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Abstract 

Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous perfor-
mance. In commercial and domestic constructions, concrete, wood, and glass are typically used. Laser and visual 
mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls. However, indoor 
and outdoor glass curtain walls may fail to perceive these transparent materials. In this study, a novel indoor glass 
recognition and map optimization method based on boundary guidance is proposed. First, the status of glass recog-
nition techniques is analyzed comprehensively. Next, a glass image segmentation network based on boundary data 
guidance and the optimization of a planning map based on depth repair are proposed. Finally, map optimization and 
path-planning tests are conducted and compared using different algorithms. The results confirm the favorable adapt-
ability of the proposed method to indoor transparent plates and glass curtain walls. Using the proposed method, the 
recognition accuracy of a public test set increases to 94.1%. After adding the planning map, incorrect coverage redun-
dancies for two test scenes reduce by 59.84% and 55.7%. Herein, a glass recognition and map optimization method is 
proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.

Keywords Autonomous mobile robot, Multi-sensor fusion, Glass recognition, Map optimization

1 Introduction
The extensive application of autonomous mobile-robot 
products has resulted in the rapid iteration and devel-
opment of autonomous navigation and related sensing, 
localization, mapping, and planning technologies. In this 
regard, the typical applications include commercial clean-
ing, disinfection, hotel services, and delivery robots [1]. 
The primary techniques used are computer vision, point 
cloud processing, simultaneous localization and mapping 

(SLAM), motion planning, and multi-robot cooperation. 
Unlike the structured environment of a laboratory, the 
dynamic, variable illumination, low-texture, and semi-
transparent environmental factors in actual scenarios 
increase the demand for algorithms with higher robust-
ness and reliability. To satisfy commercial and domestic 
requirements, some intelligent products, such as autono-
mous mobile robots, generally adopt low-cost lasers and 
cameras because of cost restrictions, in addition to ultra-
sonic, infrared, and inertial navigation systems.

The aforementioned environmental perception 
schemes satisfy the application requirements of most 
mobile robots. However, when indoor or outdoor glass 
curtain walls, glass doors, or transparent dummy plates 
are present in the environment, the perception of mate-
rials may be unsatisfactory [2, 3]. The established plan-
ning map may have large gaps and exhibit many potential 
safety hazards, including risky crossings, collisions, and 

*Correspondence:
Yong Tao
Taoy@buaa.edu.cn
1 School of Mechanical Engineering and Automation, Beihang University, 
Beijing 100191, China
2 Research Institute of Aero-Engine, Beihang University, Beijing 102206, 
China
3 Large Aircraft Advanced Training Center, Beihang University, 
Beijing 100191, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-023-00902-9&domain=pdf
http://orcid.org/0000-0002-8585-0797


Page 2 of 12Tao et al. Chinese Journal of Mechanical Engineering           (2023) 36:74 

falls. For mobile robots, the failure to perceive indoor 
glass materials and the optimization of planning maps 
have garnered extensive attention from researchers of 
robotics and computer vision.

Engineers generally change the operating environ-
ment or artificially fix the maps in actual applications 
to address the problems of glass perception failure and 
incomplete planning maps. Several approaches have 
been proposed, such as setting a physical fence before 
glass screen walls as well as implementing active vir-
tual walls, software visual walls, and magnetic bounda-
ries. However, the failure of glass perception cannot be 
fundamentally resolved. Owing to the development of 
intelligent sensors and platform calculation capacities in 
recent years, multisensor fusion, novel sensors, and new 
perception algorithms have been proposed to address the 
abovementioned issue.

Existing SLAM schemes with glass or highly reflective 
material detection functions primarily use ultrasonic sen-
sors and the distribution of the reflection laser strength 
as the input. Glass recognition and possibility estimation 
can be achieved using threshold-limiting and clustering 
analyses. Despite their low computational requirements 
and favorable real-time performance, ultrasonic fusion 
schemes present several problems in practical applica-
tions. Strength information is easily affected by multiple 
factors, including the incident angle [4], detection range, 
material properties, and platform stability. In addition, a 
detection window phase exists that depends significantly 
on the scanning range of LiDAR and a detailed scanning 
path. Strength reliability is easily affected by glass mate-
rials or surrounding diffuse objects of low precision. All 
these restrictions impose restrictions on the application 
performance.

By considering low-cost laser and camera perception 
schemes typically used in mobile robots, a distributed 
network is presented to further discover visual informa-
tion without requiring additional sensors. This enables 
robust glass perception when combined with a laser sen-
sor. Finally, it achieves the perception of glass materials 
by approximating concrete walls.

