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Abstract 

With the deepening of human research on deep space exploration, our research on the soft landing methods 
of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander 
has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, 
this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus. The preda-
tory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand 
the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus, like a symmetrical 
cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology 
to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, 
and get better energy absorption capacity. This research provides an effective way to design and manufacture high-
mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.

Keywords Bionic protective structure, Odontodactylus scyllarus, NiTi alloy, 3D printing, Numerical simulation, 
Recoverability

1 Introduction
Soft landing on the surface of asteroids is a key challenge 
in the field of deep space exploration. In the case of a 
lunar landing, the spacecraft needs to land without aero-
dynamic deceleration on the surface of the moon. Thus, 
it must rely on its own propulsion system to gradually 

reduce its speed so that it can land safely in a predeter-
mined area. The landing speed cannot be reduced to zero 
when the lander has a full contact with the lunar surface, 
and the lander is subjected to heavy impact loads upon 
landing. Therefore, it is necessary to add an auxiliary 
landing buffer system to absorb the remaining kinetic 
energy over a limited distance. Zeng et  al. [1] modified 
the dynamics analysis model by using the groun experi-
ment resulting from a simulated lander and found that 
the structure of the lander and the flexibility of the buffer 
mechanism have a great impact on the buffer perfor-
mance. Yan et al. [2] analyzed the factors that influence 
the landing buffer characteristics in the soft-landing 
process of a reusable vehicle for vertical taking-off and 
landing. The simulation analysis of the honeycomb 
buffer was carried out, and the deformation and buffer-
ing characteristics in the process of honeycomb crushing 
were discussed. Van et al. [3] developed and proposed a 
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fast and parallel simulation of the lander/rover bounce 
deployment on asteroids or comets. Besides, they also 
studied the collision and contact motion between a 
probe with arbitrary shape/inertia and a target body. At 
present, large numbers of domestic and foreign scholars 
have done a lot of research on landing modes for con-
trolling landers and impact buffers during landing, and 
the research on the supporting legs of landers is mainly 
focused on the research [4–8] and development of the 
mechanical structures [6, 9, 10]. However, there is an 
urgent need for research on the structure design of the 
supporting legs and its reusability.

In the lengthy process of biological evolution, a vari-
ety of organisms gradually developes unique structures 
to adapt to the environment [11–13]. These structures 
and functions tend to be perfect, providing a reference 
for solving many modern engineering problems. For 
example, the finch-tailed mantis shrimp is known as the 
“boxer” of the sea world. Its developed grazing feet (PF) 
can not only crush prey at speeds of up to 80 km/h, but 
also disperse and deflect the energy produced by the 
impact. Due to its unique structure to realize the impact 
of energy absorption, shrimp can withstand the impact of 
more than 700 N [14–16]. Therefore, the research on the 
mechanism of load absorption in the forefeet structure 
of mantis shrimp will have an great impact on the devel-
opment of the field of shock absorption and cushion-
ing structure. Patek et al. [17] studied the energy release 
process of mantis shrimp during a single punch and the 
elastic mechanism of mantis shrimp which is composed 
of exoskeleton and controlled by latch mechanism. James 
[18] studied the morphological characteristics of feet 
predation of mantis shrimp. Guo et  al. [19] designed 
a corresponding bionic sandwich structure for armor 
protection. As shown in Figure 1, the obvious sandwich 
structure of the mantis shrimp feet makes it incredibly 
impact resistant, which provides a good model for us to 
design impact resistant structures.

