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Abstract 

The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem (JSP). 
However, due to the unique nature of the JSP, local search may generate infeasible neighbourhood solutions. In 
the existing literature, although some domain knowledge of the JSP can be used to avoid infeasible solutions, 
the constraint conditions in this domain knowledge are sufficient but not necessary. It may lose many feasible solu-
tions and make the local search inadequate. By analysing the causes of infeasible neighbourhood solutions, this paper 
further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint 
conditions to find all feasible neighbourhood solutions, allowing the local search to be carried out thoroughly. With 
the proposed conditions, a new neighbourhood structure is designed in this paper. Then, a fast calculation method 
for all feasible neighbourhood solutions is provided, significantly reducing the calculation time compared with ordi-
nary methods. A set of standard benchmark instances is used to evaluate the performance of the proposed neigh-
bourhood structure and calculation method. The experimental results show that the calculation method is effective, 
and the new neighbourhood structure has more reliability and superiority than the other famous and influential 
neighbourhood structures, where 90% of the results are the best compared with three other well-known neighbour-
hood structures. Finally, the result from a tabu search algorithm with the new neighbourhood structure is compared 
with the current best results, demonstrating the superiority of the proposed neighbourhood structure.
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1 Introduction
The job-shop scheduling problem (JSP), one kind of clas-
sic scheduling problem [1], is widespread in the modern 
manufacturing system [2]. It can be described as fol-
lows: there are n jobs, and each has m operations need-
ing to be processed on m different machines. The order 

of machines used for operations in each job could be dif-
ferent. Each machine can only process one operation at 
one time, and one operation can only be processed on 
one machine at one time [3]. Processing cannot be inter-
rupted. The goal of this problem is to obtain the solution 
with minimum makespan by arranging the processing 
sequence of jobs for each machine [4].

The JSP is a proven NP-Complete problem [5], for 
which meta-heuristic algorithms are more popular than 
other methods. The key to ensuring a high-quality solu-
tion in meta-heuristic algorithms is to use a good local 
search strategy [6], and the existing literature shows 
that the algorithm with this strategy [7–10], at least as 
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a part of the algorithm [11–14], could be easier to get a 
better result. The basic process of a local search strategy 
is to obtain a set of neighbourhood solutions from the 
current solution through the neighbourhood structure 
and then select one as the current solution for the next 
iteration. In 1996, a comprehensive survey [15] sum-
marized six effective neighbourhood structures named 
N1–N6. In 2007, Zhang et al. [9] proposed a new neigh-
bourhood structure based on N6 [16], which enlarged 
the search space of the neighbourhood and was called 
N7. In 2022, Xie et  al. [17] obtained more neighbour-
hood solutions by moving the operations in the criti-
cal path outside the critical path. These neighbourhood 
structures are widely used in many algorithms and 
achieved tremendous success [18]. Of course, there 
are many other neighbourhood structures, but most 
of them are based on the above seven neighbourhood 
structures. In fact, two issues have been driving the 
design of neighbourhood structures in the JSP: (1) how 
to ensure the neighbourhood solution is feasible; (2) 
how to increase (reduce) the neighbourhood solutions 
with (without) improvement on the current solution. 
They can improve the search results of the algorithm by 
ensuring the feasibility and effectiveness of the neigh-
bourhood solutions.

In this paper, we mainly study the feasibility of neigh-
bourhood solutions in the JSP. By analyzing the causes of 
infeasible solutions, we propose sufficient and necessary 
constraint conditions for feasible neighbourhood solu-
tions and the properties of these constraints are proved. 
On this basis, a new neighbourhood structure is designed 
to ensure that the local search is carried out thoroughly, 
and a fast computational method is proposed to cope 
with the complexity of this neighbourhood structure. 
Obviously, these conditions not only ensure the feasibility 
of neighbourhood solutions but also improve the effec-
tiveness of local searches. Experiments at different levels 
were carried out to demonstrate the reliability and supe-
riority of the new neighbourhood structure. The main 
purpose of this paper is not to design a meta-heuristic 
algorithm for the JSP, but to mine the domain knowledge 
to ensure the feasibility of neighbourhood solutions. It 
is hoped that by mining the domain knowledge, we can 
have a deeper understanding of the JSP and provide theo-
retical support for the design of algorithms for it.

The remainder of the paper is organized as follows. 
Section  2 uses the disjunctive graph model to describe 
the JSP. The domain knowledge in the local search of the 
JSP and the related applications are presented in Sec-
tion  3. The necessary and sufficient conditions for the 
feasible neighbourhood solution and the fast calculation 
method proposed are provided in Section  4. The algo-
rithm used in this paper and the experimental results are 

presented in Sections 5 and 6, respectively. The summary 
and the prospect are carried on in Section 7.

2  Description of JSP
The JSP is a complex combinatorial optimization prob-
lem that needs to arrange the processing sequence of the 
jobs for each machine to optimize some objective func-
tions. In this paper, the objective function is to minimize 
the total completion time. The disjunctive graph model is 
usually used to describe the JSP. A disjunctive graph can 
be represented by a triple G = (V, A, E). V is the set of ver-
tices in G, where each vertex represents an operation of a 
job. It is worth noting that there exist two virtual opera-
tions, s and e, which are the starting and ending points 
of all jobs, respectively. A is the set of conjunctive arcs 
in G, where each arc represents the processing sequence 
of different operations in the same job and is shown by 
solid lines with an arrow. E is the set of disjunctive arcs 
in G, where each arc connects operations processed on 
the same machine and is shown by a dashed line. Differ-
ent from the existing literature, this paper sets the weight 
of each vertex in the disjunctive graph, instead of the 
arc length, as the processing time of the corresponding 
operation, and the weight of the two virtual operations s 
and e is 0. Therefore, it is easy to know that for the JSP, 
we need to determine a unique direction for each dis-
junctive arc in the disjunctive graph, which is to deter-
mine the processing sequence of each operation on each 
machine. In the new disjunctive graph, the maximum 
weight sum of the path from s to e is called the critical 
path, and the weighted sum of the path is the makespan 
of the scheduling.

A simple example is used to explain the symbols and 
concepts further. Assume that there exist three jobs, 
which have three operations each J1 = (O1,1, O1,2, O1,3), 
J2 = (O2,1, O2,2, O2,3), J3 = (O3,1, O3,2, O3,3). Here, Oj,i means 
the ith operation of the jth job. These operations are pro-
cessed on three machines M1: (O1,1, O2,1, O3,1), M2: (O1,2, 
O2,3, O3,3), M3: (O1,3, O2,2, O3,2). The disjunctive graph of 
this example can be shown in Figure 1.