This study focuses on an actual mobile robot and pro-
poses an indoor glass recognition and map optimization 
method based on boundary guidance. First, the interac-
tion mechanisms among different sensors, glass materi-
als, and existing schemes are analyzed. Subsequently, 
based on typical visual features, a glass-image segmenta-
tion network based on boundary guidance is proposed. 
Next, a planning map optimization method is proposed 
based on the glass recognition results. Finally, image 
segmentation, planning map optimization, and planning 
tests are performed to validate the effectiveness of the 
proposed method.

The main contributions of this study are as follows: 
First, the glass image segmentation network is improved 
based on boundary guidance. Different levels of network 
structures comprising different modules are investigated 
to achieve accurate glass image segmentation. Second, 
a map optimization method based on depth repair is 
proposed. A glass image segmentation and map opti-
mization scheme is presented based on the integration 
of LiDAR and a camera. Finally, map optimization and 
regional full-coverage planning tests are performed on an 
actual mobile robot to validate the improvement in the 
performance of the method in enhancing map integrity 
and planning safety.

2  Related Studies
Existing glass recognition solutions. To address the fail-
ure of glass recognition, researchers have considered no-
entry or private labeling [5, 6] and changing the operating 
environment or map modification scheme. This includes 
the installation of a physical fence, active virtual walls, 
magnetic boundary lines, adding a software virtual wall, 
implementing additions, and considering cost map repair 
in actual engineering applications [7]. Accordingly, the 
deficiencies of the planning map can be addressed to 
ensure safe planning. These measures are reliable but not 
flexible. Virtual software walls have gradually become 
the standard for service-type mobile robots. Meanwhile, 
intuitive interactive systems with strict restrictions on 
vehicle-mounted interactive capabilities are few. Cur-
rently, interactive virtual wall operations can be enhanced 
using mobile devices, laser pens [8, 9], and augmented 
reality [10]. Although the abovementioned glass recogni-
tion schemes based on man–machine interactions have 
been applied in some cases, autonomous recognition 
methods for dangerous scenarios, such as those involving 
glass and stairs, remain challenging.

Glass recognition methods based on LiDAR. LiDAR 
sensors are typically used in mobile robots and have gar-
nered the attention of researchers. Distance, strength, 
and echo are the basic combinations of information 
provided by LiDAR. To address the failure of LiDAR in 
detecting mirrored objects, Lee et  al. [11] employed 
many single-line LiDAR sensors and used distance data 
after preprocessing and clustering analysis. They pro-
posed feature extraction methods for glass lines based 
only on statistical characteristics and coordinate relation-
ships. Jiang et al. [12] proposed an improvement to and 
a calculation of an occupied grid map based on the con-
fidence degree of glass, as well as calculated the recog-
nition possibility using a neural network classifier. Koch 
et  al. [13] proposed a method for distinguishing mirror 
reflections from transparent objects based on multi-echo 
difference and experimentally validated the principal 
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disadvantage of LiDAR in glass detection. Because multi-
echo LiDAR was used, the typical low-cost LiDAR could 
not satisfy the requirements. Considering the limitation 
of the incident angle in glass detection by LiDAR, Foster 
et  al. [14] modified the occupied grid map used in the 
standard SLAM algorithm to survey and map objects 
visible only at certain view angles by monitoring reliable 
detectable angle subsets of the objects. Wang et al. [15] 
proposed a convenient scheme for glass detection in an 
almost normal range with reflective laser strength. They 
analyzed the distribution of the reflective laser strength 
of glass based on the incident angle and screened out the 
characteristic thresholds of the strength and distribu-
tion slope. However, to achieve a stable mirror reflection 
method, the robot used propagated only along a specified 
path to scan the suspected glass region along the normal 
direction of the mirror object surface. This indicates sig-
nificant restrictions in its application.