Due to its excellent shape memory effect and super-
elasticity, NiTi has attracted wide attention of scholars 
at home and abroad [20]. It’s their poor machinability 
that limits its application in structural parts. In this 
regard, many scholars use Additive Manufacturing 
(AM) to manufacture NiTi alloy structures and parts 
[21–26]. Through AM technology, structural parts can 
be printed directly, avoiding the post-processing pro-
cess, and components can be directly formed. SLM-
NiTi is widely used in porous structures owing to its 
excellent biocompatibility and elastic modulus close 
to the human body [27–29]. However, the research on 
bionic structures with shape memory effect and hyper-
elasticity is relatively scarce. Ma et al. [30] reported the 
bionic structure of NiTi crab claws by using SLM, and 

separately studied the effects of different pore distri-
bution forms on energy absorption. It was found that 
three different pore distribution modes significantly 
improved the toughness of Nitinol part and showed 
similar energy absorption capability. The recovery rate 
of NiTi structure parts found by Xiong et  al. [31] can 
reach 99% under 50% large deformation. SLM-NiTi has 
a profound research value in bionic structure and shape 
memory effect.

This paper aims to study a SLM-NiTi bionic energy-
absorbing structure, which can be recoveried and recy-
cled after heating. Taking Odontodactylus scyllarus feet 
prey sandwich structure as the bionic research object, the 
model was established by using CATIA, a 3D modeling 
software, and the simulation analysis was carried out by 
finite element analysis software under the load condi-
tion. Then the structure prototype was prepared by the 
3D printing technology, and the mechanical properties 
of the prototype were experimented. By comparing with 
the simulation data, the stress-strain relationship of the 
structural model under axial compression and unloading 
under different working conditions was analyzed, and the 
bearing capacity and recovery performance of the model 
were studied. The accuracy of the simulation analysis and 
the effectiveness of the method were verified by compar-
ing with the experimental results. Then the Cell Structure 
(CS) was upgraded to the and the Double Layer Structure 
(DLS), and the finite element model and solid model of 
the DLS were established. By numerical simulation and 
experimental experiment, the absorbing capacity of the 
DLS under the same loading and unloading conditions 
was obtained.

Figure 1 Schematic diagram of the Predatory Feet (PF)
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2  Materials and Methods
2.1  Material Selection
Ni50.8Ti49.2 alloy powder  (Ni50.8Ti49.2 powders with parti-
cle size between 13 μm and 53 μm prepared by electrode 
induction-molten gas atomization (EIGA) process) was 
selected for printing. In the printing process, high purity 
argon gas is used as the protective gas to reduce the oxy-
gen content in the manufacturing chamber.

Figure  2 shows the characteristic analysis of the alloy 
powder we selected. It can be seen from Figure 2(a) that 
the alloy powder we used has a high sphericity, which is 
conducive to the melting of the metal powder bed. Fig-
ure 2(b) shows the particle size distribution of  Ni50.8Ti49.2 
alloy powder, from which we can see that the particle size 
of the powder less than 22.2 μm accounts for 10%, and 
the particle size greater than 58.1 μm accounts for 10%. 
The particle size distribution of this batch of powder has 
a wide main peak near the average particle size d50 = 36.8 
μm, which indicates that the powder has a good uni-
formity. Figure  2(c) shows the DSC curve of  Ni50.8Ti49.2 
powder. The initial temperature (Ms) and termination 

temperature (Mf) of martensitic phase transformation are 
24.8 °C and −16.7 °C, respectively. The initial temperature 
(As) and termination temperature (Af) of austenitic phase 
transformation are − 25.3 °C and 54.9 °C, respectively.

2.2  Architecture of the Energy‑Absorbing Structures
It was observed under the Stereo Microscope that the PF 
of Odontodactylus scyllarus has a cone-shaped structure. 
According to the bionic design principle, taking Odon-
todactylus scyllarus as the biological model, the land-
ing buffer bionic model was established by using CATIA 
software. The outer width (L), overall height (H), support 
thickness (T) and support width (W) of the CS are 26 
mm, 18 mm, 0.5 mm, and 3 mm, respectively. The width 
(L), overall height (H), support thickness (T) and support 
width (W) of the DLS model are 23 mm, 17 mm, 0.6 mm 
and 1.5 mm, respectively (see Table 1).