The information of each node or operation can be 
represented by [mj,i, pj,i], where mj,i and pj,i means the 

Figure 1 The disjunctive graph for JSP
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processing machine and the processing time of Oj,i. 
Assume that the information of the operations is J1:([1,5], 
[2,2], [3,4]), J2:([1,3], [3,2], [2,4]), J3:([1,3], [3,2, [2,2]). 
When the direction of the disjunctive arc in Figure  1 is 
determined, we can obtain a scheduling scheme, and it 
can be shown in Figure  2 (Some of the edges, like the 
edge from O2,1 to O1,1, the edge from O2,2 to O1,3 and the 
edge from O3,3 to O1,2, are omitted to make the graph 
clearer).

Though the disjunctive graph can represent the pro-
cessing sequence of different operations on the same 
machine, the exact start time and finish time of each 
operation cannot be obtained. The Gantt chart is usually 
used to represent the final result of the scheduling prob-
lem, and the Gantt chart of the feasible solution of the 
JSP is shown in Figure 3. The critical path of the solution 
in the disjunctive graph can be easily found in the Gantt 
chart, and it is connected and marked by solid red lines. 
The block formed by operations processed on the same 
machine in the critical path and no-wait between any 
two adjacent operations can be called the critical block, 
as shown in Figure 3, where each of them is marked by a 
black dotted box.

However, if the direction of the disjunctive arc is arbi-
trarily determined, infeasible solutions may appear in the 
JSP. For example, if we exchange the processing order of 
O3,2 and O1,3 in Figure 2, the obtained disjunctive graph 
of the solution is shown in Figure 4 (Some of the edges, 
like the edge from O2,1 to O1,1, the edge from O2,2 to O3,2 

and the edge from O3,3 to O1,2, are omitted to make the 
graph clearer). In this disjunctive graph, the operations 
O1,2, O1,3, O3,2, O3,3 and O2,3 form a closed loop, and then 
we do not know which operation should process first. 
That is why a solution will be infeasible if a closed-loop 
exists in the disjunctive graph. Therefore, in the disjunc-
tive graph model of the JSP, its decision variable is the 
direction of each disjunctive arc, and its objective func-
tion is to ensure the feasibility of the solution and mini-
mize the weighted sum of the critical path of the feasible 
solution.

3  Domain Knowledge in Local Search of JSP
Domain knowledge is a general term, which means the 
knowledge of a specialized discipline or field [19]. It has 
different meanings in different contexts. In this paper, 
domain knowledge refers to the properties of the optimi-
zation problem itself that can be used to design efficient 
optimization algorithms. When the domain knowledge 
of a problem has been fully explored, we can have a more 
profound understanding of the problem itself and design 
the strategies or methods beneficial to problem-solving. 
Although the domain knowledge is very important, few 
scholars discussed the domain knowledge of the problem 
for the design of neighbourhood structure in the exist-
ing literature. Instead of it, most scholars have designed 
a neighbourhood structure and then proved its effec-
tiveness by experiments. Although the results obtained 
by these two methods are similar, the first way can help Figure 2 The disjunctive graph of a feasible solution

Figure 3 The Gantt chart of the feasible solution

Figure 4 The disjunctive graph of an infeasible solution
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us have a deeper understanding of the problem, so as to 
guide the future research direction.

In this section, we summarize the domain knowledge 
used to design neighbourhood structures in the JSP and 
classify it into two categories: (1) the domain knowledge 
to guarantee the effectiveness of neighbourhood struc-
tures; (2) the domain knowledge to ensure that neigh-
bourhood solutions are feasible. Based on the domain 
knowledge, we introduce the existing well-known neigh-
bourhood structures and show which relevant domain 
knowledge is applied to these neighbourhood structures. 
Finally, we point out the shortcomings of the existing 
domain knowledge and provide future research direc-
tions. To better describe this domain knowledge, it is 
necessary to understand the following definitions of sym-
bols: the critical path is a path with the maximum weight 
sum from s to e in the disjunctive graph of a solution; the 
critical block is the block formed by operations processed 
on the same machine in the critical path and no wait 
between any two adjacent operations; u, v are two opera-
tions in the same critical block; Oj,i is the ith operation in 
the jth job; mOj,i is the machine used to process Oj,i ; pOj,i is 
the processing time of the Oj,i ; jp[Oj,i] is the operation in 
the same job as Oj,i , and processing just before Oj,i ; js[Oj,i] 
is the operation in the same job as Oj,i , and process-
ing just after Oj,i ; mp[Oj,i] is the operation processed on 
the same machine as Oj,i , and processing just before Oj,i ; 
ms[Oj,i] is the operation processed on the same machine 
as Oj,i , and processing just after Oj,i ; F(Oj,i) is the maxi-
mum weighted sum of a path from s to Oj,i in the disjunc-
tive graph of the solution (Oj,i is not included); R(Oj,i) is 
the maximum weighted sum of a path from Oj,i to e in the 
disjunctive graph of the solution(Oj,i is not included).

3.1  Domain Knowledge to Guarantee the Effectiveness 
and the Feasibility of Neighbourhood Structures

In this part, we will introduce some propositions, among 
which the first three propositions are to improve the 
effectiveness of local search, and the last three proposi-
tions are to ensure that the neighbourhood solutions 
obtained by the local search are feasible. Of course, there 
are some other properties used to improve the effec-
tiveness and feasibility of local search in the existing lit-
erature, but most of them are expanded or improved on 
these basic propositions, which are not mentioned here. 
This paper only briefly introduces these propositions, and 
please refer to relevant references for specific proofs.

Proposition 1. When the order of the operations on 
the critical path does not change, the makespan will not 
decrease no matter how the order of other operations 
changes [20].

Proposition 2. If the change of operations order occurs 
in a critical block, the makespan will not decrease when 
neither the first nor the last operation of the critical block 
does not change [21].

Proposition 3. When only the first (last) operation of 
the first (last) critical block in the critical path changes, 
the makespan will not decrease [8].

Proposition 1 was proposed by Potts for the single-
machine scheduling problem in 1980 and was subse-
quently used for branch and bound. Although it was 
not proposed for the JSP, the domain knowledge con-
tained in it is also applicable to the JSP [22, 23]. The 
critical path is equivalent to the processing bottleneck. 
When the processing bottleneck does not change, the 
makespan will not decrease no matter how the order of 
other operations changes. The proposal and application 
of Proposition 1 significantly reduce the invalid search 
in local searches. Propositions 2 and 3 further reduce 
the scope of local search based on Proposition 1 so that 
the efficiency of local search can be further improved.

Proposition 4. The neighbourhood solution generated 
by changing the position of any two adjacent operations 
on any critical block cannot be infeasible [24].

