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Abstract 

Model predictive control is widely used in the design of autonomous driving algorithms. However, its parameters are 
sensitive to dynamically varying driving conditions, making it difficult to be implemented into practice. As a result, 
this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller. 
Specifically, the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coeffi-
cients of the model predictive controller. In this method, a risk threshold model is proposed to classify the risk level of 
the scenes based on the scene features, and aid in the design of the reinforcement learning reward function and ulti-
mately improve the adaptability of the model predictive controller to real-world scenarios. The proposed algorithm is 
compared to a pure model predictive controller in car-following case. According to the results, the proposed method 
enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according 
to risk variations, showing a good scenario adaptability with safety guaranteed.
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1 Introduction
As one of the development directions, autonomous 
driving is drawing more and more attention worldwide. 
Model predictive control (MPC) is able to deal with 
optimization problems with multiple objectives [1]. It 
iteratively solves an optimization problem over a finite 
horizon, to provide online optimal solutions subjected to 
constraints [2]. By constructing an optimization problem, 
the MPC algorithm ensures the car avoids collision and 
improves its performance in the dynamic environment 
[3]. According to Google Scholar, more than 7000 papers 

based on MPC have been published every year in the area 
of autonomous vehicles in the past three years.

MPC-based studies on autonomous vehicles mainly 
focus on planning or tracking the planned trajectory. A 
reasonable design of performance indices enables auton-
omous vehicles maintain an appropriate relative distance 
and velocity from surrounding vehicles, effectively alle-
viate traffic congestion, and reduce traffic accidents [4]. 
Jeong et  al. [5] designed a MPC with fixed weights to 
improve trajectory and speed tracking performance by 
distributing control forces to multi-actuators. Ammour 
et al. [6] studied the trajectory planning of autonomous 
vehicles on the expressway based on a weight-fixed MPC 
such that a vehicle can improve safety by overtaking and 
lane changing. Wu et  al. [7] designed a non-local con-
troller based on MPC, which can attenuate the oscilla-
tion obviously and present a good riding comfort. Zhou 
et al. [8] developed an MPC based on the car following 
(CF) model with fixed weights. The objective function is 
designed based on the historical state data of the front 
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vehicle, realizing a smooth response to the merged traf-
fic. Sun et  al. [9] proposed a hybrid MPC method for 
autonomous speed regulation, and it improved ride com-
fort by approximating the vehicle longitudinal dynamics 
as a two-mode discrete-time hybrid logic dynamics sys-
tem. As one of the critical evaluation indices of vehicle 
performance, the energy-optimal speed trajectories are 
widely studied. Dollar et  al. [10] applied a weight-fixed 
MPC to the longitudinal motion regulation in mixed traf-
fic scenarios to realize the improvement of fuel economy, 
where objective function is designed using the instanta-
neous motion information of multiple preceding vehi-
cles. Sun et al. [11] adopted a target switching MPC for 
global velocity tracking and adaptation, which greatly 
reduced the computation time for speed planning and 
saved 22.0% energy compared to human driving. As can 
be seen in existing studies, MPC controllers mostly adopt 
fixed weights, which can achieve a better performance 
in certain scenarios. However, driving scenarios in real 
world are uncertain, dynamical, and time-varying such 
that they cannot perform well in the real-world driving 
[12].