As shown in Table  2, in order to reduce the cost and 
time of real-time experiments, and to conduct fur-
ther research, the nonlinear explicit finite element (FE) 
code LS-DYNA is employed to simulate the uniform 

Figure 2 (a) Scanning electron microscope image, (b) Particle size distribution, (c) Differential scanning calorimetry curves for  Ni50.8Ti49.2 powder

Table 1 Comparison of different energy-absorbing structures

Geometry configurations Finite element models 3D printed structure

CS

DLS
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quasi-static compression. In the finite element model, the 
S/R quadratic tetrahedron element with Nodal Rotations 
is used, while the Fully integrated shell element is used in 
the shell element. Among them, the element size of the 
CS is 0.3 mm, and the element size of the DLS is 0.1 mm.

After the node set constraint is carried out at the 
bottom of the model, the rigid wall simulates the load-
unload process of the model with the reference to the 
load curve, so that the numerical simulation can describe 
its dynamic process relatively accurately. The relevant 
parameters of each module material are shown in Table 2.

2.3  Additive Manufacturing of Landing Buffer Bionic 
Model Prototype

Pre-alloyed NiTi powder (Ni: 55.8 wt%) was produced 
by electrode induction-melting gas atomization (EIGA, 
Shenzhen Minatech Co. Ltd., China), with particle sizes 
ranging from 15 to 53 μm (d50 of 36.8 μm). The SLM-NiTi 
(Ni: 55.8 wt%) sample was fabricated from the gas-atom-
ized powder. SLM processing was carried out in argon 
gas with overpressure of 10‒12 mbar and oxygen level 
below 500 ppm. Eplus M100-T laser processing machine, 
maximum configuration of 50 μm diameter of 200 W 
laser. The printing process is as follows:

(1) Before printing, clean the excess powder on the 
printing platform to ensure that the printing cabin 
is clean and tidy. Clean the laser lens with a clean 
cloth dampened with alcohol.

(2) Install the substrate and pour in the NiTi powder.
(3) Replace the new scraper, and then adjust the silo to 

the appropriate height. Then adjust the scraper and 
check the installation effect of the scraper.

(4) Put down the air duct, close the hatch door, and 
carry out the vacuum operation.

(5) Import the model to be printed into the corre-
sponding software and add printing support.

(6) In the operation software, the printing parameters 
of the sample are set as follows: laser power 120 W, 
laser scanning speed 600  mm/s, layer thickness 
30 μm, and opening spacing 80 μm.

The samples are prepared by the strip partitioning 
method and the optimized process parameters have 
good chemical stability, high elastic modulus, high cor-
rosion resistance and shape memory properties. NiTi 
alloy Ni: 55.8 wt% was used as the fundamental mate-
rial. Due to the excellent mechanical properties of NiTi 
shape memory alloy, the obtained microstructure not 
only has the characteristics of compression, buffering and 
energy absorption, but also has good recoverability after 
compression.

2.4  Experimental Details
The Force-Displacement curve was recorded during the 
quasi-static compressive loading experiment. The pro-
totype was placed in the central position of the experi-
ment bed, and the actual sample experiment process was 
standardly performed. The Force-Time curve between 
the static pressure load and the sample was measured 
by the force sensor. Press down the sample at a rate of 
4 mm/min. The temperature in the laboratory is 20 ℃. As 
shown in Figure 3, the rigid loading plate was pressed on 
the sample according to the direction of gravity to ensure 
uniform distribution of impact force.

Phase transformation temperature was studied by 
using TA Instruments Q20 DSC instrument at a heating/
cooling rate of 5 ℃/min from – 70 ℃ to 100 ℃. X-ray dif-
fractometer (XRD, Shimadzu, 6100) was used in analyz-
ing the phase structure. And being compressed at room 
temperature, the shape memory effect was verified by 
heating above the Af point in water at 100 ℃.

