wi , n

−
wej,wi ,m

−
wej,wi

Force and moment constraint on Awej,wi of Rodwej

n+wic ,m
+
wic , n

−
wic ,m

−
wic

Force and moment constraint on Owi of RodC

F+wej,wi , F
−
wej,wi

Pulling force on Bwej,wi of spring

fwej,wi Friction on Awej,wi provided by winding ropes

pwic , Rwic Position and orientation on Owi of RodC denoted in Owb-XwbYwbZwb

pwej,wi , Rwej,wi Position and orientation on Awej,wi of Rodwej denoted in Owb-XwbYwbZwb

pspring,wej,wi Position of Bwej,wi denoted in Owb-XwbYwbZwb
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vl(s) and ul(s) are kinematics variables, ûl
(s) is the skew 

symmetric matrix of ul(s) , ṗ(s) and Ṙ(s) are the deriva-
tive with respect to arc length s.

The internal force n(s) and moment m(s) along arc 
length s are obtained by

where f(s) and l(s) are the distribution force and moment 
along the rod, respectively. Considering gravitational 

(2)
ṅ(s) = −f (s),

ṁ(s) = −ṗ(s)× n(s)− l(s),

Figure 1  General constraint on disks and rods of continuum robot with multi-module and multi-segment: a Overview, b1–c1 Constraint on DiskwN, 
b2–c2 Constraint on Diskwi, d1–d3 Boundary value on each rod
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potential energy, f(s)=ρAgeg, l(s)=0, ρ is the material den-
sity, A is the cross area of the rod, g is gravitational accel-
eration, and eg is the direction vector of gravity expressed 
in the global frame.

Linear constitutive laws are assumed to relate the 
kinematics variables to material strains. The explicit 
equations can be denoted by

The stiffness matrix for shear and extension is 
Kse=diag(AG, AG, AE), the matrix for bending and tor-
sion is Kbt=diag(EI, EI, JG), E is the Young’s modulus 
of the flexible rod, G is the shear modulus, and I is the 
second moment of the area. J is the polar area moment.

2.2 � Multi‑Rod Boundary Constraints
If the robot only has one module, it is unnecessary to 
consider the coupling effect of other modules. However, 
if the robot consists of multiple modules, the module 
closer to the actuation motor is more affected by the 
following modules. Therefore, a generalized boundary 
constraint equation with multiple modules and multi-
ple segments is constructed here.

It is assumed that the robot has a total of W modules 
represented by parameter w, whose intermediate disks 
and end disks can be referred to as the constraint disks. 
As shown in Figure  1, the force and moment in the 
disks and rods of module w ∈ [1,W ] are analyzed. The 
same analysis is made for module w ∈ [w,W ] . If mod-
ule w is the last module of the robot, then w = w = W  . 
Each module contains a base disk, several intermediate 

(3)
n(s) = R(s)Kse (v

l(s)− vl(0)),

m(s) = R(s)Kbt (u
l(s)− ul(0)).

disks, an end disk and three actuation rods. The con-
tinuum robot with W modules has W end disks, sev-
eral intermediate disks and a base disk. The end disk 
of module w can be viewed as the base disk of module 
w+1. The central backbone is fixed evenly connected to 
each constraint disk, whose position and orientation 
at the junction are the same as those of the constraint 
disk. Actuation rods are connected to the end disk of 
module w and slide freely through the intermediate 
disks without torsion. Therefore, the actuation rods of 
module w affect the configuration from module 1 to 
w. Three actuation rods of each module are arranged 
evenly along the circumferential direction. The angle 
between the jth actuation rod fixed on the end disk of 
module:

The position vector of actuation rod can be denoted 
by:

The relative position of flexible rods in constraint disks 
is consistent with that in base disk, so rwej is used in the 
following to represent the position of actuation rods in 
constraint disks relative to Owi-xwiywizwi.

Constraints are different due to the coupling effect of 
each module, which are classified into two conditions: 
one is the constraint equations of end disks. The other is 
the constraints of the intermediate disks.

