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Abstract 

Serving the Stewart mechanism as a wheel-legged structure, the most outstanding superiority of the proposed 
wheel-legged hybrid robot (WLHR) is the active vibration isolation function during rolling on rugged terrain. However, 
it is difficult to obtain its precise dynamic model, because of the nonlinearity and uncertainty of the heavy robot. 
This paper presents a dynamic control framework with a decentralized structure for single wheel-leg, position track-
ing based on model predictive control (MPC) and adaptive impedance module from inside to outside. Through the 
Newton-Euler dynamic model of the Stewart mechanism, the controller first creates a predictive model by combin-
ing Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart. The actuating force 
naturally enables each strut to stretch and retract, thereby realizing six degrees-of-freedom (6-DOFs) position-tracking 
for Stewart wheel-leg. The adaptive impedance control in the outermost loop adjusts environmental impedance 
parameters by current position and force feedback of wheel-leg along Z-axis. This adjustment allows the robot to 
adequately control the desired support force tracking, isolating the robot body from vibration that is generated from 
unknown terrain. The availability of the proposed control methodology on a physical prototype is demonstrated by 
tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips. By comparing the 
proportional and integral (PI) and constant impedance controllers, better performance of the proposed algorithm 
was operated and evaluated through displacement and force sensors internally-installed in each cylinder, as well 
as an inertial measurement unit (IMU) mounted on the robot body. The proposed algorithm structure significantly 
enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.

Keywords Wheel-legged hybrid robot, Adaptive impedance control, Model predictive control, Stewart mechanism, 
Vibration isolation, Parallel robot

1 Introduction
The quadruped machine is the most agile-legged robot 
that can accomplish traversing by swing leg without 
high-complexity dynamics [1]. To improve the motion 
efficiency, a novel design of a mobile robot, called BIT-
NAZA [2], that adopts arbitrary arrangements of legged 
and wheeled locomotion accounting for different types 
of terrains is introduced. The hybrid robot [3] tightly 
integrates the wheel on the end-effector of its foot. The 
wheel-leg favors parallel mechanism with inverted Stew-
art plat instead of classical three-joint serial structure, 
thereby inheriting existing benefit: The ability of the 
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parallel wheel-leg to maintain the robot body horizon-
tally with modest oscillation as soon as possible while 
the robot is rolling on uneven ground. To obtain a better 
vibration performance, the precise potion tracking loop 
for single wheel-leg is a basic procedure [4]. Developing a 
delicate force-driven controller based on dynamic model 
and merging adaptive impedance control loop is the pri-
mary scheme needed to achieve the single-foot vibration 
isolation [5]. It is also the first time to utilize these two 
control loops on the Stewart parallel mechanism to the 
best of the authors’ knowledge.

As a leg in legged locomotion, Stewart platform should 
swing along a trajectory to traverse the obstacle [6]. Apart 
from employing position control for Stewart manipulator 
[7] with conventional adaptive fuzzy sliding mode con-
trol method, Nabavi  et al. [8] analyzed dynamic models 
using the Newton-Euler equation to form a closed-loop 
dynamic control techniques with force, thereby success-
fully tracking two trajectories. Incremental nonlinear 
dynamic inversion [9] addressed the implementation of 
a high-precision force controller for a Stewart hydrau-
lic robot in the presence of parameter uncertainties, 
thereby validating the good performance of force and 
position tracking. There are also several position control 
approaches for robots with serial link [10], which tracks 
the target trajectories. A seven-link biped robot [11] cou-
pled the feedforward compensator into fuzzy controller 
with inverse dynamic and noise reduction capability to 
track the desired motion. A new dynamic method [12] 
for fully reactive footstep planning characterized a care-
ful feature of the planar spring-mass hopper. The Lit-
tleDog [13] robot employed QR decomposition to solve 
the floating-base inverse dynamics problem and predict 
force control, thereby increasing robustness despite of 
unknown perturbations.

Several algorithms are implemented to sustain a spe-
cific constatn posture or configuration for common 
serial-structure mechanism [14]. Five candidate Jitter 
cancelation algorithms are evaluated [15] for active vibra-
tion control on a spacecraft testbed, with adaptive linear 
model predictive control achieving one of the best dis-
turbance rejection results with a 66% overall amplitude 
reduction. A new cooperative model predictive control 
[16] is developed for Stewart stabilizable system. A new 
attitude balancing strategy [17] implemented an inverse 
kinematic scheme based on extended prediction self-
adaptive control algorithm to generate full body motions 
that ensure the desired balancing performances for a 
hybrid wheel-legged mobility system. A design proce-
dure for multi-strut vibration isolation platform [18] is 
the determination of optimal damping frequency for 
tree parameter isolator, which is tuned as the optimal 
damping frequency in three orthogonal directions. To 

obtain a favorable vibration performance, the dynamic 
model of the Stewart platform is constructed with flex-
ible hinges [19] and coupled multiple flywheel system 
[20], forming state-space equations for control purposes. 
To suppress the self-excited vibration owing to flexibil-
ity, friction, backlash, coupling, and other nonlinear fac-
tors, a nonlinear controller and a fuzzy control algorithm 
[21] are designed to attenuate the self-excited vibration 
for the 3-RRR flexible parallel robot. The dynamic model 
of the Stewart platform is established by the frequency 
response function synthesis method. In the active con-
trol loop [22], the direct feedback of integrated forces 
is combined with the FxLMS-based adaptive feedback 
to dampen vibration. The finite frequency Hs∞ vibra-
tion control technique and fractional-order PDv are 
developed in a feedback loop [23] to suppress vibration 
modes and external disturbances for space flexible struc-
tures. However, there is no vibration isolation algorithm 
implemented on an inverted Stewart mechanism while 
the wheel fixed on end-effector is rolling on the rough 
terrain.

