
Gui et al.
Chinese Journal of Mechanical Engineering (2023) 36:87
https://doi.org/10.1186/s10033-023-00911-8

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

Necessary and Sufficient Conditions
for Feasible Neighbourhood Solutions
in the Local Search of the Job-Shop Scheduling
Problem
Lin Gui1, Xinyu Li1* , Liang Gao1 and Cuiyu Wang1

Abstract

The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem (JSP).
However, due to the unique nature of the JSP, local search may generate infeasible neighbourhood solutions. In
the existing literature, although some domain knowledge of the JSP can be used to avoid infeasible solutions,
the constraint conditions in this domain knowledge are sufficient but not necessary. It may lose many feasible solu-
tions and make the local search inadequate. By analysing the causes of infeasible neighbourhood solutions, this paper
further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint
conditions to find all feasible neighbourhood solutions, allowing the local search to be carried out thoroughly. With
the proposed conditions, a new neighbourhood structure is designed in this paper. Then, a fast calculation method
for all feasible neighbourhood solutions is provided, significantly reducing the calculation time compared with ordi-
nary methods. A set of standard benchmark instances is used to evaluate the performance of the proposed neigh-
bourhood structure and calculation method. The experimental results show that the calculation method is effective,
and the new neighbourhood structure has more reliability and superiority than the other famous and influential
neighbourhood structures, where 90% of the results are the best compared with three other well-known neighbour-
hood structures. Finally, the result from a tabu search algorithm with the new neighbourhood structure is compared
with the current best results, demonstrating the superiority of the proposed neighbourhood structure.

Keywords Scheduling, Job-shop scheduling, Local search, Neighbourhood structure, Domain knowledge

1 Introduction
The job-shop scheduling problem (JSP), one kind of clas-
sic scheduling problem [1], is widespread in the modern
manufacturing system [2]. It can be described as fol-
lows: there are n jobs, and each has m operations need-
ing to be processed on m different machines. The order

of machines used for operations in each job could be dif-
ferent. Each machine can only process one operation at
one time, and one operation can only be processed on
one machine at one time [3]. Processing cannot be inter-
rupted. The goal of this problem is to obtain the solution
with minimum makespan by arranging the processing
sequence of jobs for each machine [4].

The JSP is a proven NP-Complete problem [5], for
which meta-heuristic algorithms are more popular than
other methods. The key to ensuring a high-quality solu-
tion in meta-heuristic algorithms is to use a good local
search strategy [6], and the existing literature shows
that the algorithm with this strategy [7–10], at least as

*Correspondence:
Xinyu Li
lixinyu@mail.hust.edu.cn
1 State Key Laboratory of Digital Manufacturing Equipment
and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-023-00911-8&domain=pdf
http://orcid.org/0000-0002-3730-0360

Page 2 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

a part of the algorithm [11–14], could be easier to get a
better result. The basic process of a local search strategy
is to obtain a set of neighbourhood solutions from the
current solution through the neighbourhood structure
and then select one as the current solution for the next
iteration. In 1996, a comprehensive survey [15] sum-
marized six effective neighbourhood structures named
N1–N6. In 2007, Zhang et al. [9] proposed a new neigh-
bourhood structure based on N6 [16], which enlarged
the search space of the neighbourhood and was called
N7. In 2022, Xie et al. [17] obtained more neighbour-
hood solutions by moving the operations in the criti-
cal path outside the critical path. These neighbourhood
structures are widely used in many algorithms and
achieved tremendous success [18]. Of course, there
are many other neighbourhood structures, but most
of them are based on the above seven neighbourhood
structures. In fact, two issues have been driving the
design of neighbourhood structures in the JSP: (1) how
to ensure the neighbourhood solution is feasible; (2)
how to increase (reduce) the neighbourhood solutions
with (without) improvement on the current solution.
They can improve the search results of the algorithm by
ensuring the feasibility and effectiveness of the neigh-
bourhood solutions.

In this paper, we mainly study the feasibility of neigh-
bourhood solutions in the JSP. By analyzing the causes of
infeasible solutions, we propose sufficient and necessary
constraint conditions for feasible neighbourhood solu-
tions and the properties of these constraints are proved.
On this basis, a new neighbourhood structure is designed
to ensure that the local search is carried out thoroughly,
and a fast computational method is proposed to cope
with the complexity of this neighbourhood structure.
Obviously, these conditions not only ensure the feasibility
of neighbourhood solutions but also improve the effec-
tiveness of local searches. Experiments at different levels
were carried out to demonstrate the reliability and supe-
riority of the new neighbourhood structure. The main
purpose of this paper is not to design a meta-heuristic
algorithm for the JSP, but to mine the domain knowledge
to ensure the feasibility of neighbourhood solutions. It
is hoped that by mining the domain knowledge, we can
have a deeper understanding of the JSP and provide theo-
retical support for the design of algorithms for it.

The remainder of the paper is organized as follows.
Section 2 uses the disjunctive graph model to describe
the JSP. The domain knowledge in the local search of the
JSP and the related applications are presented in Sec-
tion 3. The necessary and sufficient conditions for the
feasible neighbourhood solution and the fast calculation
method proposed are provided in Section 4. The algo-
rithm used in this paper and the experimental results are

presented in Sections 5 and 6, respectively. The summary
and the prospect are carried on in Section 7.