Glass recognition methods based on multisensor 
fusion. Detecting glass using LiDAR alone is difficult. 
Hence, multisensor fusion schemes have garnered signifi-
cant attention, which primarily include fusion between a 
computer vision module comprising a monocular cam-
era, a depth camera, a polarization camera, and LiDAR; 
fusion between a sonar probe and LiDAR; and fusion 
between a camera and solar probe. Yang et al. [2] intro-
duced a SLAM fusion method based on 16 sonar probes 
and a laser scanner to achieve glass detection and a 
supplementary map. However, the proposed method 
requires the extraction and reconstruction of disjoint line 
segments to generate mirror prediction. Additionally, the 
interference among multiple groups of ultrasonic data 
reduces the detection precision [16]. Yamaguchi et  al. 
[17] fused a polarization camera and LiDAR to overcome 
the limitation wherein LiDAR can only detect glass in the 
normal direction. The initial localization was obtained 
using LiDAR, and the suspected region was confirmed 
based on the polarization degree measured by the polari-
zation camera. Using this method, additional polariza-
tion cameras are introduced at a high cost for actual 
applications. Huang and Wei [18, 19] adopted a fusion 
scheme comprising a camera and two ultrasonic sensors 
to determine whether glass barriers exist in each frame of 
an image. Next, the position of the glass was determined 
using a region-growing algorithm to restore the sparse 
map. The proposed method accurately detected the posi-
tion and distance of a glass object in front of a robot with 
a certain reference significance.

Computer vision-based glass recognition methods 
Owing to the rapid development of machine learning 
and the significant enhancement in central processing 
unit (CPU) and graphics processing unit (GPU) calcu-
lation capacity, computer vision technology has been 

extensively applied in object recognition. The combi-
nation of visual cameras and LiDAR is a typical sensor 
configuration in existing mobile robot platforms that 
has inspired researchers to combine computer vision 
with mobile robot sensing schemes. Xie et al. [20] cre-
ated the Tran10k dataset and proposed the Translab 
image segmentation method, which has been further 
developed subsequently. He et al. [21] proposed a glass 
image segmentation network, i.e., EBLNet, based on 
edge-learning enhancement. The network first extracts 
marginal information, followed by scene information 
within the boundary using a neural network, which sig-
nificantly enhances the glass image segmentation per-
formance of RGB images. Based on the perspective of 
computer vision, researchers comprehensively inves-
tigated easily confused targets such as glass [22, 23], 
mirrors [24, 25], and camouflage [26], and rendered 
the glass detection dataset (GDD) public. The proposed 
GDnet glass detection network can achieve accurate 
offline recognition and segmentation of glass regions in 
images depicting actual scenarios.

For a mobile robot, its first step is to assess whether 
the object to be detected is glass. Next, the specific 
coordinates of the glass should be provided accurately 
and efficiently such that the robot can smoothly com-
plete the functional tasks. These tasks include environ-
mental mapping, self-localization, motion planning, 
and autonomous navigation. Herein, an indoor glass 
recognition and map optimization method using 
platform sensors and background computers is pro-
posed for mobile robots operating based on boundary 
guidance.

3  Glass Recognition and Map Optimization 
Method

3.1  Overview of Proposed Method
To address the failure of mobile robots in detecting glass 
materials, a glass recognition and map optimization 
method based on boundary guidance is proposed. First, 
a glass-image segmentation network is proposed based 
on an existing laser-based SLAM scheme. Environmen-
tal RGB images, depth images, and inertial measurement 
unit location data are obtained and stored, whereas the 
original grid map is established. The EBLCNet can rec-
ognize and manage RGB images, identify environmental 
glass regions, and segment the boundary ranges of glass 
materials. The depth images are repaired based on the 
glass-boundary recognition results. Accordingly, the new 
grid map for planning is updated offline after the supple-
mentation and excludes dangerous objects, such as glass 
walls, to ensure that the robot operates in safe cleaning 
areas, as shown in Figure 1.
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3.2  Glass Image Segmentation Network Based 
on Boundary Guidance

3.2.1  Network Structure
Based on the existing object recognition model, the pro-
posed EBLCNet considers the fact that people first focus 
on the window frame and then the details in the scene. 
First, the boundary characteristics are extracted using a 
refined differential module (RDM). Next, a large-field 
contextual feature integration module is integrated. The 
scene is recognized and segmented using a boundary fea-
ture guidance system. The implementation procedure is 
described in detail as follows:

The network adopts single RGB images as the input. 
First, single RGB images are input into a multilayer fea-
ture extractor, where a typical pretraining model is used 
as the backbone. Multiple groups of low- and high-level 
characteristics are output successively. The RDM mod-
ule simultaneously receives low- and high-level initial 
characteristics and calculates the boundary and non-
boundary features for the initial learning and iterations. 
Subsequently, it outputs the combined features and initial 
boundary characteristics. The LCFI module receives the 
features and characteristics and uses the initial boundary 
characteristics as the activation function. It outputs accu-
rate glass-boundary characteristics via guidance training. 
Subsequently, the loss value is calculated after predic-
tions are obtained using the Pred module and compar-
ing them with the actual values of the dataset. After the 
iterative loop, binary mask images of the regions labeled 
as glass are output. Based on a convolutional neural net-
work (CNN), the initial multilevel features are extracted 
and input to a serial structure comprising an RDM, an 
LCFI, and Pred for the extraction of continuous charac-
teristics. The serial modules are flexibly arranged to form 
a multilayer parallel structure. The parallel structures are 
connected by processed and combined characteristics. 
The network structure is illustrated in Figure 2.