Additionally, a common method of disposing interac-
tion with environment, such as vibration, is impedance 
control and force position hybrid control, which oper-
ates like an active spring [24]. A position controller for 
parallel robot [25] utilized the position impedance con-
trol to achieve smooth contact with environment, which 
is combined with Kalman filter to predict stability mar-
gin of robots inside zero moment point (ZMP) stability 
observer. The main application of variable impedance 
control is to adapt impedance parameters into position 
and velocity feedback [26], thus satisfying desired force 
value. A new adaptive impedance control [27] was pro-
posed for force tracking that has the capability to track 
the dynamic desired force and compensate for uncertain-
ties in environment, in terms of unknown geometrical 
and mechanical properties. The robotic manipulator [28] 
employed a novel adaptive impedance control, where the 
linear quadratic regulation (LQR) is formulated. The inte-
gral reinforcement learning is proposed to solve the given 
LQR with little information about the human arm model.

We present a robust control framework with force input 
based on dynamic model of Stewart wheel-leg to swing 
and isolate vibration for BIT-NAZA robot. The BIT-NAZA 
robot, a type of wheel-legged hybrid robot with Stewart par-
allel mechanism, is used to improve high payload and sta-
bility for vibration isolation. This paper mainly introduces 
the whole controller framework for single wheel-leg. The 
model predictive control based on dynamic model in inner-
loop accomplishes precise position tracking. Upon posi-
tion loop, the adaptive impedance control loop adjusts foot 
position to track target support force, thus keeps the robot 
body horizontal with ground. These parts constitute the 
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closed-loop dynamic control framework, which is the first 
time the framework is applied to a parallel wheel-leg. The 
core of our work, which lies on the Newton-Euler dynamic 
equation, reveals the relationship between strut input force 
and foot configuration. To obtain a smooth output trajec-
tory of wheel-legged mechanism, the desired velocity and 
control input increment are limited during each sampling 
instant. The feedback data is measured from displacement 
sensor installed in each strut and interactively, updating by 
forward kinematic calculation. Our methodology combined 
with adaptive impedance control in outer-loop, enables a 
sequence of corresponding control input for vibration isola-
tion motion interacting with unknown environment, where 
the actual state feedback is also necessary to estimate envi-
ronmental stiffness. For the availability validation of our 
proposed approach, the mentioned method is employed in 
two kinds of implements working on practical prototype, 
enforcing wheel-leg to track the swing trajectory, and driv-
ing the robot to pass through the speed bumps.

2  Problem Formulation and System Dynamic 
Model

One of the most substantial benefits of parallel wheel-leg-
ged mechanism is active vibration isolation to decrease 
attitude variation of robot body while rolling on irregu-
lar terrain. As a result, the robot can acquire more robust 
position tracking performance while swinging foot and 
inner-loop isolating vibration. Our proposed algorithm 
is responsible for maintaining body horizontally accord-
ing to data from the displacement and force transducer 
embedded in each strut. The wheeled speed consensus 
control [29] is not concerned, thereby leading robot to 
run at a constant default speed.

The block diagram for single-foot controller is dem-
onstrated in Figure  1, where different boxes represent 
effective modules and procedure adjusting single Stew-
art configuration, i = 1, · · · , 4 . During the walking loco-
motion, robot swings foot to track obstacle-negotiating 
trajectory. We imposed the practical stretching length 
of strut as feedforward of model predictive control-
ler and calculate the current configuration through 
Newton-Raphson iteration. The current configura-
tion, velocity, and angular speed are combined into 
a dynamic model of Stewart wheel-leg, which forms 
a closed-loop position tracking controller with force 
input. The purpose of the vibration isolation is to alter 
the configuration of wheel-leg to adapt robot under 
the terrain variation. It also enables wheel-leg to track 
the desired force, sharing robot mass with other three 
wheel-legs, and ensuring close contact between the foot 
and the ground. When four wheel-legs stand on their 
median configuration, the body frame R , foot frame 
Fi, i = 1, . . . , 4 , and world frame W are constructed and 
attached on robot as described in Figure  2. The pro-
posed algorithm applies torque control to adjust the 
foot displacement along Z-axis, thereby tracking sup-
port force to achieve the vibration isolation. The most 
outstanding method to evaluate the performance of the 
algorithm is to measure the attitude variation of robot 
body and foot force along vertical direction. We illus-
trated the experimental data through operating the 
whole control framework on BIT-NAZA robot.

The cardan joints connect struts with moving and 
base platforms, ensuring zero constraint on six degrees-
of-freedom (6-DOFs) for the moving platform. Progres-
sively, invert the Stewart wheel-leg to describe dynamic 

Figure 1 Vibration isolation block diagram for rolling motion
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model arrangement as depicted in Figure 3. The moving 
frame B and base frame A are fixed on moving and base 
plats respectively. Thus, the rotation matrix transformed 
from moving frame B to base frame A is

where sX = sinX , cX = cosX , φx , φy , and φz are the pitch, 
roll, and yaw angle of the moving platform, respectively. 
With position analysis in Figure 3, the vector loop equa-
tion of each linkage is acquired.