2 Description of JSP
The JSP is a complex combinatorial optimization prob-
lem that needs to arrange the processing sequence of the
jobs for each machine to optimize some objective func-
tions. In this paper, the objective function is to minimize
the total completion time. The disjunctive graph model is
usually used to describe the JSP. A disjunctive graph can
be represented by a triple G = (V, A, E). V is the set of ver-
tices in G, where each vertex represents an operation of a
job. It is worth noting that there exist two virtual opera-
tions, s and e, which are the starting and ending points
of all jobs, respectively. A is the set of conjunctive arcs
in G, where each arc represents the processing sequence
of different operations in the same job and is shown by
solid lines with an arrow. E is the set of disjunctive arcs
in G, where each arc connects operations processed on
the same machine and is shown by a dashed line. Differ-
ent from the existing literature, this paper sets the weight
of each vertex in the disjunctive graph, instead of the
arc length, as the processing time of the corresponding
operation, and the weight of the two virtual operations s
and e is 0. Therefore, it is easy to know that for the JSP,
we need to determine a unique direction for each dis-
junctive arc in the disjunctive graph, which is to deter-
mine the processing sequence of each operation on each
machine. In the new disjunctive graph, the maximum
weight sum of the path from s to e is called the critical
path, and the weighted sum of the path is the makespan
of the scheduling.

A simple example is used to explain the symbols and
concepts further. Assume that there exist three jobs,
which have three operations each J1 = (O1,1, O1,2, O1,3),
J2 = (O2,1, O2,2, O2,3), J3 = (O3,1, O3,2, O3,3). Here, Oj,i means
the ith operation of the jth job. These operations are pro-
cessed on three machines M1: (O1,1, O2,1, O3,1), M2: (O1,2,
O2,3, O3,3), M3: (O1,3, O2,2, O3,2). The disjunctive graph of
this example can be shown in Figure 1.

The information of each node or operation can be
represented by [mj,i, pj,i], where mj,i and pj,i means the

Figure 1 The disjunctive graph for JSP

Page 3 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

processing machine and the processing time of Oj,i.
Assume that the information of the operations is J1:([1,5],
[2,2], [3,4]), J2:([1,3], [3,2], [2,4]), J3:([1,3], [3,2, [2,2]).
When the direction of the disjunctive arc in Figure 1 is
determined, we can obtain a scheduling scheme, and it
can be shown in Figure 2 (Some of the edges, like the
edge from O2,1 to O1,1, the edge from O2,2 to O1,3 and the
edge from O3,3 to O1,2, are omitted to make the graph
clearer).

Though the disjunctive graph can represent the pro-
cessing sequence of different operations on the same
machine, the exact start time and finish time of each
operation cannot be obtained. The Gantt chart is usually
used to represent the final result of the scheduling prob-
lem, and the Gantt chart of the feasible solution of the
JSP is shown in Figure 3. The critical path of the solution
in the disjunctive graph can be easily found in the Gantt
chart, and it is connected and marked by solid red lines.
The block formed by operations processed on the same
machine in the critical path and no-wait between any
two adjacent operations can be called the critical block,
as shown in Figure 3, where each of them is marked by a
black dotted box.

However, if the direction of the disjunctive arc is arbi-
trarily determined, infeasible solutions may appear in the
JSP. For example, if we exchange the processing order of
O3,2 and O1,3 in Figure 2, the obtained disjunctive graph
of the solution is shown in Figure 4 (Some of the edges,
like the edge from O2,1 to O1,1, the edge from O2,2 to O3,2

and the edge from O3,3 to O1,2, are omitted to make the
graph clearer). In this disjunctive graph, the operations
O1,2, O1,3, O3,2, O3,3 and O2,3 form a closed loop, and then
we do not know which operation should process first.
That is why a solution will be infeasible if a closed-loop
exists in the disjunctive graph. Therefore, in the disjunc-
tive graph model of the JSP, its decision variable is the
direction of each disjunctive arc, and its objective func-
tion is to ensure the feasibility of the solution and mini-
mize the weighted sum of the critical path of the feasible
solution.

3 Domain Knowledge in Local Search of JSP
Domain knowledge is a general term, which means the
knowledge of a specialized discipline or field [19]. It has
different meanings in different contexts. In this paper,
domain knowledge refers to the properties of the optimi-
zation problem itself that can be used to design efficient
optimization algorithms. When the domain knowledge
of a problem has been fully explored, we can have a more
profound understanding of the problem itself and design
the strategies or methods beneficial to problem-solving.
Although the domain knowledge is very important, few
scholars discussed the domain knowledge of the problem
for the design of neighbourhood structure in the exist-
ing literature. Instead of it, most scholars have designed
a neighbourhood structure and then proved its effec-
tiveness by experiments. Although the results obtained
by these two methods are similar, the first way can help Figure 2 The disjunctive graph of a feasible solution

Figure 3 The Gantt chart of the feasible solution

Figure 4 The disjunctive graph of an infeasible solution

Page 4 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

us have a deeper understanding of the problem, so as to
guide the future research direction.