Equations of end disks on module w∈[1, W] are derived 
as Eqs. (6) and (7), where w belongs to [w+1, W] if w=W, 
then w = w . The force and moment are shown in Fig-
ure 1(b1)–(c1). CoFwe(L) and CoMwe(L) are the force and 
moment constraints on the end disks with rod length L.

where

(4)ϕwej =
2π

3

(

w − 1

W
+ j − 1

)

.

(5)rwej =
[

cosϕwej , sinϕwej , 0
]T
.

(6)CoFwe(L) =

3
�

j=1

n+wej,we + n+wec+sgn(W−w)





W
�

w̄=w+1

3
�

j=1

(n+w̄ej,we − n−w̄ej,we)− n−wec



−Fwi = 0,

(7)CoMwe(L) =

3
∑

j=1

pwej,we × n+wej,we +m+
wej,we+pwec×(n+wec−Fwi)+m+

wec−Mwi+Ce = 0,

Ce = sgn(W−w)







W
�

w=w+1

3
�

j=1

[pwej,we × (n+wej,we − n−wej,we)+m+
wej,we −m−

wej,we] + pwec × (−n−wec)−m−
wec







= 0.
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The equations of the intermediate disks on module w 
∈ [1, W] are derived as Eqs. (8) and (9), w belongs to [w, 
W]. The force and moment are shown in Figure  1(b2)–
(c2). CoFwi(L) and CoMwi(L) are the force and moment 
constraints on the intermediate disks. The sgn function 
is used to determine whether the end disk e is on the last 
module. If so, the constraints on the end disks exerted 
by the actuation rods and the central backbone do not 
undergo a step change.

The constraint disk not only provides force and moment 
constraints for actuation and central rods but also provides 
geometric constraints, which makes the motion of actua-
tion rods not independent. The following conditions for all 
rods of module w connected to disk i of module w should 
be satisfied.

where w ∈ [w, W ] and all rods j=1, 2, 3 of module w 
should satisfy the constraints, R = RT

wicRwej,wi trans-
forms the orientation expressed in the global system into 
that expressed in the local system, log(·) is the matrix nat-
ural logarithm, which maps SO(3) to so(3), the operator 
maps so(3) to R3, and the expression (·)|xy means the pro-
jection of the x and y-axis relative to Owi-XwiYwiZwi.

2.3 � Multi‑Rod Boundary Constraints with Internal Friction 
Considered

Taking the spring tension and winding rope friction into 
account. The force and moment constraint equations can 
be expressed as follows.

The equations of the end disk on module w ∈ [1, W] are 
derived as Eqs. (11) and (12), where w belongs to [w+1, 
W], if w = W, then w = w . The spring tension and fric-
tion are shown in Figure 1(b1)–(c1). CoFwe(L, Spring) and 
CoMwe(L, Spring) are the constraint equations after actuat-
ing the spring.

(8)

CoFwi(L) =

W
∑

w=w

3
∑

j=1

(n+wej,wi − n−wej,wi)+ n+wic − n−wic − Fwi = 0,

(9)

CoMwi(L) =

W
∑

w=w

3
∑

j=1

[pwej,wi × (n+
wej,wi

− n−
wej,wi

)

+m+
wej,wi

−m−
wej,wi

] + pwic

× (n+
wic

− n−
wic

− Fwi)

+ m+
wic

−m−
wic

−Mwi = 0.

(10)
[log(RT

wicRwej_wi)
∨]

∣

∣

∣

xy
= 0,

RT
wic(pwej_wi − pwic)− rwej = 0,

where

The equations of the intermediate disks on module w∈[1, 
W] are shown as Eqs. (13) and (14), w belongs to [w, W]. 
The spring tension and friction are shown in Figure 1(b2)–
(c2). CoFwi(L, Spring) and CoMwi(L, Spring) are the con-
straint equations on the intermediate disks.

It should be noted that the winding ropes only influence 
the force and moment constraints, and have no impact on 
the geometric configuration of each disk. The constraint 
Eq. (10) stays the same.