The dynamic model involves mathematical expression 
between the motion parameters of the moving plat-
form, which includes configuration, velocity, accelera-
tion, and the actuating force of each cylinder. Because 
of the complicated parallel mechanism with 6-DOFs, 

(1)
ARB =





cφzcφy cφzsφysφx − sφzcφx cφzsφycφx + sφzsφx
sφzcφy sφzsφysφx + cφzcφx sφzsφycφx − cφzsφx
−sφy cφysφx cφycφx



,

the dynamic model of Stewart presents a multi-degree-
of-freedom, multi-variable, and high-nonlinear system. 
There are several approaches allowing multi-rigid sys-
tems, such as Stewart mechanism, to create dynamic 

models containing Newton-Euler, Lagrange, and Kane 
equations. This work adopts Newton-Euler equation to 
build the dynamic analysis and rapidly solves its solu-
tion in high-dimensional condition.

With aim at commanding the wheel-leg, the impression 
generated from rotational inertia of actuating cylinder 
emerges small compared to the mass of the robot body 
and the wheel group. Therefore, the inertia moment of 
electrical cylinder can be neglected when rotational and 

Figure 2 Kinematic workspace and impedance definition of wheel-leg

Figure 3 Stewart coordinate frame definition
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sliding friction of cardan joints and cylinders are ignored. 
The electrical cylinders are simplified as massless, which 
only afford tension and gravity along rod directions. 
According to force analysis from Newton’s second law, 
the motion equation related to center of mass of moving 
platform in base frame A can be denoted as follows:

where mp is the mass of moving platform, g is the grav-
ity acceleration, Af i represents the driving force vector of 
electrical cylinder i, and Av̇p indicates the acceleration of 
moving platform in base frame A.

Let Bri be the position vector of force action point in 
the moving frame B . On the basis of the applied moment 
on point Bri from actuating linkage i and generating rota-
tional angular velocity Bωp , we compute the Euler rota-
tion equation of moving platform in the moving frame B.

The matrix formulation of rotational inertia tensor for 
moving platform in the moving frame B can be calcu-
lated through

where inertia product along xB , yB , and zB axis in moving 
frame B can be expressed as Ixx =

∫∫∫

V (y
2 + z2)ρdV  , 

Iyy =
∫∫∫

V (x
2 + z2)ρdV  , and Izz =

∫∫∫

V (y
2 + x2)ρdV  

respectively, and inertia moment Ixy =
∫∫∫

V xyρdV  , 
Ixz =

∫∫∫

V xzρdV  , Iyz =
∫∫∫

V yzρdV .
Execute coordinate conversion rotation matrix in 

Eq. (1) and get BRA = ARB

T,

Transform the Euler equation into base frame A , thus:

The orthogonal matrix ARB suffices ARB
ARB

T
= EI , 

where EI is unit matrix,

(2)mp
Ag +

6
∑

i=1

Af i = mp
Av̇p,

(3)Ip
B
ω̇p +

B
ωp × Ip

B
ωp =

6
∑

i=1

Bri ×
Bf i.

(4)Ip =





Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz



,

(5)







B
ωp = BRA

A
ωp,

Bri =
BRA

Ari,
Bf i =

BRA
Af i.

(6)

Ip
ARB

A
ω̇p + (ARB

A
ωp)× (Ip

ARB
A
ωp)

=

6
∑

i=1

(ARB
Abi)× (ARB

Af i).

Substitute corresponding antisymmetric matrix 

A
ωp× = A

�ωp =





0 − Aωp,z
Aωp,y

Aωp,z 0 − Aωp,x

−Aωp,y
Aωp,x 0



 and 

Abi× = A
�bi =





0 − Abi,z
Abi,y

Abi,z 0 − Abi,x
−Abi,y

Abi,x 0



 into Eq.  (6), 

then,

Multiply both sides with ARB , and signify driving force 
Af i =

Asifi , where the scalar quantity fi represents the 
value of driving forces.

Set Mp =

[

mpE3×3 03×3

03×3
A
RBIp

A
RB

T

]

 , 

Cp =

[

03×3 03×3

03×3
A
ω̃p

A
RBIp

A
RB

T

]

 , 

Jacobian matrix J p =

[

As1 · · · As6
A
˜b1

As1 · · · A
˜b6

As6

]

 and 

Gp =

[

03×3 E3×3

03×3 03×3

]

 . Then, the combined form of Newton 

motion and Euler rotation equation can be printed as 
follows:

3  Control Framework
Although the control input on Stewart is force, we still 
need configuration and force data of foot measured and 
calculated through sensors, forward kinematics, and Jaco-
bian matrix as feedback. The purpose of MPC within the 
inner loop is to track the desired position and attitude. 
The outermost control loop exploits adaptive impedance 
control to track the desired support force, thereby main-
taining whole body stability during rolling process.

(7)B
ω̃p = ARB

A
ω̃p

ARB

T
.

(8)

Ip
ARB

TA
ω̇p +

ARB

TA
ω̃p

ARBIp
ARB

TA
ωp

=

6
∑

i=1

ARB

TA
˜bi

ARB
ARB

TAf i.