In this section, we summarize the domain knowledge
used to design neighbourhood structures in the JSP and
classify it into two categories: (1) the domain knowledge
to guarantee the effectiveness of neighbourhood struc-
tures; (2) the domain knowledge to ensure that neigh-
bourhood solutions are feasible. Based on the domain
knowledge, we introduce the existing well-known neigh-
bourhood structures and show which relevant domain
knowledge is applied to these neighbourhood structures.
Finally, we point out the shortcomings of the existing
domain knowledge and provide future research direc-
tions. To better describe this domain knowledge, it is
necessary to understand the following definitions of sym-
bols: the critical path is a path with the maximum weight
sum from s to e in the disjunctive graph of a solution; the
critical block is the block formed by operations processed
on the same machine in the critical path and no wait
between any two adjacent operations; u, v are two opera-
tions in the same critical block; Oj,i is the ith operation in
the jth job; mOj,i is the machine used to process Oj,i ; pOj,i is
the processing time of the Oj,i ; jp[Oj,i] is the operation in
the same job as Oj,i , and processing just before Oj,i ; js[Oj,i]
is the operation in the same job as Oj,i , and process-
ing just after Oj,i ; mp[Oj,i] is the operation processed on
the same machine as Oj,i , and processing just before Oj,i ;
ms[Oj,i] is the operation processed on the same machine
as Oj,i , and processing just after Oj,i ; F(Oj,i) is the maxi-
mum weighted sum of a path from s to Oj,i in the disjunc-
tive graph of the solution (Oj,i is not included); R(Oj,i) is
the maximum weighted sum of a path from Oj,i to e in the
disjunctive graph of the solution(Oj,i is not included).

3.1 Domain Knowledge to Guarantee the Effectiveness
and the Feasibility of Neighbourhood Structures

In this part, we will introduce some propositions, among
which the first three propositions are to improve the
effectiveness of local search, and the last three proposi-
tions are to ensure that the neighbourhood solutions
obtained by the local search are feasible. Of course, there
are some other properties used to improve the effec-
tiveness and feasibility of local search in the existing lit-
erature, but most of them are expanded or improved on
these basic propositions, which are not mentioned here.
This paper only briefly introduces these propositions, and
please refer to relevant references for specific proofs.

Proposition 1. When the order of the operations on
the critical path does not change, the makespan will not
decrease no matter how the order of other operations
changes [20].

Proposition 2. If the change of operations order occurs
in a critical block, the makespan will not decrease when
neither the first nor the last operation of the critical block
does not change [21].

Proposition 3. When only the first (last) operation of
the first (last) critical block in the critical path changes,
the makespan will not decrease [8].

Proposition 1 was proposed by Potts for the single-
machine scheduling problem in 1980 and was subse-
quently used for branch and bound. Although it was
not proposed for the JSP, the domain knowledge con-
tained in it is also applicable to the JSP [22, 23]. The
critical path is equivalent to the processing bottleneck.
When the processing bottleneck does not change, the
makespan will not decrease no matter how the order of
other operations changes. The proposal and application
of Proposition 1 significantly reduce the invalid search
in local searches. Propositions 2 and 3 further reduce
the scope of local search based on Proposition 1 so that
the efficiency of local search can be further improved.

Proposition 4. The neighbourhood solution generated
by changing the position of any two adjacent operations
on any critical block cannot be infeasible [24].

Proposition 5. Two operations, u and v, are processed
on the same machine, and u processes before v. When it
is satisfied F(u)+ pu ≥ F(jp[v])+ pjp[v] , the neighbour-
hood solution generated by changing the position of v to
the position just before u must be feasible [16].

Proposition 6. Two operations, u and v, are processed
on the same machine, and u processes before v. When it
is satisfied R(v)+ pv ≥ R

(

js[u]
)

+ pjs[u] , the neighbour-
hood solution generated by changing the position of u to
the position just after v must be feasible [16].

The above three propositions are domain knowl-
edge to ensure that the neighbourhood solutions of
local search are feasible. Proposition 4 is also proposed
based on Proposition 1. Through Proposition 4, we can
exchange any two adjacent operations on the critical
block without generating infeasible solutions. Propo-
sitions 5 and 6 illustrate the constraints to ensure the
neighbourhood solutions are feasible when one opera-
tion is inserted forward and backwards, respectively.
With these two constraints, local search is no longer
limited to the exchange of adjacent operations. How-
ever, these two constraints are not sufficient and nec-
essary conditions to ensure that a neighbourhood
solution is feasible, which will miss part of the feasible

Page 5 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

neighbourhood solution in the local search, resulting in
inadequate local search.

3.2 Neighbourhood Structures Designed by the Domain
Knowledge in the JSP

The neighbourhood structure is a rule to generate a slight
disturbance in a given feasible solution to obtain a set of
neighbourhood solutions for local search. To make the
neighbourhood structures in JSP more efficient, they
generally follow two rules below [25]: (a) disturbances
must occur in the critical path; (b) the neighbourhood
solutions obtained from the current solution must be fea-
sible ones. Obviously, these two rules correspond to two
types of domain knowledge used for local search in the
JSP: effectiveness and feasibility. Based on the domain
knowledge in Section 3.1, researchers designed various
efficient neighbourhood structures. The emergence of
these neighbourhood structures has greatly improved the
solving quality of the JSP and has been widely cited by
many scholars.

N1: A neighbourhood solution can be obtained by
exchanging the processing order of any two adjacent
operations in the critical block of the current solution
[24], as shown in Figure 5. N1 is proposed based on the
domain knowledge in Propositions 1 and 4. This neigh-
bourhood structure can obtain many neighbourhood
solutions, but most are not better than the current one.
Because of the easy implementation, it is usually used
as a kind of slight disturbance inserted into other neigh-
bourhood structures to form a variable neighbourhood
structure.