2.4 � Numerical Solution Method
The unknown parameters for one segment are shown in 
Table  2. The rotation angle γwej of each actuation rod 
and arc length swej−wi of the adjacent disk are unknown, 
and the axis torque mwej,wb

∣

∣

z
 is zero since the connec-

tion between actuation rods and disks is torsionless. 
The intermediate disks are equally spaced fixed with 
central backbone, so each integral interval of each 
differential equation system is determined. But the 

(11)

CoFwe(L,Spring) = CoFwe(L)+ sgn(W − w)
W
∑

w=w+1
3

∑

j=1
(F+

wej,we − F−

wej,we + f wej,we)+
3

∑

j=1
F+

wej,we = 0,

(12)

CoMwe(L, Spring) =CoMwe(L)+

3
∑

j=1

pspring ,wej,we

× F+
wej,we

+ Ce = 0,

Ce = sgn(W − w)

w
∑

w=w+1

3
∑

j=1

[p
spring ,wej,we

× (F+
wej,we − F−

wej,we)

+ pwej,we × f wej,we] = 0.

(13)

CoFwi(L,Spring)

= CoFwi(L)+

W
∑

w=w

3
∑

j=1

(F+
wej,wi

− F−
wej,wi

+ f wej,wi) = 0,

(14)

CoMwi(L,Spring) =CoMwi(L,Spring)

+

W
∑

w=w

3
∑

j=1

[pwej,wi × f wej,wi + pspring ,wej,wi

× (F+
wej,wi

− F−
wej,wi

)] = 0.
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contact force and moment on disks need to find. The 
shooting method is applied to get the numerical solu-
tion, and the solution convergence should be noticed. 
As for a 6-DOF PCR [39], the convergent solutions 
were obtained from an arbitrary initial guess due to 
the fewer unknowns. As for multi-module continuum 
robots, the number of unknowns increases by 30 as 
an intermediate disk is added [37]. In order to get 

convergent solution for lots of initial unknows, a pre-
processing method based on the constant curvature 
assumptions is adopted to find the initial guess. The 
solving process is presented in Figure 2.

3 � Two‑Module Continuum Robot with Winding 
Ropes

The robot system consists of an actuation module, sen-
sors, and a two-module continuum manipulator, as 
shown in Figure  3(a). The robot prototype was manu-
factured to verify the established model, as shown in 
Figure  3(b). Figure  3(c) presents the detailed structured 
for one segment with winding ropes. The friction can be 
divided into the internal force between the rod and con-
straint disk, and the friction between the rope and rod. 
The winding rope is tightened due to tension force F1 and 
F2 for each intermediate disk. Thus, the friction between 
the constraint disk and rod is increased. The detailed 
designed description and variable stiffness analysis can 

be referred in our recent research [24]. The deformation 
analysis of this continuum manipulator with the con-
sideration of internal friction will be conducted in this 
paper.

The length and diameter of the whole manipulator 
are 480 mm and 36 mm, respectively. The diameter of 
the central and actuation rods (superelastic NiTi alloy) 
is 1.5 mm and 1 mm, respectively. The elastic modulus 

Table 2  Unknown parameters for numerical solution

Rod Unknown parameters

Central rod [nwec; mwec ]6×1

Actuation rod on base disks
[

nwej,wb; mwej,wb

∣

∣

x ,y

]

5×1
γwej

Actuation rod on intermediate
[

n
−
wej,wi; m

−
wej,wi

∣

∣

x ,y

]

5×1

swej_wi

Figure 2  Solution to the established model with the preprocessed 
initial values

Figure 3  Rod-driven two-module continuum robot system: a Structure design of the robot system, b Experimental prototype, c Structure of one 
segment with winding ropes
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and density of the NiTi rod are 150 GPa and 6.8 g/cm3, 
respectively. The equivalent friction coefficient is taken as 
1.5 which is referred from Ref. [24]. The configurations 
are measured by the attached maker along the manipu-
lator. The MotionAnalysis capture equipment (resolution 
0.1 mm) is used to capture the marker motion.

4 � Experiments and Simulations
4.1 � Workspace of Two‑Module Continuum Robot
The configuration of module w is denoted by [φw ,βw] , 
where φw ∈ [0, 2π ] and βw ∈ [0, π

/

2] . φw represents 
the angle of bending plane. βw represents the bend-
ing angle of each module. A two-module continuum 
robot is simply denoted by the the quadruplets of angles 
[φ1,β1, φ2,β2] . A series of configuration within the angle 
range is generated. Then the tip position is calculated for 
each of them.