3.2.2  Fusion of Serial Structure
After obtaining the initial features and referring to the 
DeepLabv3+ network structure [27], a serial structure 

is set as the main body for feature extraction and pro-
cessing in the network, as shown in Figure 3. The LCFI 
module, which includes several LCFI blocks, is adopted 
after the RDM module, mainly to extract glass features of 
different sizes. The extracted features improve the adapt-
ability of the segmentation network to glass images at dif-
ferent angles and distances.

Compared with convolution operations with large con-
volution kernels, spatially isolated convolutions provide 
more effective, reliable, and feasible schemes of low com-
putational loads for large-range texture extraction. The 
spatially isolated convolution network is expressed as:

where Fin and Fout are the input and output features of 
the spatially isolated convolution network, respectively; 
convh and convv are convolution operations with 1 × k and 
k × 1 convolution kernels, respectively; ℵ represents the 
batch standardization and ReLU calculations.

To eliminate ambiguity and comprehensively extract 
the features of scene textures, two spatially separated 
convolutions in two opposite directions are adopted in 
the LCFI, i.e.,

(1)Fout = ℵ(convh(ℵ(convv(Fin)))),

(2)

Fl = ℵ(conv1(Fleft_in)),

Flcfi = ℵ(conv2(concat(ℵ(convv(convh(Fl))),

ℵ(convh(convv(Fl)))))),

Figure 1 Diagram showing operation of mobile robot
Figure 2 EBLCNet structure

Figure 3 Illustration of EBLCNet serial structure
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where Fleft_in and Flcfi denote the input and output fea-
tures of the LCFI module, respectively; conv1 and conv2 
represent ordinary convolution;  convh and convv repre-
sent convolution operations with 1 × k and k × 1 convo-
lution kernels, respectively; and ℵ represents the batch 
standardization and ReLU calculations.

In contrast to the single use of the RDM or LCFI mod-
ule, the fused serial network structure can fully utilize 
the boundary and hybrid features extracted from the ini-
tial features. It recognizes glass doors and windows on a 
single scale using a single LCFI module. By connecting 
it with the LCFI module in parallel, a large-scale detec-
tion input is adopted as the output in the next module to 
achieve multiscale recognition of glass doors and win-
dows. After obtaining accurate boundary recognition 
results, a new round of prediction and iteration is per-
formed for a layer in the serial structure. The output from 
the current layer of the serial structure is adopted as the 
input for the next layer of the serial structure.

3.2.3  Loss Function
The loss function is categorized into a single-layer loss 
function and network-structure loss function. By refer-
ring to the EBLNet, the one-way loss function comprising 
boundary loss, nonboundary loss in the RDM module, 
and serial hybrid loss is written as:

where Fm , Fb , and Fr are the single-layer hybrid, bound-
ary, and nonboundary features in the RDM module, 
respectively; Gm , Ge , and Gr are the actual values of the 

(3)
Ljoint = �1Lresidual(Fr ,Gr)+ �2Ledge(Fb,Ge)+ �3Lmerge(Fm,Gm),

image, the boundary value, and the nonboundary value, 
respectively; Lmerge and Lresidual are the layer mixing loss 
and nonboundary loss in the RDM module, respectively, 
which adopt a mixed cross-entropy [28]; Ledge denotes 
the boundary loss in the RDM module, which adopts the 
Dice loss [29]; � denotes the weight coefficient; and Ge 
and Gr are screened and extracted from Gm via comple-
mentation and residue calculations, respectively.

Considering the connection of serial structures in par-
allel, the loss function of the network is calculated by 
adding the losses of N serial layers as follows:

The network loss function is calculated to train and 
optimize the entire network to enhance the accuracy.