N5: A neighbourhood solution can be obtained by
exchanging the first or last two operations in one criti-
cal block of the current solution. However, the solutions
obtained by exchanging the first two operations in the
first critical block and exchanging the last two operations
in the last critical block are left out [8]. The movement
of this neighbourhood structure is shown in Figure 6. N5
uses the domain knowledge in Propositions 1 and 2, 3
and 4. N5 applies the domain knowledge in Propositions
2 and 3 based on N1, which makes the local search with
N5 much more efficient than N1.

N6: A neighbourhood solution can be obtained by
moving any operation in the critical block to the posi-
tion just before (after) the first (last) operation under
the conditions described in Propositions 5 and 6. N6 is
a deeper understanding of Proposition 2, that is, the first
(last) operation on the critical block can be changed by
inserting the operation inside the critical block into the
position just before (after) the first (last) operation, rather
than just by the exchange of adjacent operations [16], as
shown in Figure 7. At the same time, infeasible solutions
are directly removed by using the properties of Proposi-
tions 5 and 6.

N7: N7 is a deeper application of Proposition 2 based
on N6. In addition to the neighbourhood solutions
obtained by N6, a neighbourhood solution can also be
obtained by moving the first (last) operation of a critical
block to the position just after (before) other operations
inside this critical block under the conditions described
in Propositions 5 and 6 [9]. The movement of N7 can be
shown in Figure 8. N7 can obtain more effective domain
solutions than N6, so it can conduct a more adequate
local search.

From the above description, we can see that although
there is not much domain knowledge for local search in
the JSP, different scholars can design different application
methods from the same proposition. For example, for
Proposition 2, Balas et al. chose to insert the first or last
operation into the critical block, but Zhang et al. inserted

Figure 5 The N1 neighbourhood structure

Figure 6 The N5 neighbourhood structure

Figure 7 The N6 neighbourhood structure

Page 6 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

the operations in the critical block to the position just
before (after) the first (last) operation on this basis. For
Proposition 1, most scholars changed the sequence of
the operations inside the critical block, but Xie et al. [26]
proposed to move the operations inside the critical path
to the outside of the critical path, which also changed the
processing sequence on the critical path. There are also
many other types of neighbourhood structures in the JSP,
such as variable neighbourhood structure [27], multi-
operation joint movement neighbourhood structure [28],
but the domain knowledge used in these neighbourhood
structures is similar, so they are not described here.

3.3 Summary of the Domain Knowledge for Local Search
in the JSP

This section describes the domain knowledge for local
search in the JSP and shows how to use this domain
knowledge to design effective neighbourhood structures.
More detailed descriptions can be obtained in related lit-
erature. These neighbourhood structures play an essen-
tial role in solving the JSP, and their achievements have
been widely applied to different algorithms, and many
benchmarks have been successfully refreshed.

Although effective neighbourhood structures can
be designed based on the existing domain knowledge,
it needs to be further explored in JSP due to the short-
comings of the existing domain knowledge. It can also
be discussed in terms of effectiveness and feasibility.
(1) The effectiveness: with the existing neighbourhood
structures, a large number of neighbourhood solu-
tions without improvement on the current solution can
still be obtained. Therefore, domain knowledge that can
further distinguish whether there is an improvement
on the current solution is needed to improve the effi-
ciency of local search. (2) The feasibility: although the
constraint conditions to ensure the feasibility of neigh-
bourhood solutions in existing literature are helpful, the
disadvantage of them is that they may regard some fea-
sible neighbourhood solutions as infeasible ones because
these constraint conditions are only sufficient conditions

to ensure the feasible solutions, but not necessary. This
paper focuses on the domain knowledge of feasibility and
studies the necessary and sufficient conditions to ensure
that the neighbourhood solutions are feasible. On this
basis, combined with other effective domain knowledge,
a new neighbourhood structure is proposed, and the cor-
responding fast calculation method is given. Finally, the
advantages of the proposed neighbourhood structure are
verified by experiments.

4 Necessary and Sufficient Conditions for Feasible
Neighbourhood Solutions

In this section, by analyzing the causes of infeasible
solutions in the JSP, we give the necessary and sufficient
conditions to judge the feasibility of neighbourhood solu-
tions and prove their sufficiency and necessity. At the
same time, we compare the proposed conditions with the
existing conditions for feasible neighbourhood solutions
and design a new neighbourhood structure by combining
the proposed conditions with the existing domain knowl-
edge. Finally, a quick calculation method to determine
the feasibility of neighbourhood solutions is given in this
section.

4.1 Analysis of the Causes of Infeasible Solutions
Unlike other shop scheduling problems, there exist
infeasible solutions to the job-shop scheduling problem,
which makes the problem much more challenging than
the others. In this part, we will analyze the causes of
infeasible solutions through the disjunctive graph in the
JSP. As mentioned above, if a closed-loop appears in the
disjunctive graph of a solution in JSP, the solution must
be infeasible. However, whether all infeasible JSP solu-
tions have closed loops in the disjunctive graph is uncer-
tain and needs further discussion. Therefore, Proposition
7 is introduced and proved below:

Proposition 7. In the job-shop scheduling problem, the
necessary and sufficient condition for an infeasible solu-
tion is the existence of a closed-loop in the disjunctive
graph of the solution.