The shape of the reachable workspace of the two-mod-
ule continuum robot is similar to a shell, as shown in 
Figure 4. The inner space of the shell is the unreachable 
space. The workspace provides a theoretical guide when 
operating tasks. Conf1, Conf2, Conf3 and Conf4 are cho-
sen to analyze their deformation under external loads. 
The parameters of the configuration space of these four 
configurations during the initial preprocessing can be 
expressed by [φ1,β1, φ2,β2] . Conf1 and Conf4 with [π/6, 
π, π/6, π] and [π/6, 0, π/6, 0], respectively, are C-shaped 
bending, and Conf2 and Conf3 with [π/5, π, π/4, 0] and 
[π/5, 0, π/4, π], respectively, are S-shaped bending.

4.2 � Comparative Simulations of in‑Plane Deformation 
under External Load

The shapes of in-plane deformation under external load 
are defined in Table  3. Different shapes exhibit differ-
ent deformation characteristics when an external force 
is applied, which are defined as S1, S2, C1, and C2. All 
in-plane shapes are considered with the bending plane 

angle φw ranging from −π/2 to π/2. All external forces 
are assumed to be applied in the same plane. The detailed 
descriptions of these four shapes are shown in Figure 5.

Taking the angle of the bending plane φ = 0 into con-
sideration, external weight Fe = 100 g along x-axis is 
applied on the end disk for the four types of shape. Dif-
ferent total bending angles ranging from 0 to π/4 are 
used as the initial guess to get the numerical solutions. 
The final deformation along the x-axis is compared, as 
shown in Figure  6. The load capacity of C1 and C2 is 
generally larger than that of S1 and S2. Furthermore, 
the stiffness of C1 and C2 increases with the increase of 
the total bending angle of the two modules. Especially, 
the stiffness of these two shapes has dramatic rise when 
the bending angle is nearly on the workspace boundary. 
The stiffness of S1 and S2 increases with the increase of 
the bending angle of the first module and the decrease 
of the bending angle of the second module.

Figure 4  Workspace of the two-module rod-driven continuum 
robot, and typical configurations

Table 3  In-plane deformation under external loads

Type Angle of bending plane 
( φ ∈ [−π

/

2 ,π
/

2])
Bending angle

S1 shape φ1 = φ φ2 = φ + π β1, β2 ∈ [0 ,π
/

4]

S2 shape φ1 = φ + π φ2 = φ β1, β2 ∈ [0 ,π
/

4]

C1 shape φ1 = φ φ2 = φ β1, β2 ∈ [0 ,π
/

4]

C2 shape φ1 = φ + π φ2 = φ + π β1, β2 ∈ [0 ,π
/

4]

Figure 5  Detailed descriptions of S1, S2, C1, and C2
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4.3 � Deformation Analysis without External Load
Experimental and simulation deformations of the 
Conf1, Conf2, Conf3 and Conf4 under an external load 
(weight 100 g, along the positive x-axis) are analyzed.

Figure  7(a) shows these configurations solved by the 
theoretical model. Figure 7(b) compares the simulation 
results and experimental data. The red dashed line 1, 
2, 3, and 4 are calculated based on the constant curva-
ture during the initial process shown in Figure 2. These 
preprocessing configurations are used to obtain Conf1, 
Conf2, Conf3, and Conf4, respectively. The final results 
obtained from preprocessed initial values are quite dif-
ferent from the experiments and simulations. There-
fore, the constant curvature kinematics are not accurate 
enough for the case of an external load. Figure  7(c) 

shows that the error along the manipulator is relatively 
small, which means that the simulation results are con-
sistent with the experiment. The maximum error of the 
end disk does not exceed 11 mm, and the error relative 
to the overall length is 2.29%.