(9)

ARBIp
ARB

TA
ω̇p +

A
ω̃p

ARBIp
ARB

TA
ωp

=

6
∑

i=1

A
˜bi

Asifi.

(10)
M−1

p J p













Af 1
...

Af 6






+ J−1

p Gp

�

03×1 mp
Ag

�







−M−1
p Cp

�

Avp
A
ωp

�

=

�

Av̇p
A
ω̇p

�

.
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3.1  MPC Loop
Accounting for features of MPC that are predictive 
model, receding horizon optimization, feedback cor-
rection, and explicit processing constraints, we design 
a model predictive controller based on torque input. 
Furthermore, we forecast future output of the system 
and repeatedly optimize a certain index online based 
on historical performance and future input. To pre-
vent model mismatch or environmental disturbance 

from generating control deviation with ideal state, out-
put result is detected at new sampling instant and cor-
rect predictive result. The pipeline forces the motion 
velocity as target control vector yr(k) and it evaluates 
the state vector of wheel-leg x(k) , getting state vector 
x(k) of discrete model controller. We solve the output 
vector y(k) in predictive horizon based on predictive 
model. With a minimizing objective function, the last 
procedure calculates the optimal control vector u(k) , 
thereby achieving the tracking from output vector y(k) 
to objective vector yr(k) under the effect of control 
vector.

To prepare for the next step that builds a predictive 
model for Stewart, we transform Eq.  (10) as standard 
state-space formulation, including state and output equa-

tions. Set the state vector x =









Ap
A
ǫp

Avp
A
ωp









 , and control input 

vector u =







Af 1
...

Af 6






+ J−1

p Gp

�

03×1

mp
Ag

�

 , so the state equa-

tion can be written as:

where A =

[

06×6 Up

06×6 −M−1
p Cp

]

 , and B =

[

06×6

M−1
p J p

]

 . The 

output equation can be expressed as:

(11)ẋ = Ax + Bu,

(12)y = Cx,

where the output vector y =

[

Ap
A
ǫp

]

 contains the position 

and attitude vector of moving platform in base frame A 
and C = [E6×6 06×6].

An efficient method to accomplish optimized control 
is by selecting control increment as state of the objective 
function, like the following formulation, which penal-
izes the deviation between predictive state and reference 
input.

where yr(k + i|t) is the desired system output in pre-
dictive horizon from current instant k. That is, it is the 
desired trajectory of moving platform in predictive hori-
zon Np . Note that the control horizon Nc and predic-
tive horizon Np satisfies Nc < Np . Q and R are definite 
weight matrices. The decision variables are trajectory 
properties for all the 6-DOFs. The mentioned inequality 
constraints softly restrain the system output y(k + i|t) , 
control input u(k + i|t) , and variation of control vari-
able u(k + i|t)− u(k + i − 1|t) . To guarantee the output 
trajectory accuracy and input smoothness, the 2-norm 
state increment is minimized. The slack factor σk ≥ 0 can 
ensure that the optimization problem remains infeasible, 
even if the defined constraint gets violated.

The optimization problem in Eq. (13) can be converted 
into a standard quadratic problem. During each sampling 
duration, the computation repeats and only the first value 
u(k|t) of the optimal control sequence u(t) is employed 
as the system input until the next sampling time k + 1 . It 
is turned that utilizing the state x(k + 1|t) to update the 
initial condition of Eq. (13) and resolve it.

3.2  Adaptive Impedance Control Loop
The core of impedance control is to regard the robot as 
a mechanism rigid, environment as admittance, and pro-
cess part as impedance. The relationship between touch-
ing force and acting force, where the quadratic-linear 
equation describes mass-spring-damping system of 
wheel-leg in Cartesian frame, is defined as:

(13)

min

Np
∑

i=0

∥

∥y(k + i|t)− yr(k + i|t)
∥

∥

2

Q
+

Nc
∑

i=0

∥

∥u(k + i|t)− u(k + i − 1|t)
∥

∥

2

R
+ ρσ 2

k ,

s.t. ymin ≤ y(k + i|t) ≤ ymax, 0 ≤ i ≤ Np − 1,

umin ≤ u(k + i|t) ≤ umax, 0 ≤ i ≤ Nc − 1,

�umin ≤ u(k + i|t)− u(k + i − 1|t) ≤ �umax,

0 ≤ i ≤ Nc − 1,

σk ≥ 0.

(14)
M f (Ẍ r − Ẍ)+ Bf (Ẋ r − Ẋ)+ K f (X r − X) = �F .
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where X f  , Bf  , and K f  are the desired impedance inertia, 
impedance, and stiffness matrix, respectively. Ẍ r and Ẋ 
are desired and actual positions along the Z-axis, respec-
tively. F  is the supporting force from contact ground. Set 
the error of foot and desired supporting forces as state 
variables for target impedance model, which tracks the 
desired supporting force. Thus the impedance model can 
be written as the following:

where F r represents the desired supporting force offered 
by the wheel-leg. The wheel-leg can be regarded as a 
spring to construct an equivalent impedance model to 
visually analyze the relationship between wheel-leg and 
ground. xenv , menv , benv , and kenv are the position, iner-
tia, damping, and rigid parameters, respectively, whose 
relationship is shown in Figure  2. Then, we simplify 
them into one-dimension acting force along the Z-axis to 
analyze,

where h(s) = 1

ms2+bs+k
 , and

where the steady-state error of force tracking

When the steady-state error of force-tracking approach 
zero, we enforce the desired trajectory xr to satisfy the 
equation:

It is feasible to obtain the desired position trajectory 
according to desired tracking force when environment 
position xenv and stiffness kenv are known. Nevertheless, 
xenv and kenv are unknown in practical circumstance, 
which are difficult to conduct the parameter recognition 
and compensation. Owing to the existing force error, the 
steady-state error during force tracking is divergent.