Proof. The sufficiency of Proposition 7 has been
explained before, so only the necessity of this proposition
will be given here. It is assumed that there is an infeasible
solution whose disjunctive graph does not have a closed
loop. Since this solution is infeasible, there is at least one
operation whose start and end time cannot be calculated.
We can call the corresponding vertex x. In the disjunctive
graph of the JSP, every vertex, except s (start node), has at
least one predecessor (another vertex, which points to x).
If the start time and end times of x cannot be calculated,
at least one predecessor cannot be calculated either.

Figure 8 The N7 neighbourhood structure

Page 7 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

Since there is no loop in the disjunctive graph, the ver-
tex that cannot be calculated will eventually transfer to s.
However, since s is a virtual node, its start and end times
are 0. Since s is a computable vertex, x is also a comput-
able vertex. It is inconsistent with the hypothesis.

Although the conclusion of Proposition 7 seems obvi-
ous, the necessary condition is often overlooked by
scholars. In the following part, we will demonstrate the
necessary and sufficient conditions for feasible neigh-
bourhood solutions according to the conclusion of Prop-
osition 7.

4.2 Proof of Sufficiency and Necessity
According to Proposition 7, we can know that in the JSP,
if the disjunctive graph of a solution exists in at least one
closed loop, the solution is infeasible; if not, the solu-
tion is feasible. Therefore, the problem of sufficient and
necessary conditions for feasible neighbourhood solu-
tions can be transformed into sufficient and necessary
conditions for forming a new acyclic disjunctive graph
by changing the direction of the disjunctive arc from
an acyclic disjunctive graph. It should be noted that the
change in the direction of the disjunctive arc here is not
arbitrary, but corresponds to the change in the process-
ing sequence of the operations on the machine. How-
ever, the transformed problem is still very complex. Since
the neighbourhood solution is feasible or infeasible, the
necessary and sufficient conditions for feasible solutions
are completely opposite to those for infeasible solutions.
From this, we can further transform the problem into a
necessary and sufficient condition for a looped disjunc-
tive graph by changing the direction of the disjunctive arc
from an acyclic disjunctive graph. When the final trans-
formation problem is solved, the original problem can
also be solved accordingly.

Proposition 8. Two operations, u and v, are processed
on the same machine, and u processes before v. When a
neighbourhood solution is generated by changing the posi-
tion of v to the position just before u, the necessary and
sufficient condition to form a loop in the disjunctive graph
of the neighbourhood solution is that there exists a path
from u to jp[v] in the disjunctive graph of the current
solution.

Proof. (1) Sufficiency: if there exists a path from u to
jp[v] in the disjunctive graph of the current solution,
the path will still exist in the neighbourhood solution
because there is nothing changed about jp[v]. Then the
loop jp[v]-v-u- jp[v] exists in the disjunctive graph. (2)
Necessity: if the neighbourhood solution is infeasible,
there must exist a loop in the disjunctive graph of this

solution according to Proposition 7, and u and v must
be in the loop because there is no change in any other
operations. Note the loop as v-u-p-v, where p is a path
in the disjunctive graph of the neighbourhood solution.
It is easy to know that only the jp[v] and w (the same
operation as mp[u] in the current solution) connect v
in the neighbourhood solution. If jp[v] is not in the p,
then w must be in the p. However, due to p also existing
in the current solution, there must exist a loop u-p-u,
which conflicts with the premise that the current solu-
tion is feasible. Therefore, jp[v] must be in p, and there
must exist a path from u to jp[v] in the current solution.

Proposition 9. Two operations, u and v, are processed
in the same machine, and u processes before v. When a
neighbourhood solution is generated by changing the posi-
tion of u to the position just after v, the necessary and suf-
ficient condition to form a loop in the disjunctive graph of
the neighbourhood solution is that there exists a path from
js[u] to v in the disjunctive graph of the current solution.

Proof. (1) Sufficiency: if there exists a path from js[u]
to v in the disjunctive graph of the current solution,
the path will still exist in the neighbourhood solution
because there is nothing changed about js[u], and then
the loop u-js[u]-v-u exists in the disjunctive graph. (2)
Necessity: if the neighbourhood solution is an infeasi-
ble one, there must exist a loop in the disjunctive graph
of this solution according to Proposition 7, and u and v
must be in the loop because there is no change in any
other operations. Note the loop as v-u-p-v, where p is
a path in the disjunctive graph of the neighbourhood
solution. It is easy to know that u only connects to the
js[u] and w (the same operation as ms[v] in the current
solution) in the neighbourhoods solution. If js[u] is not
in the p, then w must be in the p. However, due to p
also existing in the current solution, there must exist
a loop v-p-v, which conflicts with the premise that the
current solution is feasible. Therefore, js[u] must be in
p and there must exist a path from js[u] to v in the cur-
rent solution.

According to Proposition 8, we can know that whether
there is a path from u to jp[v] in the current solution is
the key to whether a loop exists in the disjunctive graph
of a neighbourhood solution, generated by moving v
to the position just before u from the initial solution.
Similarly, according to Proposition 9, we can know that
whether there is a path from js[u] to v in the current solu-
tion is the key to whether a loop in the disjunctive graph
of a neighbourhood solution, generated by moving u to
the position just after v from the initial solution. With
these, it is easy to know the necessary and sufficient con-
ditions, which do not exist paths from u to jp[v] or from

Page 8 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

js[u] to v in the current solution, for feasible neighbour-
hood solutions in the JSP.