Proposition 5. Two operations, u and v, are processed 
on the same machine, and u processes before v. When it 
is satisfied F(u)+ pu ≥ F(jp[v])+ pjp[v] , the neighbour-
hood solution generated by changing the position of v to 
the position just before u must be feasible [16].

Proposition 6. Two operations, u and v, are processed 
on the same machine, and u processes before v. When it 
is satisfied R(v)+ pv ≥ R

(

js[u]
)

+ pjs[u] , the neighbour-
hood solution generated by changing the position of u to 
the position just after v must be feasible [16].

The above three propositions are domain knowl-
edge to ensure that the neighbourhood solutions of 
local search are feasible. Proposition 4 is also proposed 
based on Proposition 1. Through Proposition 4, we can 
exchange any two adjacent operations on the critical 
block without generating infeasible solutions. Propo-
sitions 5 and 6 illustrate the constraints to ensure the 
neighbourhood solutions are feasible when one opera-
tion is inserted forward and backwards, respectively. 
With these two constraints, local search is no longer 
limited to the exchange of adjacent operations. How-
ever, these two constraints are not sufficient and nec-
essary conditions to ensure that a neighbourhood 
solution is feasible, which will miss part of the feasible 
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neighbourhood solution in the local search, resulting in 
inadequate local search.

3.2  Neighbourhood Structures Designed by the Domain 
Knowledge in the JSP

The neighbourhood structure is a rule to generate a slight 
disturbance in a given feasible solution to obtain a set of 
neighbourhood solutions for local search. To make the 
neighbourhood structures in JSP more efficient, they 
generally follow two rules below [25]: (a) disturbances 
must occur in the critical path; (b) the neighbourhood 
solutions obtained from the current solution must be fea-
sible ones. Obviously, these two rules correspond to two 
types of domain knowledge used for local search in the 
JSP: effectiveness and feasibility. Based on the domain 
knowledge in Section  3.1, researchers designed various 
efficient neighbourhood structures. The emergence of 
these neighbourhood structures has greatly improved the 
solving quality of the JSP and has been widely cited by 
many scholars.

N1: A neighbourhood solution can be obtained by 
exchanging the processing order of any two adjacent 
operations in the critical block of the current solution 
[24], as shown in Figure 5. N1 is proposed based on the 
domain knowledge in Propositions 1 and 4. This neigh-
bourhood structure can obtain many neighbourhood 
solutions, but most are not better than the current one. 
Because of the easy implementation, it is usually used 
as a kind of slight disturbance inserted into other neigh-
bourhood structures to form a variable neighbourhood 
structure.

N5: A neighbourhood solution can be obtained by 
exchanging the first or last two operations in one criti-
cal block of the current solution. However, the solutions 
obtained by exchanging the first two operations in the 
first critical block and exchanging the last two operations 
in the last critical block are left out [8]. The movement 
of this neighbourhood structure is shown in Figure 6. N5 
uses the domain knowledge in Propositions 1 and 2, 3 
and 4. N5 applies the domain knowledge in Propositions 
2 and 3 based on N1, which makes the local search with 
N5 much more efficient than N1.

N6: A neighbourhood solution can be obtained by 
moving any operation in the critical block to the posi-
tion just before (after) the first (last) operation under 
the conditions described in Propositions 5 and 6. N6 is 
a deeper understanding of Proposition 2, that is, the first 
(last) operation on the critical block can be changed by 
inserting the operation inside the critical block into the 
position just before (after) the first (last) operation, rather 
than just by the exchange of adjacent operations [16], as 
shown in Figure 7. At the same time, infeasible solutions 
are directly removed by using the properties of Proposi-
tions 5 and 6.

N7: N7 is a deeper application of Proposition 2 based 
on N6. In addition to the neighbourhood solutions 
obtained by N6, a neighbourhood solution can also be 
obtained by moving the first (last) operation of a critical 
block to the position just after (before) other operations 
inside this critical block under the conditions described 
in Propositions 5 and 6 [9]. The movement of N7 can be 
shown in Figure 8. N7 can obtain more effective domain 
solutions than N6, so it can conduct a more adequate 
local search.

From the above description, we can see that although 
there is not much domain knowledge for local search in 
the JSP, different scholars can design different application 
methods from the same proposition. For example, for 
Proposition 2, Balas et al. chose to insert the first or last 
operation into the critical block, but Zhang et al. inserted 

Figure 5 The N1 neighbourhood structure

Figure 6 The N5 neighbourhood structure

Figure 7 The N6 neighbourhood structure
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the operations in the critical block to the position just 
before (after) the first (last) operation on this basis. For 
Proposition 1, most scholars changed the sequence of 
the operations inside the critical block, but Xie et al. [26] 
proposed to move the operations inside the critical path 
to the outside of the critical path, which also changed the 
processing sequence on the critical path. There are also 
many other types of neighbourhood structures in the JSP, 
such as variable neighbourhood structure [27], multi-
operation joint movement neighbourhood structure [28], 
but the domain knowledge used in these neighbourhood 
structures is similar, so they are not described here.

3.3  Summary of the Domain Knowledge for Local Search 
in the JSP

This section describes the domain knowledge for local 
search in the JSP and shows how to use this domain 
knowledge to design effective neighbourhood structures. 
More detailed descriptions can be obtained in related lit-
erature. These neighbourhood structures play an essen-
tial role in solving the JSP, and their achievements have 
been widely applied to different algorithms, and many 
benchmarks have been successfully refreshed.

Although effective neighbourhood structures can 
be designed based on the existing domain knowledge, 
it needs to be further explored in JSP due to the short-
comings of the existing domain knowledge. It can also 
be discussed in terms of effectiveness and feasibility. 
(1) The effectiveness: with the existing neighbourhood 
structures, a large number of neighbourhood solu-
tions without improvement on the current solution can 
still be obtained. Therefore, domain knowledge that can 
further distinguish whether there is an improvement 
on the current solution is needed to improve the effi-
ciency of local search. (2) The feasibility: although the 
constraint conditions to ensure the feasibility of neigh-
bourhood solutions in existing literature are helpful, the 
disadvantage of them is that they may regard some fea-
sible neighbourhood solutions as infeasible ones because 
these constraint conditions are only sufficient conditions 

to ensure the feasible solutions, but not necessary. This 
paper focuses on the domain knowledge of feasibility and 
studies the necessary and sufficient conditions to ensure 
that the neighbourhood solutions are feasible. On this 
basis, combined with other effective domain knowledge, 
a new neighbourhood structure is proposed, and the cor-
responding fast calculation method is given. Finally, the 
advantages of the proposed neighbourhood structure are 
verified by experiments.