Under unknown circumstances, the environmental 
stiffness is unknown and can be changed with the terrain 
topology and hardness. The initial environment position 
Xenv and the force F env replace desired position X r and 
supporting force F r respectively, in Eq.  (15). Then, the 
impedance model is transformed as:

(15)
M f (Ẍ r − Ẍ)+ Bf (Ẋ r − Ẋ)+ K f (X r − X) = F − F r ,

(16)
�f = f − fr

= kenv(xenv − xr)− fr

= kenvxenv − kenv(xr + h(s)�f )− fr ,

(17)
�f (ms2 + bs + k + kenv)

= (ms2 + bs + k)[kenv(xenv − xr)− fr],

(18)�fss =
k

k + kenv
[kenv(xenv − xr)− fr].

(19)xr = xenv −
fr

kenv
.

whose corresponding model in one-dimension becomes

When the desired force fr = 0 and environment position 
x = xenv satisfy �fss = 0 , the corresponding contact force 
f equals 0 once the wheel-leg touches ground. Therefore, 
Eq.  (21) satisfies arbitrary environment stiffness kenv . If 
the desired force fenv  = 0 urges Stewart wheel-leg to gen-
erate supporting force x  = xenv and act on the ground. 
When the system is stable, �fss = 0 . Then, the stiffness k 
is set as 0 for any kenv , thus satisfying ideal steady state 
f = fenv.

In conclusion, Eq.  (21) turns into the following for-
mulation when the stiffness k = 0,

We substitute f = kenv(xenv − x) into Eq. (21), the con-
tact impedance control law can be written as the follow-
ing formulation:

It can be deduced that Eq.  (21) is established to select 
appropriate inertia parameter menv and impedance 
parameter benv to sustain the system steadily according 
to the approximate value of kenv . That is �fss = 0 , even 
though environmental stiffness is unknown.

Therefore, desired force tracking can be realized 
by setting k = 0 when the  environmental stiffness is 
unknown or dynamically changing. While the robot is 
moving on plat surface, ẍenv = ẋenv = 0 and �fss = 0 . At 
this time, the system inevitably remains stable.

When the robot is rolling on the slope or compli-
cated unknown terrain, xenv is time-varying, ẋenv �= 0 
or ẋenv �= 0 , ẍenv �= 0 . Thus, the environment needs 
to be evaluated. When the evaluation of environment 
position x̂env = xenv − δxenv , the position error can be 
expressed as ê = e + δxenv . Applying the ê instead of 
e = x − xenv to Eq. (23), we have:

where f, ¨̂e and ˙̂e are time-varying. There is the force-
tracking error in constant impedance controller. Let 
�f = 0 in adaptive variable impedance control approach. 
We import adaptive variable impedance parameters to 
adjust the damping parameter in impedance model to 
compensate for time-varying error. The methodology can 
be demonstrated as follows:

(20)
M f (Ẍenv − Ẍ)+ Bf (Ẋenv − Ẋ)+ K f (Xenv − X) = F − F env,

(21)
�f = f − fenv = m(ẍ − ẍenv)+ b(ẋ − ẋenv)+ k(x − xenv).

(22)�f = f − fenv = m(ẍ − ẍenv)+ b(ẋ − ẋenv).

(23)
m(ẍ − ẍenv)+ b(ẋ − ẋenv)+ kenv(x − xenv) = fenv.

(24)fenv − f = m¨̂e + b ˙̂e = m(ë + δẍ)+ b(ė + δẋ),
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where �b(t) can be adjusted according to force error 
online, and it can be defined as:

where η is the adaptive gain, and � is the duration. The 
discrete desired acceleration, velocity, and position data 
can be listed in sequence through the following iteration 
and calculation:

where Ts is the sampling cycle.
In the following, the stability and convergence for adap-

tive variable impedance controller can be proved. Substi-
tuting Eq. (26) into Eq. (25), we have:

Since f = −kenve , we have:

Substituting ê = e + δxz and Eq.  (29) into Eq.  (28), we 
have:

Substituting f̄ (t) = kenvδxz(t) into Eq.  (32) and add 
mf̈ (t)+bḟenv(t)

kenv
 on two sides of Eq. (30), we have:

Let φ(t) = fenv(t)− f (t) , and let ν(t) = fenv(t)− f̄ (t) . 
Then, the mentioned equation can be written as:

(25)f (t)− fenv(t) = m¨̂e(t)+ (b+�b(t)) ˙̂e(t),

(26)

{

�b(t) = b
˙̂e(t)

w(t),

w(t) = w(t − �)+ η
fenv(t−�)−f (t−�)

b
, η > 0,

(27)











¨̂e(n) =
�f (n)−b ˙̂e(n−1)

m ),

ˆ̇e(n) = ˙̂e(n− 1)+ ¨̂e(n)Ts,

ê(n) = ê(n− 1)+ ˙̂e(n)Ts,

(28)

f (t)− fenv(t) = m

(

−f̈ (t)

kenv
+ δẍ(t)

)

+ b

(

−ḟ (t)

kenv
+ δẋ(t)

)

+ b

[

w(t − �)+ η
fenv(t − �)− f (t − �)

b

]

.