An excellent driving algorithm should be able to 
dynamically reach a balance among multiple perfor-
mance indicators and adapt to different scenarios [13]. At 
present, there has been some researches on this problem 
[14–16], such as weight-adjustment or adaptive methods 
based on fuzzy control or personal driving data. Chang 
et al. [17] performed a real-time optimization of a weight 
matrix in MPC via fuzzy control, which improved the 
accuracy of tracking, ride comfort, and stability. Pang 
et  al. [18] proposed an MPC that adaptively adjusts the 
weights of the cost function based on a fuzzy inference 
system, which significantly improved the MPC perfor-
mance and control accuracy. Shivram et  al. [19] used 
MPC based on fuzzy logic to improve the CF accuracy 
and ride comfort of independent vehicles. Tian et al. [20] 
proposed a coordinated tracking control strategy, they 
based on a fuzzy rule to adjust the weights of MPC, which 
finally improved the path tracking accuracy and stabil-
ity of the vehicle at high speed with large curvature. Liu 
et al. [21] presented a shared steering mechanism based 
on MPC, so that the weight can be changed adaptively 
based on the consequence of risk assessment and pre-
defined strategy to ensure driving safety. Liang et al. [22] 
proposed an adaptive multi-MPC scheme, which intro-
duced a weighted adaptive mechanism based on rules 
to handle various driving conditions, especially some 
extreme cases. Rokonuzzaman et al. [23] proposed a lon-
gitudinal MPC controller for autonomous driving, which 
adaptively adjusts its weights based on a data-driven 
approach, so that the vehicle dynamics aspects such as 
speed, acceleration and jerk can be balanced. The existing 

weight adjustment methods with fault tolerance, reliabil-
ity, and traceability advantages, can improve vehicle per-
formance in several specific scenarios, but they generally 
are not able to cope well with dynamic scenarios.

Reinforcement learning (RL) as an auto-learning method, 
is able to encourage vehicles to explore under different sce-
narios with a reasonable reward function, through trial-
and-error approach to accumulate experience and improve 
performance [24]. In fact, existing studies have extensively 
discussed the reward function design and vehicle per-
formance optimization for diverse application scenarios 
[25–27]. It is suitable for dealing with the problem of scene 
changes and performance optimization [28]. However, 
RL has some shortcomings, for example, it is difficult to 
converge, and even if convergence is achieved, the effect 
of training is not always satisfactory [29]. In addition, as a 
safety-critical system, the vehicle cannot be tried randomly, 
but should always explore based on safety [30]. So just using 
RL methods is not enough to meet the requirements.

In this paper, we considered combining MPC with RL 
to automatically reach a balance among different per-
formance index in dynamical scenarios. In this way, we 
can not only use MPC algorithm with hard constraints 
to ensure safety, but also extract complex features of 
dynamic scenarios as the basis of adaptive correction 
through RL. Therefore, the proposed combined strat-
egy possesses the features to adaptively adjust controller 
parameters under different scenarios. Following is a sum-
mary of the main contributions in this paper.

1. This study proposes a weight-adjustment strategy 
for MPC based on RL, according to the state of sur-
rounding environment to achieve a trade-off among 
safety, comfort, and energy saving of autonomous 
vehicles.

2. It summarizes the correlation between performance 
indices of speed control and the adaptive rules for 
MPC parameters to comprehensively improve the 
overall performance of autonomous vehicles.

This paper follows the following structure: Section  2 
introduces the proposed combined RL and MPC strategy 
for autonomous vehicles. Section  3 defines the scenario 
risk assessment and vehicle performance analysis. Sec-
tion 4 introduces MPC and RL algorithm. Finally, evalu-
ation results of the proposed strategy for autonomous 
speed control are presented in Section 5.

2  Structure of the Combined Strategy
This section introduces the architecture of the combined 
RL and MPC strategy for autonomous vehicles and define 
four different scenarios depending on the risk level of the 
environment. As shown in Figure  1, the RL algorithm 
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takes the environment state in the current scene as input 
and outputs MPC variable weights. MPC calculates the 
optimal acceleration for lower layer controller. Further-
more, a risk threshold model is proposed for scenario risk 
assessment, so as to guide the reward function of RL, and 
MPC constraints are considered as well.