3.3  Optimization of Planning Map Based on Depth Repair
Depth image repair. A depth camera provides a robot 
with RGB and depth images, which can serve as an 
effective supplement to the distance data provided by 
LiDAR. However, owing to the limitations of ranging, a 
significant amount of noise and void defects exist in the 
glass region of the original depth images. These images 
are not conducive to the direct sampling and supple-
mentation of the environmental map. Therefore, an 
optimization method for the planning map is proposed 
based on depth repair. It repairs voids in depth images 
using glass image recognition and segmentation. Sub-
sequently, the grid map is automatically supplemented 
via depth interpolation and sampling to achieve path 
planning for the mobile robot.

The following two methods are used to repair noisy 
points and voids in the image. First, for defects of few 
pixels, the distance can be supplemented using median 
filtering. Subsequently, for large-area voids, the dis-
tance values around the pixels are calculated and sup-
plemented via linear filtering based on the glass image 
segmentation boundary results. For void defects, 
assuming that E denotes the set of segmentation 
boundary points and B denotes the point set, the out-
put depth values are generally zero, and the following 
relationship applies for any point:

where P1 , Pr , and PB
1

 are the initial depth image, depth 
image after repair, and repair-process values, respec-
tively; dW  , dS , dA , and dD are the shortest Euclidean dis-
tances of the defect points from the boundary points in 
the four directions; and PEW

1
 , PES

1
 , PEA

1
 , and PED

1
 are the 

depths of the corresponding boundary points in the four 
directions.

Sampling supplementation. To supplement the 
depth data, the distance information should be sub-
jected to dimension reduction. Data supplementa-
tion is performed on the original grid map within 

(4)L =

N∑

n=1

Lnjoint .

(5)PB
1 =

(dA + dD)
(
dWP

ES
1

+ dSP
EW
1

)

(dW + dS + dA + dD)(dW + dS)
+

(dW + dS)
(
dDP

EA
1

+ dAP
ED
1

)

(dW + dS + dA + dD)(dA + dD)
,

Pr = P1 + PB
1 ,
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the depth-camera measurement range. The data are 
directly supplemented at the barrier position in the 
original direction. When the barrier is along the origi-
nal direction, the distance difference threshold ε is set. 
If the difference between the barrier distance in the 
original map and the data exceeds the threshold, then 
an object with a small value is regarded as a barrier to 
ensure the safety of the planned path. Otherwise, the 
distance data are combined and the new distance dgauss 
is calculated via Gaussian filtering and then added to 
the map, as shown in Figure 4.

where M and m denote the number of grids within the 
visual field and the related serial number, respectively; xw , 
yw , x0 , and y0 are the coordinates of the occupied grids 
and robots in the world coordinate system; dgauss denotes 
the Euclidean distance between the occupied grid and 
camera plane; dmobstacle and dmcamera are the distance values 

(6)






dgauss = ρdmobstacle + δdmcamera,

xw = x0 + dgauss cos
�
θ + β +

γ

2
−

γm

M

�
,

yw = y0 + dgauss sin
�
θ + β +

γ

2
−

γm

M

�
,

measured by LiDAR at the grid point in the view field 
and camera, respectively; δ is the degree of confidence 
between two measured values; And θ , β , and γ denote the 
azimuth angle of the robot, the included angle between 
the pointing direction and advancing direction of the 
camera, and the field angle of the camera, respectively.

The archived data are traversed at all grid points on 
the map boundary to achieve sampling supplementa-
tion on the regional map.

Offline update. The updated two-dimensional grid 
map adequately restores the actual environmental 
boundaries to update the static map layer with via the 
cost map mechanism.

4  Experiments
This section describes the experimental scheme, plat-
form, and datasets used in this study. For actual indoor 
glass scenes, glass image segmentation, planning map 
optimization, and covering path planning tests were con-
ducted to validate the effectiveness and feasibility of the 
proposed method.

4.1  Experimental Settings
Figure  5 shows the experimental setup. The present 
experiment included three main tests: the glass image 
segmentation test, planning map optimization test, and 
covering path planning contrast test.

A glass-image segmentation network was established 
based on the PyTorch framework. Typical ResNet and 
ResNeXt network modules were used in the backbone 
multilayer feature extractor network. During the training 
process, the GDD and mirror detection dataset (MSD) 
were used. The GDD included 2980 training images and 
related masks under multiple scenes, such as shopping 
malls, stations, houses, and offices. The MSD included 
3063 training images and related masks for multiple 
types of mirrors and mirrors obstructed by objects.