4.3 Difference between Feasibility Conditions
To better understand the necessary and sufficient condi-
tions mentioned here, they are compared with the condi-
tions used in Propositions 5 and 6. Here we only use the
condition in Proposition 5, which can generate feasible
neighbourhood solutions by moving v to the position just
before u, as an example.

The constraint condition is as follows: when
F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] is satisfied, move v to the
position just before u will not generate infeasible solu-
tions. In the current solution, there may be one of three
relationships among operations between u, v and jp[v], as
shown in Figure 9. The known determination condition is
that operation u is processed before the operation v, and
the operation jp[v] is processed before the operation v, so
the operation u to the operation v and the operation jp[v]
to the operation v are represented by solid lines in Fig-
ure 9. However, the relationship between u and jp[v] is
unclear, so it has three possibilities and is represented by
dotted lines.

(1) For the first possibility as Figure 9(a), there exists a
path from u to jp[v]. It means u must be processed before
jp[v] and the numerical constraints between these two
operations are F(u)+ pu < F

(

jp[v]
)

+ pjp[v] , which is not
satisfied with the numerical constraints in Proposition 5.
(2) For the second possibility as Figure 9(b), there exists

a path from jp[v] to u. It means jp[v] must be processed
before u, and the numerical constraints between these
two operations are F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] , which
is satisfied with the numerical constraints in Proposition
5. (3) For the third possibility as Figure 9(c), since there
is no path connection between u and jp[v], the comple-
tion time of u may be larger or smaller than or equal to
the completion time of jp[v]. According to the analysis
of the three situations above, only the second possibil-
ity and part of the third possibility which is satisfied with
the numerical constraints F(u)+ pu ≥ F

(

jp[v]
)

+ pjp[v] ,
can be regarded as feasible neighbourhood solutions by
Proposition 5. However, with the necessary and suffi-
cient conditions, we can know that all the neighbourhood
solutions generated in the third possibility are feasible,
and here is the difference between the necessary and suf-
ficient conditions and the conditions in Proposition 5.
Something similar occurs when a neighbourhood solu-
tion is generated by moving u to the position just after v.

The scheduling scheme in Figure 3 is used to explain
further the limitations of the condition in Proposition 5,
and it is shown again in Figure 10. In the current solu-
tion, O3,3 and O1,2 are in the same critical block and
F
(

O3,3

)

+ pO3,3
< F

(

jp[O1,2]
)

+ pjp[O1.2] , which does
not satisfy with the condition in Proposition 5. Then
the neighbourhood solution, which moves O1,2, to the
position just before O3,3 , is considered as an infeasible
solution in Proposition 5. However, according to Propo-
sition 8, this neighbourhood solution is feasible, and the

Figure 9 Three relationships among operations between u, v and jp[v]

Figure 10 The Gantt chart of the current solution

Page 9 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

Gantt chart can be shown in Figure 11. Also, it is easy
to know that the makespan of the current solution and
the neighbourhood solution are 20 and 19, which means
that the condition in Proposition 5 may miss some better
solutions.

Combining the necessary and sufficient conditions
mentioned above with the domain knowledge in Proposi-
tion 1, 2 and 3, a new neighbourhood solution NNS can
be described as follows:

NNS: u and v are two operations on the same critical
block, and at least one of them is the first or last opera-
tion in the critical block. When there is no path from u to
jp[v] in the disjunctive graph of the current solution, the
neighbourhood solution can be generated by moving v to
the position just before u; or when there is no path from
js[u] to v in the disjunctive graph of the current solution,
a feasible neighbourhood solution can be generated by
moving u to the position just after v.

4.4 Calculation for Feasible Neighbourhood Solutions
By using the sufficient and necessary conditions pro-
posed in this paper, it is necessary to determine
whether there is a path between two vertices in the
disjunctive graph of the current solution, which can
be obtained through the Floyd-Warshall algorithm
or Johnson algorithm. However, the efficiency of the
Floyd-Warshall algorithm or Johnson algorithm is not
satisfactory in this problem. Therefore, a path matrix is
proposed to indicate whether there is a path between
any two vertices in a disjunctive graph. Unlike the adja-
cency matrix, the path matrix can represent the rela-
tionship between non-adjacent nodes. The pseudocode
for calculating the path matrix is as follows:

Algorithm 1 A path matrix Generator

1: let matrix P be a |V| × |V| array and initialized to 0

2: for k from 1 to |V| do

3: for t from 1 to |V| do

4: if (P[t][mp[k]]=1 || P[t][jp[k]]=1) then

5: P[t][k]=1

 6: end if

7: end for

8: P[mp[k]][k]=1

9: P[jp[k]][k]=1

10: end for

|V| is the number of vertices in the graph, and if
P[t][k]=1, it means that there exists a path from t to
k. Through the pseudocode, we can see that the time
complexity of path matrix calculation is O(|V|2), which
is smaller than the complexity of Floyd-Warshall algo-
rithm O(|V|3) and Johnson algorithm O(|V|2log|V|).
However, if the size of the problem is large, such cal-
culations are still expensive. To further save calcu-
lation time, we proposed a fast calculation method,
which does not directly calculate whether there is a
path between two vertices but uses a mixed method
to find all feasible neighbourhood solutions of the cur-
rent solution. The neighbourhood solution generated
by moving u to the position just after v is used as an
example.