3  Results and Discussions
3.1  Phase Structure
As shown in Figure  3(a), the DSC graph shows the Ms 
is 29.28 ℃, Mf is −  9.66 ℃ upon cooling, and the As is 
27.81 ℃, Af is 63.41 ℃ upon heating. And Figure  3(b) 
shows the XRD pattern of the SLM-NiTi, which demon-
strates the sample remains B2 austenite state and B19’ 
martensite state at room temperature (20  ℃), mainly 
B2 austenite state. The result is consistent with the DSC 
curve, which proves that the printed material is in B2 
austenite state at room temperature with a small amount 
of B19’ martensite phase.

The tensile stress-strain curve of SLM-NiTi is shown in 
Figure 3(c). The tensile yield strain of the sample is 1.13%, 
and the yield strength is 193.1 MPa. The fracture strain 

Table 2 The related parameters of each module material

Note: SIG_ASS: Starting value for the forward phase transformation in the case 
of a uniaxial tensile state of stress. SIG_ASF: Final value for the forward phase 
transformation in the case of a uniaxial tensile state of stress. SIG_SAS: Starting 
value for the reverse phase transformation in the case of a uniaxial tensile state 
of stress. SIG_SAF: Final value for the reverse phase transformation in the case of 
a uniaxial tensile state of stress. EPSL: Recoverable strain or maximum residual 
strain.

Parameter Rigid wall Solid element Shell element

Ρ (t/mm3)
E (GPa)

7.83×10−9

207
6.45×10−9

18.555
1×10−11

210

μ 0.28 0.33 0.3

SIG_ASS (MPa) 188.64

SIG_ASF(MPa) 353.02

SIG_SAS(MPa) 126.61

SIG_SAF(MPa) 57

EPSL 0.07
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is 10.89% and the fracture strength is 735.18 MPa. It can 
be seen from the figure that a typical stress platform 
appears after the yield point due to the martensite orien-
tation deformation during the tensile process. The tensile 
process of the sample is divided into four stages, which 
include the initial elastic deformation (stage I), the stress 
platform caused by martensite orientation deformation 

(stage II), the elastic deformation of directional mar-
tensite (stage III), and the elastic-plastic deformation of 
directional martensite (stage IV).

3.2  Deformation Behaviour
Another key measurable output from the finite element 
simulation and experimental work is the deformation 
mode of the two structures. Figure 4 shows the deforma-
tion process of the quasi-static compressive loading of the 
CS and DLS. In the early stage of pressure under the rigid 
loading plate, the unit structure hardly showed obvious 
deformation due to the strength of NiTi shape memory 
alloy. Because the CS is placed in the middle of the exper-
iment bed, it is equivalent to restrict the z-direction dis-
placement of the bottom of the bracket only. The energy 
is absorbed by the structure in a controllable way through 
regular deformation patterns of the two structures. The 
deformation modes observed in the experiment are com-
pared with those calculated by finite element simulation.

3.3  Mechanical Properties and Shape Memory Recovery 
Characteristics

As shown in Figure  5, equivalent von Mises stress and 
deformed configurations are obtained from FE analysis 
for two structures. Figure 6(a) and (c) respectively show 
the FDT curves obtained from the loading-unloading-
heating process of the two structures in the simulation 
analysis and experiment. The two curves can be divided 
into three parts: loading, unloading and deformation 
recovery. Firstly, in the loading and unloading part of 
the curve, the curve of the numerical simulation and the 
experimental data has a high consistency. As it can be 
seen, the force-displacement curve is given, the compres-
sion process can be divided into two stages. In the first 
stage, the bearing capacity of the two structures increase 
with the increase of the compression displacement of 
relationship, a kind of approximate linear increase in 
overall is a kind of elastic stage, Stress concentration 
occurs at the upper part of the CS and the middle joint 
of the DLS (Figure 5). When the load reaches the value of 
Pmax (point B and point B1 of Figure 6), it enters the sec-
ond stage, and local buckling instability occurs from the 
upper connection of the CS, resulting in plastic defor-
mation. With the increase of compression displacement, 
the buckling of the structure gradually diffused to the 
whole leg. However, before the loading displacement was 
about 1.1 mm (point B1), the deformation of the DLS was 
mainly dominated by the elastic deformation of the lower 
layer bracket. The deformation of the structure increased 
with the increase of the compression displacement, and 
the load presented a linear increasing trend. Later, due 
to excessive structural deformation, the lower support 
appeared buckling deformation, and the supporting 