As shown in Figure  2, the scenarios of autonomous 
vehicles are complex and diverse. Different driving scenes 
have different characteristics, and the road conditions 
change dynamically. Even different vehicles on the same 
section of the road also drive differently. Four scenarios 
are shown on the right side in Figure  2, and the grada-
tion of color is used to represent the transformation of 
scene risk degree caused by the change of the relative 
distance. Yellow, green, orange, and red represent the 
crisis scenario, the safety scenario, the low-risk scenario, 
and the high-risk scenario respectively. Under the crisis 
scenario, the vehicle should reduce ego-predecessor dis-
tance to ensure the CF task; under the safety scenario, 
the vehicle should keep the speed constant or accelerate 
slowly to reduce unnecessary jitters and pursue a better 
energy efficiency and ride comfort; under the low-risk 
scenario, due to the risk of collisions, much more empha-
sis should be placed on safety; in the high-risk scenario, 
the vehicle must slow down immediately to increase the 
distance between two vehicles and ensure that a collision 

does not occur. Scenario adaptability mentioned in this 
paper means that vehicles can autonomously adjust their 
behaviors based on different scenario risk levels to maxi-
mize vehicle performance as mentioned above.

3  Scenario Risk Assessment and Performance 
Analysis

It is necessary to analyze the risk degree and the priority 
requirements of vehicles in different scenarios to improve 
the adaptive adjustment ability of MPC with multiple 
weights. This paper proposes the risk threshold model 
(RTM), which can be used to evaluate the scene risk by 
analyzing the characteristics of the environment, classify-
ing the scenes into four risk levels: the crisis scenario, the 
high-risk scenario, the low-risk scenario, and the safety 
scenario.

According to the RTM, the inputs are the relative dis-
tance and velocity of two vehicles in the CF maneuver, 
and the risk level of the scene is the output, as shown in 
Figure 3.

Based on the adjustment mechanism, some reference 
values are shown in Table 1.

When the relative distance exceeds the maximum fol-
lowing distance defined in the CF scenario, the vehicle 
does not meet the prerequisites of CF task such that the 
vehicle will be in the crisis scenario case. When the rela-
tive distance is between the safe driving distance and the 
maximum following distance, the autonomous vehicle 
can safely stop and the vehicle is in the safety scenario. 
When the relative distance is between the dangerous 
stopping distance and the safe stopping distance, where, 
when the relative velocity is less than the dangerous 
relative one, the stopping distance can be divided into 
the low-risk scenario and the safety scenario, and if the 
relative velocity is greater than the safe relative velocity, 
the vehicle will be able to stop instantly and it will be in 
the safety scenario. In cases that the relative distance is 

Figure 1 Combined RL and MPC strategy

Figure 2 Dynamic scene and classification

Figure 3 Risk assessment mechanism of the RTM
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smaller than the dangerous stopping distance, and the 
relative velocity is less than the safety one, collision acci-
dents will happen such that the vehicle is in the high-risk 
scenario, when the relative velocity is greater than the 
safe one, the preceding vehicle will always maintain the 
leading position, which is generally in the safety scenario. 
However, the state of the preceding vehicle is uncertain, 
the stopping distance of the ego is related to the relative 
velocity, which can be subdivided into the low-risk and 
the safety scenario.

During driving, vehicles are seeking for a balance 
among different performance, such as CF performance, 
safety, fuel economy, ride comfort under dynamic scenar-
ios. However, there are conflict constraints for different 
performance. Exploring the correlation between perfor-
mance and constraints is not only helpful to optimize 
vehicle performance and improve vehicle scene adapt-
ability, but also lay a foundation for subsequent research 
on performance improvement and scene extension.

4  Combined RL and MPC Strategy
This section introduces the objective function and con-
straints of MPC controller and the RL algorithm for 
the adaptive adjustment of the weights in the objective 
function.