4  Necessary and Sufficient Conditions for Feasible 
Neighbourhood Solutions

In this section, by analyzing the causes of infeasible 
solutions in the JSP, we give the necessary and sufficient 
conditions to judge the feasibility of neighbourhood solu-
tions and prove their sufficiency and necessity. At the 
same time, we compare the proposed conditions with the 
existing conditions for feasible neighbourhood solutions 
and design a new neighbourhood structure by combining 
the proposed conditions with the existing domain knowl-
edge. Finally, a quick calculation method to determine 
the feasibility of neighbourhood solutions is given in this 
section.

4.1  Analysis of the Causes of Infeasible Solutions
Unlike other shop scheduling problems, there exist 
infeasible solutions to the job-shop scheduling problem, 
which makes the problem much more challenging than 
the others. In this part, we will analyze the causes of 
infeasible solutions through the disjunctive graph in the 
JSP. As mentioned above, if a closed-loop appears in the 
disjunctive graph of a solution in JSP, the solution must 
be infeasible. However, whether all infeasible JSP solu-
tions have closed loops in the disjunctive graph is uncer-
tain and needs further discussion. Therefore, Proposition 
7 is introduced and proved below:

Proposition 7. In the job-shop scheduling problem, the 
necessary and sufficient condition for an infeasible solu-
tion is the existence of a closed-loop in the disjunctive 
graph of the solution.

Proof. The sufficiency of Proposition 7 has been 
explained before, so only the necessity of this proposition 
will be given here. It is assumed that there is an infeasible 
solution whose disjunctive graph does not have a closed 
loop. Since this solution is infeasible, there is at least one 
operation whose start and end time cannot be calculated. 
We can call the corresponding vertex x. In the disjunctive 
graph of the JSP, every vertex, except s (start node), has at 
least one predecessor (another vertex, which points to x). 
If the start time and end times of x cannot be calculated, 
at least one predecessor cannot be calculated either. 

Figure 8 The N7 neighbourhood structure
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Since there is no loop in the disjunctive graph, the ver-
tex that cannot be calculated will eventually transfer to s. 
However, since s is a virtual node, its start and end times 
are 0. Since s is a computable vertex, x is also a comput-
able vertex. It is inconsistent with the hypothesis.

Although the conclusion of Proposition 7 seems obvi-
ous, the necessary condition is often overlooked by 
scholars. In the following part, we will demonstrate the 
necessary and sufficient conditions for feasible neigh-
bourhood solutions according to the conclusion of Prop-
osition 7.

4.2  Proof of Sufficiency and Necessity
According to Proposition 7, we can know that in the JSP, 
if the disjunctive graph of a solution exists in at least one 
closed loop, the solution is infeasible; if not, the solu-
tion is feasible. Therefore, the problem of sufficient and 
necessary conditions for feasible neighbourhood solu-
tions can be transformed into sufficient and necessary 
conditions for forming a new acyclic disjunctive graph 
by changing the direction of the disjunctive arc from 
an acyclic disjunctive graph. It should be noted that the 
change in the direction of the disjunctive arc here is not 
arbitrary, but corresponds to the change in the process-
ing sequence of the operations on the machine. How-
ever, the transformed problem is still very complex. Since 
the neighbourhood solution is feasible or infeasible, the 
necessary and sufficient conditions for feasible solutions 
are completely opposite to those for infeasible solutions. 
From this, we can further transform the problem into a 
necessary and sufficient condition for a looped disjunc-
tive graph by changing the direction of the disjunctive arc 
from an acyclic disjunctive graph. When the final trans-
formation problem is solved, the original problem can 
also be solved accordingly.

Proposition 8. Two operations, u and v, are processed 
on the same machine, and u processes before v. When a 
neighbourhood solution is generated by changing the posi-
tion of v to the position just before u, the necessary and 
sufficient condition to form a loop in the disjunctive graph 
of the neighbourhood solution is that there exists a path 
from u to jp[v] in the disjunctive graph of the current 
solution.

Proof. (1) Sufficiency: if there exists a path from u to 
jp[v] in the disjunctive graph of the current solution, 
the path will still exist in the neighbourhood solution 
because there is nothing changed about jp[v]. Then the 
loop jp[v]-v-u- jp[v] exists in the disjunctive graph. (2) 
Necessity: if the neighbourhood solution is infeasible, 
there must exist a loop in the disjunctive graph of this 

solution according to Proposition 7, and u and v must 
be in the loop because there is no change in any other 
operations. Note the loop as v-u-p-v, where p is a path 
in the disjunctive graph of the neighbourhood solution. 
It is easy to know that only the jp[v] and w (the same 
operation as mp[u] in the current solution) connect v 
in the neighbourhood solution. If jp[v] is not in the p, 
then w must be in the p. However, due to p also existing 
in the current solution, there must exist a loop u-p-u, 
which conflicts with the premise that the current solu-
tion is feasible. Therefore, jp[v] must be in p, and there 
must exist a path from u to jp[v] in the current solution.

Proposition 9. Two operations, u and v, are processed 
in the same machine, and u processes before v. When a 
neighbourhood solution is generated by changing the posi-
tion of u to the position just after v, the necessary and suf-
ficient condition to form a loop in the disjunctive graph of 
the neighbourhood solution is that there exists a path from 
js[u] to v in the disjunctive graph of the current solution.

Proof. (1) Sufficiency: if there exists a path from js[u] 
to v in the disjunctive graph of the current solution, 
the path will still exist in the neighbourhood solution 
because there is nothing changed about js[u], and then 
the loop u-js[u]-v-u exists in the disjunctive graph. (2) 
Necessity: if the neighbourhood solution is an infeasi-
ble one, there must exist a loop in the disjunctive graph 
of this solution according to Proposition 7, and u and v 
must be in the loop because there is no change in any 
other operations. Note the loop as v-u-p-v, where p is 
a path in the disjunctive graph of the neighbourhood 
solution. It is easy to know that u only connects to the 
js[u] and w (the same operation as ms[v] in the current 
solution) in the neighbourhoods solution. If js[u] is not 
in the p, then w must be in the p. However, due to p 
also existing in the current solution, there must exist 
a loop v-p-v, which conflicts with the premise that the 
current solution is feasible. Therefore, js[u] must be in 
p and there must exist a path from js[u] to v in the cur-
rent solution.

According to Proposition 8, we can know that whether 
there is a path from u to jp[v] in the current solution is 
the key to whether a loop exists in the disjunctive graph 
of a neighbourhood solution, generated by moving v 
to the position just before u from the initial solution. 
Similarly, according to Proposition 9, we can know that 
whether there is a path from js[u] to v in the current solu-
tion is the key to whether a loop in the disjunctive graph 
of a neighbourhood solution, generated by moving u to 
the position just after v from the initial solution. With 
these, it is easy to know the necessary and sufficient con-
ditions, which do not exist paths from u to jp[v] or from 
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js[u] to v in the current solution, for feasible neighbour-
hood solutions in the JSP.