The learning rate was set to 0.001–0.003. Consecutive 
training was conducted under 100 iterations. The com-
puter used for network training featured a Windows 10 
operating system, an Intel CPU i5-12400F, and 16G of 
random access memory. A Tesla T4 and a P100 GPU 
were used to accelerate the calculations. The calculations 
required approximately 20 h. A total of 936 GDD and 955 
MSD images were randomly selected for validation.

(a) 

(b) 
Figure 4 Illustration of depth image sampling supplementation: 
a coordinate system establishment, b sampling supplementation 
schematic

Figure 5 Experimental validation and decomposition
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As shown in Figure 6, the self-developed mobile robot 
implemented environmental mapping and planning after 
map supplementation. The main components of the 
robot were a frame, a wheel system, an STM32 control 
panel, and a power system. The LSLIDAR-N301 LiDAR 

system was obtained from Leishen Intelligence. The 
NUC7i5BNH host machine was obtained from Intel. 
A D435i depth camera and an IMU were mounted. The 
robot chassis performed differential driving for advance-
ment and used ROS-Kinetic for communication with the 
Ubuntu 16.04 operating system.

4.2  Glass Image Segmentation Test
For an unbiased comparison, the parameter settings were 
almost identical to those of the GDNet and EBLNet. 
Images with a resolution of 416 × 416 were input, and 
the learning rate was set to 0.002 after dynamic regula-
tion using an attenuation parameter of 0.9, based on the 
Poly strategy. The number of network layers determines 
the number of parameters affecting the learning speed. 
The training results of the recognition network with dif-
ferent numbers of serial structures were tested and ana-
lyzed. The image segmentation performance improved 
compared with the results obtained using previous algo-
rithms. In a scenario with abundant window boundary 
textures, precise segmentation performance is achieved 
to supplement the planning map. Figure 7 shows a visual 
comparison of the image segmentation results yielded by 
the different algorithms.

To evaluate the efficiency and accuracy, the results 
obtained using similar algorithms in the domain were 
added for comparison. The advantages and enhance-
ments of the EBLCNet in terms of both accuracy and 
flexibility were observed. In this study, several indices, 
including the intersection of union (IoU), accuracy (Acc), 

Figure 6 Mobile robot platform

Figure 7 Comparison of image segmentation results

Table 1 Comparison of test results for GDD

Conditional random field (CRF) is used for post-processing

Method CRF IoU↑ Acc↑ F-beta↑ mAE↓ BER↓

PSPNet − 84.06 0.906 0.906 0.084 8.79

DenseASPP − 83.68 0.919 0.911 0.081 8.66

DANet − 84.15 0.911 0.901 0.089 8.96

CCNet − 84.29 0.915 0.904 0.085 8.63

PointRend − 86.51 0.933 0.928 0.067 6.50

DSS − 80.24 0.898 0.890 0.123 9.73

PiCANet − 83.73 0.916 0.909 0.093 8.26

BASNet − 82.88 0.907 0.896 0.094 8.70

EGNet − 85.04 0.920 0.916 0.083 7.43

DSC − 83.56 0.914 0.911 0.090 7.97

BDRAR + 80.01 0.902 0.908 0.098 9.87

GDNet (RNeXt101) + 87.63 0.939 0.937 0.063 5.62

EBLNet (RNet101) − 88.16 0.941 0.939 0.059 5.58

EBLNet (RNeXt101) − 88.72 0.944 0.940 0.055 5.36

EBLCNet (ResNet101) 1C − 88.38 0.939 0.945 0.061 6.01

EBLCNet (ResNet101) 2C − 88.71 0.941 0.941 0.059 5.76

EBLCNet (ResNet101) 3C − 88.68 0.941 0.941 0.059 5.86
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mean absolute error (mAE), and balanced error rate 
(BER), were calculated for comparison. The results are 
summarized in Table 1.

Tables 1 and 2 present a comparison of the test results, 
where C denotes the number of serial structure layers. 
The proposed two-layer serial structures achieve the 
training performance of three layers using a more con-
venient network and less data. EBLCNet fuses boundary 
perception and a large reception field convolution mod-
ule. By performing training and validation based on the 
GDD and MSD, the accuracy of recognizing glass doors 
and windows and image segmentation further improved. 
Compared with EBLNet, EBLCNet can manage more 
data. However, this difference becomes less prominent 
after the layers of the serial structures are adjusted. Con-
sidering the environmental map and images obtained 
by the mobile robot, the recognition task was deployed 
in the background for offline operation, which did not 
impose a high demand on real-time capability. In tests 
using the hardware above based on public datasets, the 
inference time of the proposed method was approxi-
mately 65  ms, which was slightly longer than those of 
EBLNet (24 ms) and GDNet (41 ms) using ResNet50 as 
the backbone.