(29)







ė =
ḟ

kenv
,

ë = −
f̈

kenv
.

(30)

f (t)− fenv(t) = m

(

−f̈ (t)

kenv
+ δẍz(t)

)

+ b

(

−ḟ (t)

kenv
+ δẋz(t)

)

+ b

[

w(t − �)+ η
fenv(t − �)− f (t − �)

b

]

.

(31)

mf̈ (t)−mf̈ (t)+ bḟenv(t)− bḟ (t)+ bkenvw(t − �)

+ ηkenv[fenv(t − �)− f (t − �)] + kenv[fenv(t)− f (t)]

= mf̈env(t)−m
¨̄
f (t)+ bḟenv(t)− b

˙̄
f (t).

The ith element in w sequence will be given as

Assuming the initial w is 0, i.e., w(t − (i − 1)�) = 0 . 
Combining Eq. (32) and Eq. (33), it is deduced that

whose Laplace transformation can be written as:

The characteristic equation of the linear system Eq. (35) 
is

When i approaches infinity, we have:

When small sampling period � is sufficiently small, the 
Taylor expansion substitutes e�s ≈ 1− �s into Eq.  (36), 
thus leading to

According to Eq.  (38), the Routh-Hurwitz array is con-
structed to judge system stability. 

The mentioned Routh-Hurwitz stability criterion 
can conclude:

On accounting of m, b, � > 0 , it is inferred that

(32)
mφ̈ + bφ̇ + bkenvw(t − �)+ ηkenvφ(t − �)+ kenvφ = mν̈ + bν̇.

(33)
bkenvw(t − �) = bkenvw(t − (i − 1)�)

+ ηkenvφ(t − (i − 2))

+ · · · + ηkenvφ(t − 2�).

(34)

mφ̈ + bφ̇ + kenvφ + ηkenv(φ(t − (i − 1)�)+ · · ·+

φ(t − �)) = mν̈ + bν̇,

(35)

φ(s)

ν(s)
=

ms2 + bs

(ms2 + bs + kenv + kenvηe−(i−1)�s + · · · + e−�s)
.

(36)
ms2 + bs + kenv + kenvη(e

−(i−1)�s + · · · + e−�s) = 0.

(37)
∞
∑

i=1

e−�is =
e�s

1− e�s
.

(38)�ms3 + b�s2 + kenv�(1− η)s + kenvη = 0.

s3 �m kenv�(1− η)

s2 b� kenvη

s1 bkenv�
2(1−η)−�mkenvη

b�
0

s0 kenvη 0

(39)







kenv�(1− η) > 0,
bkenv�

2(1−η)−�mkenvη
b�

> 0,

kenvη > 0.

(40)0 < η <
b�

b�+m
.
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As for convergence, the process is to approximately cal-
culate the stable-state error through Eq. (35):

To certify the stability of the system, the step signal 
ν(s) = 1

s is imported, thus,

When t → ∞ and f → fenv , the wheel-leg will track the 
desired force. Therefore, the stability and convergence are 
proved.

4  Simulation in MATLAB/ADAMS
To obtain better performance of the proposed controller, 
a co-simulation system is constructed by combining the 
MATLAB/SIMULINK and ADAMS working on a single 
Stewart mechanism, as demonstrated in Figure  3. The 
model parameter setting is listed in Table 1. The design 
of dangling moving plat can exclude the influence force 
from ground to a robot foot that clearly illustrates the 
position tracking performance of the controller. Similarly, 
the force and displacement sensors internally embedded 
in each strut measure its load-carring force and expan-
sion amount, thereby serving as system feedback and 
solving the force burden and configuration variation 
of moving base through the Jacobian matrix. The step 
and sinusoid are taken as trajectory input to adjust the 
parameter optimization of the controller, in which the 
sample duration Ts is 0.0005 s.

Progressively, the traditional control variate technique 
is adopted to mutually schedule parameters containing 
predictive horizon Np and control horizon Nc . Given 
step signal amplitude 0.15 (it can be set as displacement 
or angle along X-, Y-, or Z-axis, it is tested as X-axis dis-
placement in this case) and input constraint within ±700 

(41)
ess = lim

t→∞
e(t) = lim

s→0
sE(s) = lim

s→0
s(φ(s)− ν(s)) = −1.

(42)lim
t→∞

φ(t) = 0.

N, evaluate the tracking performance of model predictive 
control (MPC) for step signal under different Np and Nc. 

Comparing Figure 4 with Figure 5, we observe that the 
variation of predictive horizon Np has a smaller impres-
sion on the system step response. Nevertheless, the con-
trol horizon Nc which differs from sample duration and 
stands for frequency how long import the optimal con-
trol sequence into the system, has a significant impact on 

Table 1 Parameter setting of Stewart kinematic and dynamic 
model in ADAMS

Parameters Value Unit

Mass of moving plat 6.422 kg

Inertia moment




0.32 0 0

0 0.32 0

0 0 0.64





kg·m2

Diameter of moving plat 340 mm

Diameter of base 488 mm

Height of moving plat 976 mm

Static friction coefficient 0.1 − 

Dynamic friction coefficient 0.05 − 

Pretensioning force 10 N

Figure 4 Step response for different Np when Nc=2

Figure 5 Step response for different Nc when Np=5

Table 2 Control traits of step impulse for different Nc

Case ( Np = 5) Rising time(s) Overshoot 
( %)

Steady-state 
relative error 
( %)

Nc = 1 0.0035 0 −6

Nc = 2 < 0.0005 0 −1.7

Nc = 4 < 0.0005 0 −1.7
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the step response. Table 2 quantizes the step response for 
different Nc.