4.3  Difference between Feasibility Conditions
To better understand the necessary and sufficient condi-
tions mentioned here, they are compared with the condi-
tions used in Propositions 5 and 6. Here we only use the 
condition in Proposition 5, which can generate feasible 
neighbourhood solutions by moving v to the position just 
before u, as an example.

The constraint condition is as follows: when 
F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] is satisfied, move v to the 
position just before u will not generate infeasible solu-
tions. In the current solution, there may be one of three 
relationships among operations between u, v and jp[v], as 
shown in Figure 9. The known determination condition is 
that operation u is processed before the operation v, and 
the operation jp[v] is processed before the operation v, so 
the operation u to the operation v and the operation jp[v] 
to the operation v are represented by solid lines in Fig-
ure  9. However, the relationship between u and jp[v] is 
unclear, so it has three possibilities and is represented by 
dotted lines.

(1) For the first possibility as Figure 9(a), there exists a 
path from u to jp[v]. It means u must be processed before 
jp[v] and the numerical constraints between these two 
operations are F(u)+ pu < F

(

jp[v]
)

+ pjp[v] , which is not 
satisfied with the numerical constraints in Proposition 5. 
(2) For the second possibility as Figure 9(b), there exists 

a path from jp[v] to u. It means jp[v] must be processed 
before u, and the numerical constraints between these 
two operations are F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] , which 
is satisfied with the numerical constraints in Proposition 
5. (3) For the third possibility as Figure 9(c), since there 
is no path connection between u and jp[v], the comple-
tion time of u may be larger or smaller than or equal to 
the completion time of jp[v]. According to the analysis 
of the three situations above, only the second possibil-
ity and part of the third possibility which is satisfied with 
the numerical constraints F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] , 
can be regarded as feasible neighbourhood solutions by 
Proposition 5. However, with the necessary and suffi-
cient conditions, we can know that all the neighbourhood 
solutions generated in the third possibility are feasible, 
and here is the difference between the necessary and suf-
ficient conditions and the conditions in Proposition 5. 
Something similar occurs when a neighbourhood solu-
tion is generated by moving u to the position just after v.

The scheduling scheme in Figure  3 is used to explain 
further the limitations of the condition in Proposition 5, 
and it is shown again in Figure  10. In the current solu-
tion, O3,3 and O1,2 are in the same critical block and 
F
(

O3,3

)

+ pO3,3
< F

(

jp[O1,2]
)

+ pjp[O1.2] , which does 
not satisfy with the condition in Proposition 5. Then 
the neighbourhood solution, which moves O1,2, to the 
position just before O3,3 , is considered as an infeasible 
solution in Proposition 5. However, according to Propo-
sition 8, this neighbourhood solution is feasible, and the 

Figure 9 Three relationships among operations between u, v and jp[v]

Figure 10 The Gantt chart of the current solution
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Gantt chart can be shown in Figure  11. Also, it is easy 
to know that the makespan of the current solution and 
the neighbourhood solution are 20 and 19, which means 
that the condition in Proposition 5 may miss some better 
solutions.

Combining the necessary and sufficient conditions 
mentioned above with the domain knowledge in Proposi-
tion 1, 2 and 3, a new neighbourhood solution NNS can 
be described as follows:

NNS: u and v are two operations on the same critical 
block, and at least one of them is the first or last opera-
tion in the critical block. When there is no path from u to 
jp[v] in the disjunctive graph of the current solution, the 
neighbourhood solution can be generated by moving v to 
the position just before u; or when there is no path from 
js[u] to v in the disjunctive graph of the current solution, 
a feasible neighbourhood solution can be generated by 
moving u to the position just after v.

4.4  Calculation for Feasible Neighbourhood Solutions
By using the sufficient and necessary conditions pro-
posed in this paper, it is necessary to determine 
whether there is a path between two vertices in the 
disjunctive graph of the current solution, which can 
be obtained through the Floyd-Warshall algorithm 
or Johnson algorithm. However, the efficiency of the 
Floyd-Warshall algorithm or Johnson algorithm is not 
satisfactory in this problem. Therefore, a path matrix is 
proposed to indicate whether there is a path between 
any two vertices in a disjunctive graph. Unlike the adja-
cency matrix, the path matrix can represent the rela-
tionship between non-adjacent nodes. The pseudocode 
for calculating the path matrix is as follows: 

Algorithm 1 A path matrix Generator

1: let matrix P be a |V| × |V| array and initialized to 0

2: for k from 1 to |V| do

3:   for t from 1 to |V| do

4:     if ( P[t][mp[k]]=1 || P[t][jp[k]]=1) then

5:       P[t][k]=1

 6:     end if

7:   end for

8:   P[mp[k]][k]=1

9:   P[jp[k]][k]=1

10: end for

|V| is the number of vertices in the graph, and if 
P[t][k]=1, it means that there exists a path from t to 
k. Through the pseudocode, we can see that the time 
complexity of path matrix calculation is O(|V|2), which 
is smaller than the complexity of Floyd-Warshall algo-
rithm O(|V|3) and Johnson algorithm O(|V|2log|V|). 
However, if the size of the problem is large, such cal-
culations are still expensive. To further save calcu-
lation time, we proposed a fast calculation method, 
which does not directly calculate whether there is a 
path between two vertices but uses a mixed method 
to find all feasible neighbourhood solutions of the cur-
rent solution. The neighbourhood solution generated 
by moving u to the position just after v is used as an 
example. 

Figure 11 The Gantt chart of the neighbourhood solution



Page 10 of 16Gui et al. Chinese Journal of Mechanical Engineering           (2023) 36:87 

Algorithm 2 A fast calculation method for feasible solutions

1: if ( ) + ≥ ( ) + then

2:   return 0

 3: end if

4: let L be a list, and the list is empty and let x=js[u]

5: while (1) then

6:   if (js[x]= = v || ms[x] = = v) then

7:     return 1

 8:   end if

9:   if ( ) + < ( ]) + then

10:     put js[x] into L

11:   end if

12:   if ( ) + < ( ]) +  then

13:     put ms[x] into L

14:   end if

15:   if L is empty then

16:     return 0

17:   else then

18:     x = the first element in L and delete it from L

19:   end if

20: end while

This algorithm is easy to understand based on the 
analysis of the constraints above. If the value returned 
is 1, it means that the generated neighbourhood solu-
tion is infeasible; if the value returned is 0, it means 
that the generated neighbourhood solution is feasi-
ble. Although, in essence, this method is still to judge 
whether there is a path between two nodes, the time 
needed to calculate will be significantly reduced after 
combining constraints. The algorithm used to judge the 
neighbourhood solution generated by moving v to the 
position just before u is similar to before.