4.3  Original Map Optimization Test
To deploy the recognition algorithm and validate the per-
formance of the proposed optimization method for auto-
matic mapping, an actual office environment obstructed 
by a glass wall was selected as the operating environment 
for the mobile robot. A two-dimensional navigation map 
was established using the Gmapping algorithm [30]. Dur-
ing the mapping process, RGB images, depth images, and 
the corresponding IMU location data were recorded. 
Subsequently, they were unloaded to the server for an 
offline recognition of unknown glass regions. Next, depth 
images were sampled to complete the automatic supple-
mentation of the planning map. Figure 8 shows the map-
ping process during the movement of the robot.

Figure 9 shows the original mapping results and envi-
ronmental characteristics. (A) and (C) show the enlarged 
details of the glass doors and windows in the test envi-
ronment, respectively.

Establishing an environmental map using LiDAR is 
applicable to most scenes, such as those involving walls; 
however, some glass doors, windows, and partition 
regions cannot be perceived. For glass windows, LiDAR 
can only detect the existence of a window frame, as 
shown in the enlarged images (B) and (D) in Figure  9. 
The established map incorrectly includes most of the 

Table 2 Comparison of test results based on MSD

CRF is used for post-processing

Method CRF IoU↑ Acc↑ F-beta↑ mAE↓ BER↓

MirrorNet + 78.95 0.935 0.857 0.065 6.39

EBLNet (RNet101) − 78.84 0.946 0.876 0.054 8.84

EBLNet (RNeXt101) − 80.33 0.951 0.883 0.049 8.63

EBLCNet (RNet101) 2C − 83.26 0.934 0.929 0.066 10.11

EBLCNet (RNeXt101) 2C − 84.69 0.940 0.938 0.059 9.44

Figure 8 Mapping process of robot
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unknown regions. Without map repair and adjust-
ment, the robot considers the entire domain in the map 
as safe and passable, based on the planning algorithm. 

This results in a high risk of collision and falling during 
the implementation of typical tasks such as fixed-point 
distribution and regional cleaning.

In Figures 10 and 11, the occupied grids are marked 
in black. The passable grids are marked in white. Fig-
ures  10(a) and 11(a) show the results of the origi-
nal two-dimensional laser mapping. In the original 
map, the metal frames of the doors and windows were 
detected and marked in black. However, glass was not 
detected and was incorrectly marked as white. Fig-
ure  10(b) and 11(b) show the results of the supple-
mentary and updated maps. After supplementing and 
updating the planning map, the glass region was re-
labeled as a no-entry state.

4.4  Coverage Path Planning Test
To validate the contribution of the map supplementation 
to the safety of autonomous navigation by the robot, a 
full-coverage planning test was conducted to simulate the 
cleaning task. The aim of this test is to achieve regional 
coverage. In Figure 12, the green pentagram and red tri-
angle represent the starting point of planning and the 
end of the operation, respectively. The bow-type yellow 
line represents the path coverage.

For the full-coverage planning for Scenes 1 and 2, the 
original planning map for the mobile robot misidenti-
fied the unknown region from the glass door and rear 
region. The end point was located outside the glass door, 
and the route obtained by the planning algorithm passed 
through the glassy region. During actual operation, the 

(a) Scene 1

(b) Scene 2
Figure 9 Mapping test scene in office area

(a) Original mapping result of scene 1

(b) Optimized mapping result of scene 1
Figure 10 Comparison of map a before and b after 
supplementation for Scene 1

(a) Original mapping result of scene 2

(b) Optimized mapping result of scene 2
Figure 11 Comparison of map a before and b after 
supplementation for Scene 2
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robot system may collide or fall. After supplementing the 
planning map for the full-coverage simulation, the entire 
path was within the corridor without risk objects, such as 
glass and stairs. Hence, the operational safety of the robot 
was ensured, as shown in Figures 12 and 13.

To evaluate the improvement in the map supplementa-
tion quantitatively, five indices were selected to measure 
the difference between the planning paths in different 
phases and in the building map. The indices were the grid 
occupation rate (GOR), obstacle point number (OPN), 
coverage path length (CPL), incorrect coverage redun-
dancy (WCR), and collision possibility (CP). Table 3 lists 
the detailed data before and after map optimization.