Figure 11 The Gantt chart of the neighbourhood solution

Page 10 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

Algorithm 2 A fast calculation method for feasible solutions

1: if () + ≥ () + then

2: return 0

 3: end if

4: let L be a list, and the list is empty and let x=js[u]

5: while (1) then

6: if (js[x]= = v || ms[x] = = v) then

7: return 1

 8: end if

9: if () + < (]) + then

10: put js[x] into L

11: end if

12: if () + < (]) + then

13: put ms[x] into L

14: end if

15: if L is empty then

16: return 0

17: else then

18: x = the first element in L and delete it from L

19: end if

20: end while

This algorithm is easy to understand based on the
analysis of the constraints above. If the value returned
is 1, it means that the generated neighbourhood solu-
tion is infeasible; if the value returned is 0, it means
that the generated neighbourhood solution is feasi-
ble. Although, in essence, this method is still to judge
whether there is a path between two nodes, the time
needed to calculate will be significantly reduced after
combining constraints. The algorithm used to judge the
neighbourhood solution generated by moving v to the
position just before u is similar to before.

5 Tabu Search Algorithm for JSP
In this section, the tabu search (TS) algorithm is
introduced and used to test the neighbourhood struc-
tures. The algorithm uses a tabu list to avoid duplicate
searches, and it can escape from local optima by proper
move selection strategy. The i-TSAB for JSP proposed
by Ref. [8] achieved great success. Besides this, the TS
and TS/SA proposed by Zhang et al. [9, 10] also per-
formed very well. This paper uses the strategy in TS

proposed by Zhang et al. [9] to test the neighbourhood
structures.

5.1 Initial Solution
The initial solution has a certain influence on the opti-
mization results of TS, but it does not mean that the
better the fitness value of the initial solution is, the bet-
ter the fitness value of the searched solution is, but that
the position of the initial solution in the whole solu-
tion space has a certain influence on the optimization
results. However, because the JSP is a complex discrete
optimization problem, it is difficult to determine where
the initial solution in the solution space has the best
effect on the optimization. Therefore, the random gen-
eration method is used to obtain an initial solution in
this paper.

5.2 Proposed Neighbourhood Structure
As mentioned above, this paper proposes a novel neigh-
bourhood structure using domain knowledge for local
search in the JSP. The domain knowledge used to ensure
that the neighbourhood solution is feasible is the neces-
sary and sufficient condition found in this paper. At the
same time, a fast calculation method of feasible neigh-
bourhood solution is given, which makes the algorithm
efficient and sufficient for local search.

5.3 Evaluation of Neighbourhood Solutions
In order to reduce the computing time of neighbourhood
solutions, the estimation strategy proposed by Balas and
Vazacopoulos is used in the algorithm [16]. The core of
this method is to calculate the parameters of all opera-
tions that change the processing order in the neighbour-
hood solution and select the maximum value as the
estimated value. Suppose that the operations that change
the processing order are {O1, O2, …, Ot}, and then the
estimated value is max{F ′(Oi)+ pOi + R′(Oi)} , where
i={1, ..., t} [16, 29]. The empirical testing showed that this
estimation method reduces 20% to 40% computing time
than the exact approach. In addition, the experiment
results showed that the optimal results of using approxi-
mate evaluation are not worse than the optimal results
obtained using accurate decoding [9].

5.4 Tabu List and the Selection of Neighbourhood
Solutions

The tabu list and the selection of neighbourhood solu-
tions are vital points of the TS. The tabu list, including
the tabu contents and length, is used to avoid duplicate

Page 11 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

searches. The selection of neighbourhood solutions indi-
cates the evolutionary direction of the algorithm, and it
is determined by the quality of the neighbourhood solu-
tions and the tabu content previously. In this paper, the
tabu list and selection strategy refer to the content in Ref.
[9]. More details can be found in the relevant literature.

5.5 Termination Criterion
The algorithm stops when satisfied with any condition
below: (1) the number of iterations reaches a maximum
value; (2) the number of disimproving iterations reaches
a maximum value; (3) the solution is proved optimal. The
parameters of the specific termination criteria will be
specified in different experiments later.

6 Computational Experiments and Analysis
In this section, the experiments on the neighbourhood
structure with necessary and sufficient conditions pro-
posed in this paper are presented to demonstrate the
superiority of this new neighbourhood structure. The
experiment is divided into three parts: (1) in the first
part, the experiment compared the characteristics of
different neighbourhood structures, including the num-
ber of neighbourhood solutions and the calculation time
by each iteration; (2) in the second part, the experiment
compared results from the proposed neighbourhood
structure and the existing neighbourhood structures
on instances of different sizes; (3) in the third part, the
experiment compared the TS combined with the new
neighbourhood structure with other local search algo-
rithms, and the optimal solutions obtained by different
algorithms in some classical instances are compared. The
results of the same type of instances with the same size
were combined to compare their mean relative errors.
The size of the instance can be represented by (n×m),
where n is the number of jobs and m is the number of
machines. The algorithm ran in the VC++ language on a
personal computer with a CPU i7-9750H processor (2.6
GHz). The 152 well-known benchmark problems taken
from the literature were used to test the property of the
neighbourhood structures, and they include the following
classes [30]: (a) 40 instances denoted as LA01-40; (b) 80
instances denoted as TA01-80; (c) 10 instances denoted
as ORB01-10, 10 instances denoted as SWV01-10, 5
instances denoted as ABZ5-9 and 4 instances denoted as
YN1-4; d) 3 instances denoted as FT6, FT10, FT20. These
instances can be found on the website: http:// optim izizer.
com/ TA. php.