4.4 � Deformation of Different Configurations 
under the Same External Load

Under the same external load, different configurations 
have different deformation characteristics. Figure  8(a) 
and (b) show the simulation and experimental defor-
mations of Conf1, Conf2, Conf3, and Conf4 under 100 
g at end disk. Figure 8(c) and (d) show the deformation 
of Conf1, Conf2, Conf3, and Conf4 under 200 g at the 
end disk. The bending directions of the first module of 

Figure 6  Deformation comparison of S1, S2, C1, and C2 shape under external weight Fe = 100 g: a Deformation distribution of in-plane bending, b 
Average deformation comparison

Figure 7  Simulations and experiments of different configurations: a Simulation configuration of Conf1, Conf2, Conf3, and Conf4, b Deformation 
without loads, c Errors along rod length between established model and experimental results
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Conf1.1, Conf1.2, Conf2.1 and Conf2.2 and the second 
module of Conf3.1 and Conf3.2 are opposite to the load 
direction. As shown in Figure  8(a) and (c), the experi-
mental curves of Conf1.1 and Conf1.2 are not smoother 
than those of the others due to the opposite loads with 
respect to the bending direction. In addition, regardless 
of whether the external load direction is opposite or the 
same as the bending direction of the first module, the 
S-shaped configurations produce greater bending, such 
as groups Conf2.1 and Conf3.1 compared with groups 
Conf1.1 and Conf4.1 or groups Conf2.2 and Conf3.2 
compared with groups Conf1.2 and Conf4.2, respectively. 
Furthermore, a configuration such as Conf4.2 with the 
same module direction and load direction has greater 
bending resistance than the others. The configuration 
errors of the first module with the same bending and load 
direction are relatively small, 2.08% and 1.7%, as shown in 
Figure 8(b) and (d). The configuration errors of the first 
module with the bending direction opposite to the load 
are 4.17% and 4.69%.

4.5 � Deformation of the Same Configuration with Different 
External Loads

Figure 9(a) and (c) give the deformation of Conf5 = [π/6, 
0, π/5, π] with opposite bending direction module under 
150 g, 250 g, −150 g and −250 g loads, and configura-
tion Conf6= [π/10, π, π/10, π] with the same bending 
direction module under 150 g, −150 g and −250 g loads. 
Figure  9(b) and (d) show the corresponding errors. The 
deformations without external load are Conf5 and Conf6. 
As the external load increases, the deformation of the 
robot becomes greater. The total deformation of Conf5.1 
and Conf5.2 is greater than that of Conf5.3 and Conf5.4, 
but the end disk errors of Conf5.3 and Conf5.4 are larger 
than others. Furthermore, the curvature of the second 
module of Conf5 gradually decreases under a positive 
load so that the degree of the S-shape decreases, as in 
Conf5.1 and Conf5.2. The curvature of the second mod-
ule gradually increases under the negative load so that 
the degree of the S-shape increases, such as Conf5.3 and 
Conf5.4. For Conf6, the first module of Conf6.1 with the 
bending direction opposite to the load direction produces 

Figure 8  Effects of different configurations under 100 g and 200 g respectively: a Deformation under the 100 g, b Error along arc with 100 g, c 
Deformation under 200 g, d Errors along arc with 200 g
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a large local deformation, and the end disk error is larger 
compared with others.

5 � Conclusions
This paper can be concluded as the following points.

(1) A generalized kinetostatics model based on the 
Cosserat rod theory with friction considered for 
multi-module and multi-segment continuum robots 
is established. Several experiments based on a two-
module rod-driven continuum robot are conducted 
to verify the established model.
(2) The shape of in-plane deformation for two-mod-
ule continuum robot is defined as C1, C2, S1, and S2. 
Taking a bending plane as an example, the tip defor-
mation along the x-axis for these shapes with exter-
nal force applied is analyzed and compared. Gener-
ally, the load capacity of C1 and C2 is larger than that 
of S1 and S2.
(3) Comparative deformation experiments for dif-
ferent configurations show that the maximum error 
ratio without external loads between simulations and 
experiments is no more than 3% (relative to the total 
length), and it is no more than 4.7% under the exter-

nal load, which occurs in C1 and C2 bending config-
uration with the opposite load direction.

As for future work, variable stiffness and adaptive 
motion control method should be developed for fur-
ther application on detection and maintenance tasks in 
unstructured environments. Besides, many experiments 
will be conducted to verify the accuracy of the estab-
lished model under out-plane external forces. Finally, 
computation efficiency should be improved for the fur-
ther real-time motion control.
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