As shown in Table 3, owing to the supplementation of 
the boundary information, the GORs in the Scenes 1 and 
2 enhanced by 1.13% and 2.03%, respectively. After sup-
plementation, the planning map segmented and avoided 
the unreliable glass boundary and rear regions in the 
original map, thereby reducing the WCRs by 59.84% and 
55.7% in Scenes 1 and 2, respectively. In general, both the 
accuracy and efficiency of the path planning were effec-
tively enhanced in the cleaning task simulation.

4.5  Discussions
Segmentation network. Without the addition of vehi-
cle sensors, the proposed method relies on low-cost 
LiDAR and depth cameras and achieves glass-region seg-
mentation based on RGB images via a glass-image seg-
mentation network. In particular, the proposed method 
combines glass recognition with the optimization of the 
robot’s planning map. Based on the GDD, MSD, and 
previous studies, different backbone networks could be 
constructed and tested. Finally, the proposed method 
achieves an accuracy rate of 94.1% for glass recognition 
and segmentation.

By considering the boundary data and large-reception-
field convolution module, the established network can 
be applied to many target scenes, including glass doors 
and windows. However, during the actual training pro-
cess, the established network could not readily recognize 
the intersecting regions among the floor bricks, skirting 
lines, and glass. The indoor arch door could not be distin-
guished easily from the boundless door by relying only on 
the boundary information for guidance; thus, the further 
enhancement of the recognition accuracy was restricted.

Autonomous navigation. Based on the principles of 
online acquisition, offline recognition, and automatic 
supplementation, the robot performed data acquisition 
and storage during the first operation. First, the image 
data required for recognition and the IMU data were 
stored. Next, offline image recognition was conducted 
based on the pretrained model in free time. Finally, the 
results were automatically updated based on the recog-
nition results and update rules. In essence, the proposed 

(a) 

(b) 
Figure 12 Comparison of coverage planning results for using a 
original and b optimized map of Scene 1

(a)

(b)
Figure 13 Comparison of coverage planning results using a original 
and b optimized map of  Scene 2
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method updates only the static map layer and restricts 
the planning of safe regions. Thus, the WCR is reduced 
and the operational safety of the robot is ensured. How-
ever, the location accuracy of the mobile robot did not 
indicate much improvement. The constant improvement 
in hardware calculation capacity necessitates further 
improvement in low computational cost networks, online 
recognition, multisensor fusion localization, and multi-
map management schemes.

Influence of lights. In this study, the public dataset 
and our self-established image test set accounted for 
various scenarios such as homes, shopping malls, and 
offices. Currently, they are operated under good light-
ing conditions. The proposed method relies on the 
features of the image, and the improvement in recog-
nition accuracy is mainly due to the deep mining of 
glass boundary features. Therefore, in principle, this 
method is only applicable under well-lit conditions. 
Under conditions without any lights and with direct 
sunlight, intense reflections or light spots are presented 
on the glass doors and windows. However, this scenario 
is challenging. Fusion schemes that include polarizing 
cameras or other heterogeneous sensors are possible 
solutions to the abovementioned issue.

5  Conclusions

(1) To address the failure of mobile service robots in 
perceiving indoor glass materials, the status of stud-
ies pertaining to glass recognition techniques was 
analyzed in terms of algorithms and products. Diffi-
culty in detecting special objects, such as glass, hin-
ders the application of autonomous mobile robots.

(2) A glass recognition and map optimization method 
based on boundary guidance was proposed. The 
proposed method involved a glass image segmenta-
tion network and a map optimization algorithm.

(3) Map optimization and planning tests were per-
formed using different algorithms. The proposed 
method exhibited favorable adaptability to indoor 
transparent plates and glass curtain walls. The rec-

ognition accuracy of the public test set increased to 
94.1%. After supplementing the planning map, the 
WCRs of the Scenes 1 and 2 reduced by 59.84% and 
55.7%, respectively.

(4) Deploying the proposed method to actual robots 
can simplify certain operations, such as the artificial 
labeling of glass regions and the addition of virtual 
walls during the mapping process. Thus, the integ-
rity of the planning map and the safety of the path-
planning process are ensured.
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Table 3 Comparison of evaluation indexes before and after supplementation

GOR (%) OPN CPL WCR (%) CP

Scene 1 Original map 75.72 12266 4740 61.11 +
Optimized map 76.85 12450 2942 1.27 −

Scene 2 Original map 74.85 19012 7152 56.84 +
Optimized map 76.88 19527 4560 1.14 −
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