5  Tabu Search Algorithm for JSP
In this section, the tabu search (TS) algorithm is 
introduced and used to test the neighbourhood struc-
tures. The algorithm uses a tabu list to avoid duplicate 
searches, and it can escape from local optima by proper 
move selection strategy. The i-TSAB for JSP proposed 
by Ref. [8] achieved great success. Besides this, the TS 
and TS/SA proposed by Zhang et  al. [9, 10] also per-
formed very well. This paper uses the strategy in TS 

proposed by Zhang et al. [9] to test the neighbourhood 
structures.

5.1  Initial Solution
The initial solution has a certain influence on the opti-
mization results of TS, but it does not mean that the 
better the fitness value of the initial solution is, the bet-
ter the fitness value of the searched solution is, but that 
the position of the initial solution in the whole solu-
tion space has a certain influence on the optimization 
results. However, because the JSP is a complex discrete 
optimization problem, it is difficult to determine where 
the initial solution in the solution space has the best 
effect on the optimization. Therefore, the random gen-
eration method is used to obtain an initial solution in 
this paper.

5.2  Proposed Neighbourhood Structure
As mentioned above, this paper proposes a novel neigh-
bourhood structure using domain knowledge for local 
search in the JSP. The domain knowledge used to ensure 
that the neighbourhood solution is feasible is the neces-
sary and sufficient condition found in this paper. At the 
same time, a fast calculation method of feasible neigh-
bourhood solution is given, which makes the algorithm 
efficient and sufficient for local search.

5.3  Evaluation of Neighbourhood Solutions
In order to reduce the computing time of neighbourhood 
solutions, the estimation strategy proposed by Balas and 
Vazacopoulos is used in the algorithm [16]. The core of 
this method is to calculate the parameters of all opera-
tions that change the processing order in the neighbour-
hood solution and select the maximum value as the 
estimated value. Suppose that the operations that change 
the processing order are {O1, O2, …, Ot}, and then the 
estimated value is max{F ′(Oi)+ pOi + R′(Oi)} , where 
i={1, ..., t} [16, 29]. The empirical testing showed that this 
estimation method reduces 20% to 40% computing time 
than the exact approach. In addition, the experiment 
results showed that the optimal results of using approxi-
mate evaluation are not worse than the optimal results 
obtained using accurate decoding [9].

5.4  Tabu List and the Selection of Neighbourhood 
Solutions

The tabu list and the selection of neighbourhood solu-
tions are vital points of the TS. The tabu list, including 
the tabu contents and length, is used to avoid duplicate 
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searches. The selection of neighbourhood solutions indi-
cates the evolutionary direction of the algorithm, and it 
is determined by the quality of the neighbourhood solu-
tions and the tabu content previously. In this paper, the 
tabu list and selection strategy refer to the content in Ref. 
[9]. More details can be found in the relevant literature.

5.5  Termination Criterion
The algorithm stops when satisfied with any condition 
below: (1) the number of iterations reaches a maximum 
value; (2) the number of disimproving iterations reaches 
a maximum value; (3) the solution is proved optimal. The 
parameters of the specific termination criteria will be 
specified in different experiments later.

6  Computational Experiments and Analysis
In this section, the experiments on the neighbourhood 
structure with necessary and sufficient conditions pro-
posed in this paper are presented to demonstrate the 
superiority of this new neighbourhood structure. The 
experiment is divided into three parts: (1) in the first 
part, the experiment compared the characteristics of 
different neighbourhood structures, including the num-
ber of neighbourhood solutions and the calculation time 
by each iteration; (2) in the second part, the experiment 
compared results from the proposed neighbourhood 
structure and the existing neighbourhood structures 
on instances of different sizes; (3) in the third part, the 
experiment compared the TS combined with the new 
neighbourhood structure with other local search algo-
rithms, and the optimal solutions obtained by different 
algorithms in some classical instances are compared. The 
results of the same type of instances with the same size 
were combined to compare their mean relative errors. 
The size of the instance can be represented by (n×m), 
where n is the number of jobs and m is the number of 
machines. The algorithm ran in the VC++ language on a 
personal computer with a CPU i7-9750H processor (2.6 
GHz). The 152 well-known benchmark problems taken 
from the literature were used to test the property of the 
neighbourhood structures, and they include the following 
classes [30]: (a) 40 instances denoted as LA01-40; (b) 80 
instances denoted as TA01-80; (c) 10 instances denoted 
as ORB01-10, 10 instances denoted as SWV01-10, 5 
instances denoted as ABZ5-9 and 4 instances denoted as 
YN1-4; d) 3 instances denoted as FT6, FT10, FT20. These 
instances can be found on the website: http:// optim izizer. 
com/ TA. php.

6.1  The Characteristics of Different Neighbourhood 
Structures

In this part, the characteristics of different neighbour-
hood structures are compared. To be fair, the number of 

iterations, instead of the number of disimproving itera-
tions, was regarded as the termination criterion, and 
the number was 1 million. Only three neighbourhood 
structures, N5, N6, and N7, which performed better 
in the above neighbourhood structures, were selected 
compared with NNS. 120 instances from class (a) and 
class (b) of 15 different sizes were used in this experi-
ment. To make the comparison of experimental results 
more prominent, the results of all neighbourhood struc-
tures are compared against the results of N5 because it 
generates the least number of neighbourhood solutions 
and costs the least calculation time by each iteration. In 
this paper, s_num and T represent the ratio of the num-
ber of neighbourhood solutions generated and the time 
spent by the neighbourhood structure in an iteration to 
the corresponding results in N5. In NNS, the T1 and T2 
indicate the time used for algorithm  1 and algorithm  2, 
respectively. The results are shown in Table 1. Since the 
instances of LA and TA can contain all different sizes of 
data sets, the experimental results of these two kinds of 
instances are only listed in Table 1.

From the experimental results of this part, we can find 
that NNS can obtain the most neighbourhood solutions 
in the local search process, and when the ratio of n/m 
is larger, the gap between the neighbourhood solutions 
obtained by NNS and those obtained by other neigh-
bourhood structures is larger. This phenomenon occurs 
because the larger the n/m value is, the more operations 
are in each critical block. When other constraints are 
used to judge whether the neighbourhood solution is fea-
sible, a large number of feasible solutions will be regarded 
as infeasible. Of course, using NNS will take more com-
putation time. By using the method proposed in this 
paper, the computation time of large-scale problems can 
be greatly reduced, which makes the computation time of 
NNS within an acceptable range.