The updating frequency of optimal control sequence 
decreases with an increase in Nc , thereby reducing ris-
ing time and steady-state relative error. Additionally, 
in view of the large calculation amount and weakening 
real-time computing capacity originated from decreas-
ing Nc , control horizon of the proposed controller is 
set as Nc = 2.

For the parameter of gain/integration (G/s) module 
depicted in Figure 1, the gain and integral factor also 
need to be turned. We define a sinusoidal signal with 
a frequency of 2 Hz and an amplitude of 0.15 rad as 
pitch angle reference. The corresponding response 
of the control system does not produce shock while 
increasing the gain value P, as shown in Figure  6. 
With the fixed predictive horizon Np = 5 and con-
trol horizon Nc = 2 , the amplitude error of sinu-
soidal response is 0.0004 rad with 0.0005 s delaying 
time when we set the gain of G/s module as P = 0.12 , 
thus satisfying tracking precision and requirement of 
dynamic property.

5  Experiments on Wheel‑Legged Robot
After the parameter adjustment step, our experiment 
with the optimal control force input exposes an interest-
ing challenge with the effect from environment. Based 
on the practical requirements of the BIT-NAZA robot, 
both a Bezier trajectory for the corresponding swing leg 
in legged locomotion and vibration isolation in wheeled 
motion are examined on physical prototype. The dis-
placement and force are recorded from corresponding 
sensors embedded in electrical cylinders to calculate the 
corporate displacement and force for wheel-leg, whose 

update time is the same as practical control duration 3 
ms.

5.1  Trajectory Tracking
The internally-embedded motor encoder in each strut 
can read position, velocity, and related motion informa-
tion. Both displacement and attitude tracking are tested 
with a comparison of PI controller. For a quadruped loco-
motion, the robot should traverse obstacle in the swing 
phase, where the tracking accuracy of applied Bezier 
trajectory is of great concern. The operating time of the 
foot trajectory shown in Figure 7a from point A to C is 
3 s, in which the arch height (distance between A and C) 
is 320 mm and arch width (distance between B and line 
AC) reaches 80 mm. The suggested PI controller has 
dimension PPI = 25 and I = 0.1 , the control horizon Nc 
for both controllers are 2 ms. According to the tracking 
result displayed in Figure 7b, the largest position error of 
PI and MPC are −2.7 mm and −0.3 mm, respectively.

In the following attitude tracking experiment, we 
selected sinusoidal signal with amplitude 0.0873 rad 
and three types of frequencies of 1, 2, 4 Hz as reference 

Figure 6 Sinusoidal response for different gain P in G/s module

Figure 7 Swing foot trajectory tracking experiment: (a) Bezier 
trajectory tracking, (b) Tracking result compared with PI controller
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attitude input. Their comparison results are demon-
strated in Figure 8. Besides, the matching time-delay and 
tracking error are digitized in Table 3.

Obviously, the improved performance of MPC based 
on Stewart dynamic model allows the foot to more pre-
cisely track the desired trajectory than PI controller. 
Therefore, the optimal predictive model can be created in 

a very short time-span, and the controller may fine-tune 
the control input to any desired value. The MPC control-
ler obtained better performance compared with the PI 
controller following the increasing signal frequency.

5.2  Vibration Isolation
As a demonstration, passing deceleration strips are 
used to validate the availability of controller, as shown 
in Figure 9. Here, the following deceleration strips are 
implemented: One is 8 cm high and 80 cm wide, while 
the other is 11 cm high and 68 cm wide. The robot is 
instructed to roll over two deceleration strips with two 
legs by our methodology. To enlarge motor torque to 
compensate friction force and drive heavy robot, we 
installed a reducer with reduction ratio of 1:40 between 
motor and wheel, where the wheel diameter is 25.4 cm. 
The suggested control method governed the left feet (i 
= 1, 2) and it set desired wheel speed about 0.5 m/s. 
The IMU is equipped on the robot body to monitor 
attitude variation along three axes. Note that we elimi-
nated the adaptive module and employed a kind of con-
stant impedance controller (Eqs.  (14)–(19)) within the 
control framework working on wheel-leg as a compari-
son [30].