Figure 3 (a) DSC graph of the SLM-NiTi, (b) XRD pattern 
of the SLM-NiTi, (c) Tensile stress-strain curve at RT
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force of the lower support was dominated by the bending 
moment of the support (Figure 5). As the bending Angle 
of the support increases, the supporting force provided 
by the support became smaller, so the load curve showed 
a downward trend.

In Figure  6(b), with the reduction of load, the shape 
of the CS gradually recovered, and elastic recovery rate 
reached about 84%, This is mainly due to the presence 
of the B2 austenite phase at room temperature, which 
gives the material part of the superelasticity, so that it 
has a certain shape recovery after unloading. It is found 
that the consistency of the simulation results with the 

experimental results is close to 90%. The results show 
that the simulation analysis technique can better simulate 
the deformation process of the NiTi shape memory alloy 
double-layer composite module in the process of static 
crushing, unloading and spring back, to better predict 
its bearing capacity. After unloading, the elastic recovery 
rate of the sample reaches 84%. The sample was put into 
a beaker with hot water (~100  °C), and the SLM-NiTi 
sample exhibited shape recovery rate of 99%. The reason 
for the shape recovery after heating is that part of the 
B19’ martensite has undergone heat-induced martensite 
transformation. It can be inferred that although the total 

Figure 4 Comparisons of the deformation of the bionic structures (CS and DLS) with the computational model

Figure 5 Equivalent von Mises stress and deformed configurations obtained from FE analysis for the bionic structures (CS and DLS)
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deformation is 70%, the deformation in some areas is 
much lower than 70%, and it may have only undergone 
martensitic transformation redirection without plas-
tic deformation. Therefore, the deformed part can be 
restored to its original shape after heating.

In Figures  5 and 6(d), the compression process and 
experimental results of the DLS were further analyzed. 
In the process of pressing the rigid plate, the deforma-
tion first appears in the lower bracket, and the edge of the 
lower bracket opens to the surrounding. While the upper 
bracket does not show obvious deformation, indicating 
that the strength of the upper bracket is obviously greater 
than that of the lower bracket. When pressing down for 
3 mm, the lap positions of the upper and lower brackets 
become brittle, resulting in structural instability and the 
end of the experiment. In this scheme, the support has a 
thickness of 0.6 mm, a width of 1.5 mm and a thickness 
to width ratio of 2:5. In the future, the thickness to width 
ratio will be reduced, and the support will be designed to 

be a structure similar to a thin plate as possible to give 
full play to its hyperelasticity characteristics and to avoid 
premature brittle fracture of the 3D printed structure. 
Also, compression loading should be withdrawn after the 
downforce displacement reaches 3 mm. In a word, the 
deformation order of the structure is basically bottom-
up. Therefore, in order to improve the bearing capacity of 
the whole structure or control the deformation sequence 
of the structure, a support with the lower strength should 
be chosen. In this study, quasi-static compression load-
ing simulation analysis is carried out on the two-layer 
module to simulate the entire deformation process of the 
module during the loading stage. This work will provide 
the basis for the optimization of nickel-titanium alloy in 
multi-variable and multi-parameter module.