6.2  Results Compared with Other Neighbourhood 
Structures

Similar to the experiment in the first part, the termina-
tion criterion was 1 million iterations, and only N5, N6 
and N7 were used to compare with NNS. 152 instances 
mentioned before were used in this part of the experi-
ment. Each instance was run 10 times, and the best and 
the average makespan were presented. The mean relative 
error (MRE) was used here to show the gap between the 
optimal solution and the solution result, and it can be cal-
culated by the formulation MRE=100×(C− LBbest)/LBbest, 
where C presents the makespan in the experiment and 
LBbest presents the makespan of the optimal solution. The 
MREb is used to represent the MRE of the best solution, 
and the MREav is used to represent the mean perfor-
mance. The results are shown in Table 2.

http://optimizizer.com/TA.php
http://optimizizer.com/TA.php
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Table 1 The comparison of the number of neighbourhood solutions and the time spent

Instance Size N5 N6 N7 NNS

s_num T s_num T s_num T s_num T1 T2

LA01-05 10×5 1.00 1.00 3.24 1.82 5.67 3.03 10.83 5.55 4.46

LA06-10 15×5 1.00 1.00 5.03 3.59 14.63 6.69 30.41 13.15 11.07

LA11-15 20×5 1.00 1.00 8.27 3.97 20.01 7.13 40.90 13.33 11.25

LA16-20 10×10 1.00 1.00 1.70 1.23 2.30 1.46 4.17 2.83 2.16

LA21-25 15×10 1.00 1.00 2.29 1.30 3.59 1.81 7.63 4.58 3.29

LA26-30 20×10 1.00 1.00 3.26 1.76 6.26 2.62 14.98 7.28 4.75

LA31-35 30×10 1.00 1.00 5.60 2.50 17.09 4.89 40.67 17.07 9.35

LA35-40 15×15 1.00 1.00 1.53 1.16 2.22 1.42 4.55 4.20 2.37

TA01-10 15×15 1.00 1.00 1.48 1.21 1.88 1.43 3.37 4.20 2.38

TA11-20 20×15 1.00 1.00 1.56 1.27 2.15 1.60 4.35 6.29 3.10

TA21-30 20×20 1.00 1.00 1.43 1.21 1.79 1.43 3.44 7.86 2.55

TA31-40 30×15 1.00 1.00 1.70 1.33 2.50 1.74 5.59 13.15 4.09

TA41-50 30×20 1.00 1.00 1.53 1.27 2.11 1.59 4.73 13.56 3.50

TA51-60 50×15 1.00 1.00 3.14 2.04 7.26 3.28 14.74 33.50 7.88

TA61-70 50×20 1.00 1.00 1.75 1.41 2.12 1.91 7.33 35.42 4.85

TA71-80 100×20 1.00 1.00 4.72 1.76 11.21 1.95 23.81 208.54 6.51

Table 2 The comparison of the results from different neighbourhood structures

Instance Size N5 N6 N7 NNS

MREb MREav MREb MREav MREb MREav MREb MREav

LA01-05 10×5 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00

LA06-10 15×5 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00

LA11-15 20×5 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

LA16-20 10×10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

LA21-25 15×10 0.31 0.54 0.00 0.13 0.00 0.17 0.00 0.16

LA26-30 20×10 0.71 1.30 0.45 0.74 0.52 0.59 0.10 0.58

LA31-35 30×10 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00

LA35-40 15×15 0.20 0.66 0.19 0.44 0.10 0.41 0.08 0.32

TA01-10 15×15 0.54 0.98 0.25 0.55 0.25 0.57 0.21 0.47

TA11-20 20×15 1.46 1.99 0.96 1.42 0.84 1.64 0.65 1.27

TA21-30 20×20 2.90 3.67 2.41 3.03 2.72 3.16 2.29 2.93

TA31-40 30×15 1.33 1.86 0.92 1.36 1.02 1.94 0.70 1.24

TA41-50 30×20 5.46 6.30 4.40 5.27 4.72 5.56 3.84 4.86

TA51-60 50×15 0.00 0.21 0.00 1.22 0.02 0.89 0.00 0.30

TA61-70 50×20 0.08 0.52 0.06 0.51 0.16 0.90 0.10 0.50

TA71-80 100×20 0.00 0.20 0.10 0.90 0.03 0.57 0.00 0.06

ORB01-10 10×10 0.04 0.38 0.07 0.22 0.06 0.24 0.02 0.22

SWV01-05 20×10 1.61 2.59 1.37 2.59 1.30 2.70 1.77 3.26

SWV06-10 20×15 6.71 8.06 5.72 7.58 6.12 7.56 6.77 8.34

ABZ05-06 10×10 0.00 0.11 0.00 0.02 0.00 0.02 0.00 0.02

ABZ07-09 20×15 2.55 3.08 1.83 2.27 1.78 2.14 1.49 2.07

YN01-04 20×20 5.03 5.49 4.64 5.12 4.63 5.34 4.40 5.21

FT06 6×6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FT10 10×10 0.00 0.52 0.00 0.34 0.00 0.39 0.00 0.31

FT20 20×15 0.00 0.24 0.00 0.60 0.00 0.97 0.00 0.56
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In this part of the experiment, we compared four dif-
ferent neighbourhood structures. From the experimental 
results, it is easy to know that the neighbourhood struc-
ture proposed in this paper is obviously superior to other 
existing neighbourhood structures. To further illustrate, 
this paper selected four instances and drew box diagrams 
under different neighbourhood structures, as shown in 
Figure  12, which showed the superiority of the neigh-
bourhood structure proposed in this paper.

6.3  Comparison with Other Local Search Algorithms
Although the focus of this paper is not on the design of 
the new algorithm for the JSP, in order to further illus-
trate the effectiveness of the new neighbourhood struc-
ture, this paper will use TS with NNS to compare with 
the results listed in Ref. [31], which are also non-popu-
lation based meta-heuristic algorithms. The algorithms 
mentioned in the paper contain i-TSAB [8], TS/SA [10], 
TS/PR [12], and IEBO [31]. The instances used here were 
YN1-4, SVW01-10, and TA01-50, which are the most dif-
ficult ones. The termination criterion was the number 

of disimproving iterations, which was 1 million. In addi-
tion, if the current optimal solution is not updated after 
100,000 iterations, a solution will be randomly gener-
ated as the current solution of the next iteration. Each 
instance was run 10 times. The best and the average 
results were presented. The MREb is used to represent 
the MRE of the best solution, and the MREav is used to 
represent the mean performance. The results are shown 
in Table 3.

As seen from the experimental results in Table  3, 
although the results in this paper are slightly inferior to 
the best results in existing studies, the differences are 
very small. It should be noted that the improved algo-
rithm based on tabu search is used in other literature, 
but only the tabu search algorithm is used in this paper, 
which illustrates the effectiveness of the neighbourhood 
structure in this paper from another aspect. The specific 
results of each instance are shown in Table 4, where Cb 
and Ca mean the best and average results, and T means 
the mean calculation time.