The target vertical force was set as a measured value 
from force sensors when the robot prepared to start 
rolling. The two target tracking forces are 605 N and 
640 N for left-hind  (LH) foot and left-front  (LF) foot, 
respectively. The difference in the magnitude of the 
forces is caused through mechanism asymmetry and 
tolerance. The pitch and roll of robot body in two cases 
are exhibited in Figure 10. Their undertaken force along 
Z-axis for four wheel-legs is also depicted in Figure 11, 
where the gray-shadow area describes when the robot 
is rolling on the top of speed bumps. For instance, 

Figure 8 Tracking result for the sinusoidal signal attitude with three 
frequencies

Table 3 Tracking traits for sinusoidal attitude with different Nc

Signal frequency 
(Hz)

Time delay (s) Amplitude error (rad)

MPC PI MPC PI

1 0.0015 0.025 − 0.0008 − 0.0074

2 0.001 0.016 0.0004 − 0.0004

4 0.006 0.022 0.0061 0.0189

Figure 9 Vibration isolation experiment working on BIT-NAZA robot
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considering the constant impedance case, the robot 
started to climb up and LF foot displacement along 
Z-axis suddenly diminished at 3.6 s because the robot 
body leaned forward with a positive pitch variation. 
The constant stiffness controller was inappropriate for 
LF foot to go downhill, thereby resulting in no recov-
ery pitch angle of robot body after about 7.1 s. The LH 
foot went over the speed bump and the support force 
increased since robot pitch increased at about 12.1 s. 
The maximum roll angle was recorded while the robot 
was rolling on top of obstacles. The variation ampli-
tude of LH and LF feet is relatively small, as they are 
equipped with force-tracking controller during two 
runs, even though the two wheel-legs rolls directly on 
rugged obstacles. The high-slope-like obstacle causes 
rolling with constant impedance controller not to 
achieve an outstanding posture-balancing performance. 
The force produced large oscillation and almost can-
not follow the target force along Z direction. A similar 

situation in adaptive impedance controller also caused 
large force-tracking fluctuation, especially when the 
front wheel rolled downslope and the hind wheel rolled 
upslope, but the force returned to normal in a shorter 
time. 

During the process of adaptive impedance controller 
working on the same conditions, the executed force of 
two controlled wheel-legs had small fluctuations and fast 
restoration to the desired force. Apparently, they have the 
same variation tendency with that in a constant imped-
ance case when different feet went up or down obstacles.

In the impedance controlling comparison, the robot 
passed the first and second strip with 8.5 s (from 3.6 to 
12.1 s) and 9.65 s (from 14.6 to 24.25 s), respectively. The 
adaptive impedance controller spent 8.2 s (from 4.8 to 13 
s) and 8.65 s (from 15.7 to 24.35 s) individually driving on 
two speed bumps. The time cost for constant impedance 
controller is higher than that of the adaptive impedance 
controller because the converse force generated from a 

Figure 10 Trunk attitude variation in two experiments: (a) Without 
adaptive impedance module, (b) With adaptive impedance module

Figure 11 Force-tracking performance for four wheel-legs in two 
experiments: (a) Without adaptive impedance module, (b) With 
adaptive impedance module
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speed bump along the horizontal direction prevents the 
robot from advancing. Moreover, the adaptive imped-
ance quickly helps wheel-leg to adapt to the terrain varia-
tion, thus decreasing the working time of resistance force 
along the horizontal direction. The pitch angle changed 
within ±1.2◦ and roll fluctuated between −0.65◦ and 
1.75◦ in the adaptive impedance controller. However, the 
lowest pitch came to −3.9◦ and roll angle varied between 
−2.8◦ and 1.9◦ when the adaptive module is removed. 
The Z-axis trajectories of two controlled wheel-leg in 
adaptive item are demonstrated in Figure 12. For the first 
and second trips, the extended amounts of LF foot were 
4.2 and 6.5 cm, respectively, and the ones of LH foot were 
5.1 and 7.2 cm, seperately. The compensation elonga-
tion along the Z-axis of wheel-leg equipped with adap-
tive impedance controller approximately approached the 
height of two speed trumps. These speed trumps avail-
ably assisted the robot to keep horizontal while rolling 
over obstacles.

6  Conclusions
We presented a novel control system for a Stewart paral-
lel hybrid wheel-legged robot. The robot mainly contains 
two tracking loops. The objective function based on the 
dynamic model of Stewart mechanism, solved optimal 
control sequence and iteratively fresh state during the 
predictive horizon to complete inner-loop position con-
trol. Furthermore, the function showed how the param-
eter of our controller can be leveraged to significantly 
improve the control accuracy. This, improved accuracy 
allows users to make a tradeoff between decreasing calcu-
lation amount and enhancing precision. To better adapt 
to unknown terrain, adaptive impedance control in outer 

loop is implemented into this structure, thereby estimat-
ing environmental stiffness and combining with other 
impedance parameters of wheel-leg. We demonstrated the 
effectiveness of our controller by tracking Bezier trajec-
tory for swinging foot within single inner-loop controller 
and vibration isolation during rolling motion using intact 
control framework, all of which were tested on a wheel-
legged hybrid robot. We observed that speed bump pass-
ing time of adaptive impedance control is shorter than that 
of constant impedance control. Besides, the force-tracking 
fluctuation and postural variation became smaller. Adap-
tive impedance quickly adjusts foot position to adapt in 
terrain variation, thereby decreasing resistance force along 
the horizontal direction. The proposed controller can force 
wheel-leg to swing in legged locomotion and keep robot 
body horizontal with ground in wheeled motion.

The coupled displacement adjustment from imped-
ance control when all wheel-legs are equipped with the 
proposed controller. This situation still leads to additional 
body vibration, even though only two wheel-legs receive 
command from the proposed controller. The further vibra-
tion isolation framework requires significant improvement 
to decrease coupling of four wheel-legs, where the auxiliary 
event trigger regulator based on postural variation is effi-
cient. As for the application in future industry, the nomi-
nate algorithm can help wheel-legged robot to rolling on 
rough terrain. The operating field contains the resource 
exploration, disaster relief, and package transportation.
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