4.1  Model Predictive Controller
As the main algorithm of longitudinal following control, 
MPC is constructed based on the velocity and position 
information of the ego and the front vehicle, and outputs 
the acceleration that meets the constraints [31]. The lon-
gitudinal motion planning problem in this study is devel-
oped based on a longitudinal kinematic model as follows:

where X, vX and aX represent the longitudinal displace-
ment, velocity, and acceleration, respectively; the longitu-
dinal displacement and velocity are denoted by the state 
variable and the output variable y , and the longitudinal 
acceleration is the control variable u:

(1)Ẋ = vX , V̇ = aX ,

Then, the MPC longitudinal motion planning problem 
can be described as follows:

where,

The symbols of the relevant parameters are shown in 
Table 2.

The desired value of longitudinal position yref,t+itp|t 
is jointly decided on the position of the preceding vehi-
cle Xf,t+itp|t and the safe stopping distance Dsafe,t , and is 
affected by the velocity Vf,t+itn|t and acceleration af,t+itp|t 
of the preceding vehicle.

In the objective function, the first item reflects the 
longitudinal CF safety requirements and the tracking 
ability to the desired values. The second reflects the fuel 
economy requirements, that is, the ability to suppress 

(2)x =

[

X
vX

]

, y =

[

X
vX

]

, u = aX .

(3)

Jt(x(0),ut−1,�u, ε) =

Np
∑

i=1

∥

∥

∥
yt+itp|t − yref,t+itp|t

∥

∥

∥

2

Q

+

Nc−1
∑

j=0

∥

∥ut+jtc|t

∥

∥

2

Ru
+

Nc−1
∑

i=1

∥

∥�ut+itc|t

∥

∥

2

Rdu
+ ρε2,

min
�u,ε

Jt(x(0),ut−1,�u, ε),

s.t.umin ≤ u(k) ≤ umax, k = 0, 1, · · · ,Nc − 1,

�umin ≤ �u(k) ≤ �umax, k = 0, 1, · · · ,Nc − 1,

xmin − ε1n×1 ≤ x(k) ≤ xmax − ε1n×1, k = 0, 1, · · · ,Np,

ymin − ε1p×1 ≤ x(k) ≤ ymax − ε1p×1, k = 0, 1, · · · ,Np,

0 ≤ ε(k) ≤ εmax,

s.t.umin ≤ u(k) ≤ umax, k = 0, 1, · · · ,Nc − 1,

�umin ≤ �u(k) ≤ �umax, k = 0, 1, · · · ,Nc − 1,

xmin − ε1n×1 ≤ x(k) ≤ xmax − ε1n×1, k = 0, 1, · · · ,Np,

ymin − ε1p×1 ≤ x(k) ≤ ymax − ε1p×1, k = 0, 1, · · · ,Np,

0 ≤ ε(k) ≤ εmax.

Table 1 Parameters and symbols of RTM

Parameters Symbols Value

Dstop The average level of safe stopping (m) 20

Ddanger The lower limit of Dstop (m) 18

Dsafe The upper limit of Dstop (m) 22

Dfellow The maximum following distance (m) 60

Rvsafe The relative velocity that driver feels most comfortable (m/s) 0

Rvdanger The relative velocity where there is a risk of collision (m/s) −1
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excessive values of longitudinal acceleration. The third 
shows the ride comfort requirements, the ability to limit 
the excessive values of longitudinal jerk. The fourth item 
is used to prevent that the optimization problem will 
have no solution due to the error of the prediction model.

In this paper, we trained the weight of the first term in 
the MPC objective function by reinforcement learning, 
so as to dynamically adjust the expected longitudinal CF 
distance and improve the scene adaptability of vehicles.

4.2  Reinforcement Learning Algorithm
4.2.1  Action Space
The action at ∈ A is constituted by the CF weight coeffi-
cient Q , i.e., at = [Q] , Q ∈ [Qmin,Qmax] , where Qmin,Qmax 
correspond to the maximum and minimum values of the 
CF weight respectively.

4.2.2  State Space
The state st ∈ S is composed of the relative distance, the 
relative velocity and the longitudinal velocity of the ego 
vehicle and the preceding vehicle, st =

[

Rv ,Rd , vego
]T.