Figure 12 Box diagrams for four instances
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Table 3 The comparison with other local search algorithms

Instance Size i-TSAB TS/SA TS/PR IEBO TS(NNS)

MREav MREb MREav MREb MREav MREb MREav MREav MREav

TA01-TA10 15×15 0.00 0.01 0.11 0.01 0.01 0.00 0.01 0.01 0.07

TA11-TA20 20×15 0.22 0.25 0.79 0.14 0.38 0.14 0.22 0.16 0.49

TA21-TA30 20×20 1.98 1.97 2.49 1.98 2.19 1.88 2.01 1.99 2.39

TA31-TA40 30×15 0.34 0.37 0.75 0.22 0.40 0.25 0.38 0.58 0.73

TA41-TA50 30×20 3.22 3.17 3.93 2.84 3.34 2.90 3.30 3.68 3.93

SVW01-05 20×10 – 0.17 1.14 0.10 0.23 0.11 0.35 0.27 0.35

SVW06-10 20×15 – 4.25 5.95 3.79 4.33 3.74 4.34 4.29 4.39

YN1-4 20×20 – 3.98 4.51 3.87 4.10 3.87 4.02 4.23 4.50

Table 4 The specific results of each instance

Instance LBbest Cb Ca T(s) Instance LBbest Cb Ca T(s)

TA01 1231 1231 1231 102 TA 33 1788 1804 1808.5 888

TA 02 1244 1244 1244.1 175 TA 34 1828 1832 1832.7 1241

TA 03 1218 1218 1218.3 162 TA 35 2007 2007 2007 339

TA 04 1175 1175 1176.8 198 TA 36 1819 1819 1819.4 758

TA 05 1224 1224 1224.2 219 TA 37 1771 1780 1786.3 834

TA 06 1238 1238 1239.8 265 TA 38 1673 1673 1675.9 1161

TA 07 1227 1228 1228 108 TA 39 1795 1795 1796.8 967

TA 08 1217 1217 1217 125 TA 40 1651 1687 1690.4 1121

TA 09 1274 1274 1276.7 196 TA 41 1906 2028 2031.8 1219

TA 10 1241 1241 1241.9 163 TA 42 1884 1959 1963.7 1174

TA 11 1357 1357 1359.9 554 TA 43 1809 1868 1874.6 1201

TA 12 1367 1367 1370.6 364 TA 44 1948 1992 1999.1 1155

TA 13 1342 1342 1348.1 157 TA 45 1997 2001 2002.8 1350

TA 14 1345 1345 1345 148 TA 46 1957 2029 2032.4 1300

TA 15 1339 1339 1344.7 361 TA 47 1807 1913 1917.6 1325

TA 16 1360 1360 1361.8 347 TA 48 1912 1968 1971.7 1072

TA 17 1462 1462 1470.1 364 TA 49 1931 1981 1985.8 1156

TA 18 1377 1398 1403.9 361 TA 50 1833 1936 1943.2 774

TA 19 1332 1333 1340.7 596 SWV01 1407 1409 1410 236

TA 20 1348 1348 1350.7 297 SWV02 1475 1478 1480.7 223

TA 21 1642 1642 1647.7 359 SWV03 1398 1407 1407.6 207

TA 22 1561 1600 1610.7 185 SWV04 1464 1465 1466 255

TA 23 1518 1560 1564.3 409 SWV05 1424 1428 1428.6 253

TA 24 1644 1645 1652.3 376 SWV06 1630 1675 1676.4 271

TA 25 1558 1595 1597.4 438 SWV07 1513 1600 1600.7 232

TA 26 1591 1650 1654.5 533 SWV08 1671 1770 1772.3 319

TA 27 1652 1680 1687.1 277 SWV09 1633 1662 1662.6 243

TA 28 1603 1603 1614.7 311 SWV10 1663 1750 1753 357

TA 29 1583 1629 1631 110 YN01 854 887 889.2 180

TA 30 1528 1588 1595.9 141 YN02 870 907 910.5 162

TA 31 1764 1764 1764 658 YN03 859 894 897 189

TA 32 1774 1809 1814.9 889 YN04 929 972 973.5 260
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6.4  Discussion
In this paper, the performance of NNS is verified by three 
parts of the experiments. In the first part of the experi-
ment, the characteristics of the NNS neighbourhood 
structure are highlighted by comparing it with the exist-
ing neighbourhood structure. Compared with N5, N6, 
and N7 neighbourhood structures, NNS can obtain the 
most feasible neighbourhood solutions, especially for 
problems with large n/m values. Of course, NNS takes 
more computation time, but by using the hybrid method 
proposed in this paper, the computation time can be 
greatly reduced. In the second part of the experiment, 
152 examples were solved by using the same algorithm 
configuration in different neighbourhood structures. 
By comparing the experimental results, we can see that 
the NNS neighbourhood structure has advantages. The 
third part of the experiment uses TS with NNS to com-
pare with other local search algorithms. The experi-
mental results show that although only the basic tabu 
search algorithm is used in this paper, the gap between 
the results from the tabu search algorithm with the pro-
posed neighbourhood structure and the best results in 
the existing literature is very small, which further demon-
strates the effectiveness of NNS.

7  Conclusion and Future Work
In this paper, the reason for generating infeasible solu-
tions in the JSP is analyzed, and the sufficient and nec-
essary conditions to ensure feasible neighbourhood 
solutions are proposed and proved. A new neighbour-
hood structure, NNS, is proposed by combining the pro-
posed conditions and the existing domain knowledge. 
After that, a fast calculation method for this neighbor-
hood structure. Compared with the existing famous 
neighbourhood structures, NNS can obtain more feasible 
neighborhood solutions with a small computational time 
increase. In addition, the new neighborhood structure 
shows better performance in most of the instances, which 
further shows the superiority of NNS. In future research, 
the following aspects are worthy of further study:

1) Extending NNS to other scheduling problems: Since 
the problems, like flexible job-shop scheduling prob-
lems and job-shop scheduling problems with differ-
ent constraints, also have infeasible solutions, and the 
reasons for them are the same as in this paper. There-
fore, the work in this paper can be extended to these 
scheduling problems.

2) Clipping the neighborhood solutions: Although the 
neighbourhood structure in this paper can obtain the 
most feasible neighbourhood solutions, a large part 

of them are not improved on the current solutions. 
Therefore, these unimproved neighborhood solutions 
can be removed by constraint to improve the effi-
ciency of local search.

3) Analysing the fitness landscape of the JSP: Most 
of the research on the JSP is focused on the min-
ing and application of local domain knowledge, but 
the research on the global domain knowledge, such 
as the fitness landscape, is relatively few. Therefore, 
exploring the fitness landscape for the JSP is worthy 
of further study.
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