There is a slight difference between the simulation 
analysis and the experiment during loading. Before the 
loading displacement was about 1.1 mm (point B), the 
deformation of the double-layer structure was mainly 

Figure 6 (a) FDT curves acquired through a loading-unloading-heating process of the CS, (b) Shape recovery process of the CS after being 
heated in a water bath after deformation, (c) FDT curves obtained by loading-unloading-heating processes of the DLS, (d) Shape recovery process 
of the DLS after being heated in a water bath after deformation
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dominated by the elastic deformation of the lower layer 
bracket. The deformation of the structure increased 
with the increase of the compression displacement, 
and the load presented a linear increasing trend. Later, 
due to excessive structural deformation, the lower sup-
port appears buckling deformation, and the supporting 
force of the lower support is dominated by the bend-
ing moment of the support. As the bending Angle of 
the support increases, the supporting force provided by 
the support becomes smaller, so the load curve shows a 
downward trend. The final state after unloading is simi-
lar to the CS. As shown in Figure 6(a) and (c), when the 
structure produces shape memory recovery under the 
action of thermal excitation, the structure under the 
deformation state exhibits different recovery efficiency at 
different temperatures. In experiment, we observed that 
the DLS rapidly recovered its shape within a few seconds 
after being stimulated by heat and achieved a recovery 
rate of about 98%. Therefore, it can be concluded that the 
DLS has excellent reusable performance.

3.4  Performance Indicators
Different parameters are used to compare the perfor-
mance of various devices. The indicators used within this 
study include peak force (Pmax); energy absorption (EA); 
specific energy absorption (SEA); and shape recovery 
rate.

The Pmax is the force required to initiate plastic defor-
mation within the tube and hence begin the energy 
absorption. Total energy absorption through plastic 
deformation is calculated as the area under the force-dis-
placement curve, using Eq. (1):

where d is the total structural volume, P is static force, x 
is the instantaneous crush displacement.

Given that mass is a key indicator in any automotive 
structural design, specific energy absorption provides an 
indicator of the EA per unit mass, as presented in Eq. (2). 
A high EA and SEA are highly desirable within crashwor-
thy applications:

where M is the structural mass.

3.5  Post‑Compression Analysis
The experimental percentage crush and correspond-
ing reaction force were generated from the experiment 
machine. The recorded Performance indicators are listed 

(1)EA =

∫
d

0

P(x)dx,

(2)SEA =

EA

M
,

in Table 3, including the Pmax, EA, SEA, M, compressible 
rate and shape recovery rate.

From Table 3, it may be observed that DLS has excel-
lent mechanical properties, but its compressible defor-
mation is small. On the contrary, although CS has weak 
mechanical properties, its compressible deformation can 
reach 66.67%, and its shape recovery rate can reach 99% 
after thermal excitation.

4  Conclusions
In this paper, a recoverable NiTi alloy landing buffer 
bionic structure system was developed with the inspi-
ration of the excellent impact energy absorption of 
Odontodactylus scyllarus’s predatory feet. presents a 
comprehensive investigation of the crashworthiness of 
simple hierarchical and fractal hierarchical structures 
using experimental experiments and computational 
modeling techniques. Several conclusions are drawn 
from the results:

(1) It is of great theoretical and practical significance 
to improve the structure of lander shock absorber 
by printing biomimetic model based on additive 
manufacturing technology. The structure is based 
on Nitinol and has a good shape memory recovery 
performance, which provides an effective solution 
to the efficient reuse of the lander. This is the key 
to achieving continuous protection after any initial 
interference.

(2) The experiment and simulation of the unit struc-
ture show that the CS has a very high elasticity 
although it is not outstanding in carrying capacity, 
which provides a good idea for the study of buffer 
structure. When the bionic DLS is pressed down 
by about 38.9%, the peak load of the DLS is 692 N. 
Compared with the CS, in the loading and unload-
ing process, the DLS shows a higher capacity of 
load and absorption.

(3) This study helps us understand the deformation 
pattern and interlayer strength distribution of each 

Table 3 Comparison of crashworthiness indicators for quasi-
static compressive loading

Crashworthiness indicators CS DLS

M (g) 0.969 2.372

EA (J) 0.268 27.71

SEA (J/g) 0.277 11.682

Pmax (N) 7.2 634

Shape recovery rate (%) 99 98

Compressible strain (%) 66.67 17.65
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structure, provides an important basis for the opti-
mal design of each layer and the deformation con-
trol of the entire module, and lays a foundation for 
the extended application and performance design of 
multi-layer NiTi alloys.
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