4.2.3  Reward Space
Four parts are used to define the reward as follows:

Collision reward rcollision: Once a collision happens, 
the car will get a negative reward rc , and rc is a constant 
set to −10.

(4)r(s, a) = rcollision + rU + r�U + rD.

(5)rcollision =

{

0, not collision,
rc, collsion.

Acceleration reward rU: If the vehicle satisfies the 
acceleration constraint of the MPC problem, it will get a 
reward rU , rU consists of four cases.

1. When in the safety scenario, the reward is defined 
to travel at a lower acceleration, where ru1 and k1 are 
constants set to 30 and −10;

2. When in the high-risk scenario, the reward encour-
ages the vehicle to travel at a higher deceleration to 
avoid a dangerous situation. In addition, it penal-
izes the acceleration behavior to prevent the danger, 
where ru2 and k2 are constants set to −10 and 1;

3. When in the low-risk scenario, it gets a reward ru3 , 
where ru3 is a constant set to 0;

4. Once the vehicle does not meet the acceleration con-
straint of the MPC problem, it will get a negative 
reward ru4 to punish the over-constrained behavior, 
where ru4 is a constant set to −100.

Jerk reward r�U: If the vehicle does not meet the jerk 
constraint of the MPC problem, it will get a negative 
reward r�u , where r�u is a constant set to −30.

CF reward rD: When the vehicle is in the crisis sce-
nario, it will get a negative reward rd . Its purpose is to 

(6)

rU =











ru1 + k1 × |u|, safe,
ru2 + k2 × u, high danger, u ∈ [umin ,umax],
ru3, low danger,
ru4, u /∈ [umin ,umax].

(7)r�U =

{

0, �u ∈ [�umin,�umax],
r�u, �u /∈ [�umin,�umax].

Table 2 Parameters and symbols of MPC problems

Parameters Symbols

t Current moment

Np Prediction horizon

Nc Control horizon

Jt The objective function of the longitudinal motion planning

x(0) The state vector at the current moment

ut−1 The control vector at the previous moment

yt+itp|t The predictive output of longitudinal position and velocity corresponding to each predictive step in the 
prediction horizon at the current step

yref,t+itp|t The desired output of longitudinal position and velocity of each predictive step in the prediction horizon

ut+jtc |t The output of acceleration corresponding to each predictive step in the control horizon at the current step

�ut+itc |t The output of jerk corresponding to each predictive step in the control horizon at the current step

ε Relaxation factor

Q, Ru , Rdu , ρ Weights of each optimization objectives

1p×1, 1n×1 A unit column vector of dimension n and p
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enable the autonomous vehicle to guarantee the basic 
CF task, where rd is a constant set to −41.

4.2.4  State Transition Probability
The vehicle in state st takes action at , and the state st trans-
fers to state st+1 . The probabilistic state transition mode is 
denoted as follows:

4.2.5  Value Function
In this paper, we choose a soft actor-critic (SAC) algorithm 
that optimizes random strategies in a non-strategic way to 
make the value function optimal [32].

First, introduce the definition of entropy, define x to be 
a stochastic variable with probability mass or density func-
tion. The entropy H of x is calculated from its distribution 
P according to:

In entropy-regularized RL, the agent gets an additional 
bonus at each time step relative to the entropy of the policy 
at the same timestep. This changes the RL problem to:

Where, α is the entropy regularization coefficient, which 
particularly controls the explore-exploit tradeoff, with posi-
tive and negative correlation with exploration. γ is the dis-
count factory, γ ∈ [0, 1].

The value function is as follows:

The Q function corresponds to:

Combining the above definitions, we get:

in addition, the bellman equation of Qπ (s, a) is:

(8)rD =

{

0, not fellow risk,
rd , fellow risk.

(9)Pa
s = P[s = st+1|s = st , a = at ].

(10)H(P) = E
x∼P

[− log P(x)].

(11)

π∗ = arg max
π

E
τ∼π

[

∞
∑

t=0

γ t(R(st , at , st+1)+ αH(π(·|st)))

]

.

(12)

V π (s) = E
τ∼π

[

∞
∑

t=0

γ t(R(st , at , st+1)+ αH(π(·|st)))|s0 = s

]

.

(13)

Qπ (s, a) =

E
τ∼π

[

∞
∑

t=0

γ tR(st , at , st+1)+ α

∞
∑

t=1

γ tH(π(·|st))|s0 = s, a0 = a

]

.

(14)V π (s) = E
a∼π

[Qπ (s, a)]+ αH(π(·|s)),

rewrite it with the definition of entropy:

The right hand side is the expected value of the next 
action from the current policy as well as the next state 
from the replay buffer. Since it is an expectation, we can 
approximate it with samples:

The loss function of Q-network in SAC is:

where the target y is given by:

The strategy should act to maximize the sum of 
expected future benefits and entropy in each state. That 
is, it should maximize V π , which this paper expands out 
into:

The way we optimize the policy makes use of the 
reparameterization trick, in which a sample from 
πθ (·|s) is derived by calculating a deterministic function 
of policy parameters, state, and independent noise. To 
illustrate: We use a squashed Gaussian policy, which 
means that samples are obtained, according to

The re-parameterization technique allows us to rewrite 
the operational expectation into the noise expectation:

(15)

Qπ (s, a) = E
s′ ∼ P
a′ ∼ π

[

R
(

s, a, s′
)

+ γ
(

Qπ
(

s′, a′
)

+ αH
(

π
(

·s′
)))]

= E
s′∼P

[

R
(

s, a, s′
)

+ γV π
(

s′
)]

,

(16)

Qπ (s, a) = E
s′ ∼ P
a′ ∼ π

[

R
(

s, a, s′
)

+ γ
(

Qπ
(

s′, a′
)

+ αH
(

π
(

·|s′
)))]

= E
s′ ∼ P
a′ ∼ π

[

R
(

s, a, s′
)

+ γ
(

Qπ
(

s′, a′
)

− α log π
(

a′|s′
))]

.

(17)

Qπ (s, a) ≈ r + γ

(

Qπ
(

s′, ã
′
)

− α log π
(

ã
′

|s′
))

,

ã
′

∼ π
(

·|s′
)

.

(18)

L(φi,D) = E
(s,a,r,s′,d)∼D

[

(

Qφi(s, a)− y
(

r, s′, d
))2

]

,

(19)

y
(

r, s′, d
)

= r + γ (1− d)

(

min
j=1,2

Qφt arg .j

(

s′, ã′
)

− α log πθ
(

ã′|s ′
)

)

,

ã
′

∼ πθ

(

·|s ′
)

.

(20)
V π (s) = E

a∼π
[Qπ (s, a)]+ αH(π(·|s))

= E
a∼π

[Qπ (s, a)− α log π(a|s)].

(21)
ãθ (s, ξ) = tanh (µθ (s)+ σθ (s)⊙ ξ), ξ ∼ N (0, I).
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To get the policy loss, the last step is that we need to 
substitute Qπθ with one of our function approximators, 
the policy is thus optimized according to Eq. (23):

5  Simulation Results
This section briefly introduces the configuration of the 
simulation environment and the design of training pro-
cess, followed by the result demonstration and analysis. 
In this paper, a RL environment is built in Carla simula-
tor (an open source software) to implement and test the 
proposed strategy. In order to verify the performance of 
the proposed combined controller with a dynamic scene 
adaptability, this paper compares the variable-weight 
MPC controller with the fixed-weight MPC controller 
under three different operating conditions. The scenarios 
involved in the training process can be classified into the 
four risk levels mentioned above. The relevant initial con-
ditions and parameters used in the simulation are shown 
in Table 3.

The RL algorithm is trained with random seeds for 
120000 iterations per evaluation, and Figure  4 shows 
the cumulative rewards for the average reward r at each 
step during the evaluation period. The maximum possi-
ble reward for each step is 30, and the reward decreases 
when the agent deviates from the expected acceleration 
and jerk. The results show that after 50000 training steps, 
the vehicle is able to learn how to perform better. As the 

(22)

E
a∼πθ

[Qπθ (s, a)− α log πθ (a|s)]

= E
ξ∼N

[

Qπθ
(

s, ãθ (s, ξ)
)

− α log πθ
(

ãθ (s, ξ)|s
)]

.

(23)

max
θ

E
s ∼ N

ξ ∼ N

[

min
j=1,2

Qφj

(

s, ãθ (s, ξ)
)

− α log πθ
(

ãθ (s, ξ)|s
)

]

.

training moves on, the average reward r continues to 
increase until around 100000 steps. During training, the 
set ends when (1) a collision occurs, (2) the relative dis-
tance is greater than the maximum CF distance, (3) the 
CF task ends or (4) the maximum number of iterative 
steps per set of 750 timesteps is reached.

Then, the test conditions are defined. The initial speed 
of the ego is set to 0, and the initial position is fixed. The 
initial speed of the preceding vehicle is randomly set, and 
it successively experiences three driving conditions of 
acceleration, steady state and deceleration, the specific 
process is shown in Table  4. The Dfellow in this paper is 
60 m, to extensively test the proposed CF algorithm per-
formance, this paper set three working conditions with 
initial relative distances of 50 m, 60 m, and 70 m, respec-
tively. The training results are shown in Figures  5, 6, 7, 
8, 9, 10, 11, where the black curves indicate the follow-
ing results of the fixed weight coefficient MPC controller 
and the red shows the results of the variable weight MPC 
controller with dynamic scene adaptability.

It is verified that this strategy can make the driving 
process basically within the following safety scenario 
through the adaptive adjustment of the vehicle, regard-
less of whether the initial relative distance is greater than 
Dfellow . Even in the emergency deceleration stage of the 
front vehicle, the ego vehicle is only unavoidably caught 
in the following danger scenario for a short time, and 
then immediately gets rid of the dilemma, as shown in 
Figure  5. Among them, the adjustment curve of weight 

Table 3 Main simulation parameters

Parameters Symbols Value

System initial conditions MPC_ρ 0.01

Control horizon Nc 10

Predicted horizon Np 30

Episode number N 120000

Sampling time T  (s) 0.1

Track length (timestep) 750

System constrains Input variable (m/s2) −4 ≤ u(k) ≤ 3

Velocity v (m/s2) 0 ≤ v(k) ≤ 20

Acceleration a (m/s2) −4 ≤ a(k) ≤ 3

Vehicle jerk j  (m/s2) −3 ≤ j(k) ≤ 3

Relaxation factor ε 0 ≤ ε ≤ 0.02

Figure 4 Learning curve

Table 4 Driving process of the preceding vehicle

Time (s) State Acceleration 
(m/s2)

0−75 Total time of an episode −
0−11 Acceleration 1

31−34 Acceleration 2

59−63 Deceleration −1.5

Others At a constant speed 0
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Q is shown in Figure  6, which can adjust its trend of 
increase or decrease by judging the state of environment. 
If the vehicle is maintaining the safe following distance, 
weight Q will reduce to improve the comfort and energy 
saving. As the possibility of the ego car getting into a fol-
lowing crisis situation increases when the front car accel-
erates, the Q value is gradually increased to ensure that 
the following distance is within the desired range. And 
the larger the initial relative distance is, the more likely 

it is to lead to CF task failure, so the growth trend of Q is 
positively correlated with the initial relative distance, as 
shown in Figure 7. In the low and high-risk scenario, the 
vehicle with this strategy rapidly increases the distance to 
the front vehicle through adjusting the weight Q , effec-
tively avoiding the collision and reflecting the good safety.

Compared to the vehicle with conventional MPC con-
troller, the vehicle under this strategy maintains a smaller 
relative velocity to the preceding vehicle for most of the 
time. As one of the causes of driver sight distance jitter, 
the reduction of relative velocity is necessary. In addi-
tion, the relative velocity reduction has little effect on the 
vehicle velocity and always satisfies the controller con-
straints. That is, the strategy can improve the comfort 
while ensuring the vehicle traffic efficiency, as shown in 
Figures 8 and 9.

In addition, as shown in Figures 10 and 11, the accelera-
tion curves and jerk curves show that the adaptive adjust-
ment strategy tends to follow the preceding vehicle with 
less acceleration in the safety scenario. It allows the vehi-
cle to have the opportunity to pursue higher ride com-
fort and fuel economy while maintaining safety. Besides, 
this is in line with human habits and expectations, dem-
onstrating its intelligence. When the vehicle is caught in 
a high-risk scenario due to sudden changes in environ-
mental conditions, the strategy has better performance 
in terms of the state prediction and response speed. The 

Figure 5 Relative distance

Figure 6 Weight coefficient Q

Figure 7 Variation of the weight coefficient Q under different initial 
distances
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Figure 8 Relative velocity

Figure 9 Vehicle velocity

Figure 10 Vehicle acceleration

Figure 11 Vehicle jerk
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vehicle with this strategy performed faster and deceler-
ate more, and it is satisfying the controller constraint, 
that is the vehicle has good emergency handling capabil-
ity to avoid the collision in a timely and effective man-
ner. It indicates that the strategy has good adaptability in 
dynamic scenarios, which helps to improve the safety of 
the vehicle.

The training results show that the variable weight con-
troller guided by the proposed combined strategy is able 
to adjust the vehicle performance priority in dynamic 
scenarios. Compared to the traditional controller with 
fixed weights, the proposed controller can adjust adap-
tively and has better performance, such as when in the 
crisis scenario, it can respond quickly and accelerate to 
keep up with the preceding vehicle. The probability of 
following the vehicle under the safety scenario is higher, 
and the riding comfort and fuel economy of the vehicle 
are effectively improved through weight adjustment. In 
dangerous scenarios such as the low-risk and the high-
risk scenarios, the vehicle’s emergency response ability 
is better, and collisions can be avoided by decelerating in 
time.

6  Conclusions

(1) The results of this paper have verified the effective-
ness of using RL in combination with traditional 
MPC controller to construct an adaptive controller 
for autonomous vehicles driving in dynamic scene.

(2) The effectiveness of the proposed method was veri-
fied in the Carla environment with a high-fidelity 
vehicle model as the main control object. According 
to the results, when compared with the traditional 
controller, the autonomous vehicle based on this 
method could brake quickly in dangerous scenarios 
for the sake of safety, and it has a more stable accel-
eration performance and better ride comfort and 
fuel economy. Accordingly, ability of autonomous 
vehicles to trade-off safety, comfort and energy effi-
ciency is significantly improved.

(3) A risk threshold model is developed to classify 
scenes based on feature information and guide the 
design of the RL reward function, which helps to 
accelerate the convergence process of RL and the 
probability of finding a more optimal solution.

(4) The study found that the adjustment of MPC weight 
coefficient has a direct impact on vehicle perfor-
mance and the adjustment of tracking weight Q and 
its effect are described. To enhance the controller’s 
scene adaptability, when designing the adjustment 
rules, it is necessary to fully consider the appropri-

ate scene risk assessment method, reasonable safe 
following distance and safe stopping distance meet-
ing the mechanical requirements.

There are still some problems to be further studied 
in the combined strategy of RL and MPC for autono-
mous. In the future, we plan to extend the adaptive 
adjustment method for vehicle lane change in complex 
environments.
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