6.1 The Characteristics of Different Neighbourhood
Structures

In this part, the characteristics of different neighbour-
hood structures are compared. To be fair, the number of

iterations, instead of the number of disimproving itera-
tions, was regarded as the termination criterion, and
the number was 1 million. Only three neighbourhood
structures, N5, N6, and N7, which performed better
in the above neighbourhood structures, were selected
compared with NNS. 120 instances from class (a) and
class (b) of 15 different sizes were used in this experi-
ment. To make the comparison of experimental results
more prominent, the results of all neighbourhood struc-
tures are compared against the results of N5 because it
generates the least number of neighbourhood solutions
and costs the least calculation time by each iteration. In
this paper, s_num and T represent the ratio of the num-
ber of neighbourhood solutions generated and the time
spent by the neighbourhood structure in an iteration to
the corresponding results in N5. In NNS, the T1 and T2
indicate the time used for algorithm 1 and algorithm 2,
respectively. The results are shown in Table 1. Since the
instances of LA and TA can contain all different sizes of
data sets, the experimental results of these two kinds of
instances are only listed in Table 1.

From the experimental results of this part, we can find
that NNS can obtain the most neighbourhood solutions
in the local search process, and when the ratio of n/m
is larger, the gap between the neighbourhood solutions
obtained by NNS and those obtained by other neigh-
bourhood structures is larger. This phenomenon occurs
because the larger the n/m value is, the more operations
are in each critical block. When other constraints are
used to judge whether the neighbourhood solution is fea-
sible, a large number of feasible solutions will be regarded
as infeasible. Of course, using NNS will take more com-
putation time. By using the method proposed in this
paper, the computation time of large-scale problems can
be greatly reduced, which makes the computation time of
NNS within an acceptable range.

6.2 Results Compared with Other Neighbourhood
Structures

Similar to the experiment in the first part, the termina-
tion criterion was 1 million iterations, and only N5, N6
and N7 were used to compare with NNS. 152 instances
mentioned before were used in this part of the experi-
ment. Each instance was run 10 times, and the best and
the average makespan were presented. The mean relative
error (MRE) was used here to show the gap between the
optimal solution and the solution result, and it can be cal-
culated by the formulation MRE=100×(C− LBbest)/LBbest,
where C presents the makespan in the experiment and
LBbest presents the makespan of the optimal solution. The
MREb is used to represent the MRE of the best solution,
and the MREav is used to represent the mean perfor-
mance. The results are shown in Table 2.

http://optimizizer.com/TA.php
http://optimizizer.com/TA.php

Page 12 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

Table 1 The comparison of the number of neighbourhood solutions and the time spent

Instance Size N5 N6 N7 NNS

s_num T s_num T s_num T s_num T1 T2

LA01-05 10×5 1.00 1.00 3.24 1.82 5.67 3.03 10.83 5.55 4.46

LA06-10 15×5 1.00 1.00 5.03 3.59 14.63 6.69 30.41 13.15 11.07

LA11-15 20×5 1.00 1.00 8.27 3.97 20.01 7.13 40.90 13.33 11.25

LA16-20 10×10 1.00 1.00 1.70 1.23 2.30 1.46 4.17 2.83 2.16

LA21-25 15×10 1.00 1.00 2.29 1.30 3.59 1.81 7.63 4.58 3.29

LA26-30 20×10 1.00 1.00 3.26 1.76 6.26 2.62 14.98 7.28 4.75

LA31-35 30×10 1.00 1.00 5.60 2.50 17.09 4.89 40.67 17.07 9.35

LA35-40 15×15 1.00 1.00 1.53 1.16 2.22 1.42 4.55 4.20 2.37

TA01-10 15×15 1.00 1.00 1.48 1.21 1.88 1.43 3.37 4.20 2.38

TA11-20 20×15 1.00 1.00 1.56 1.27 2.15 1.60 4.35 6.29 3.10

TA21-30 20×20 1.00 1.00 1.43 1.21 1.79 1.43 3.44 7.86 2.55

TA31-40 30×15 1.00 1.00 1.70 1.33 2.50 1.74 5.59 13.15 4.09

TA41-50 30×20 1.00 1.00 1.53 1.27 2.11 1.59 4.73 13.56 3.50

TA51-60 50×15 1.00 1.00 3.14 2.04 7.26 3.28 14.74 33.50 7.88

TA61-70 50×20 1.00 1.00 1.75 1.41 2.12 1.91 7.33 35.42 4.85

TA71-80 100×20 1.00 1.00 4.72 1.76 11.21 1.95 23.81 208.54 6.51

Table 2 The comparison of the results from different neighbourhood structures

Instance Size N5 N6 N7 NNS

MREb MREav MREb MREav MREb MREav MREb MREav

LA01-05 10×5 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00

LA06-10 15×5 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00

LA11-15 20×5 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

LA16-20 10×10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

LA21-25 15×10 0.31 0.54 0.00 0.13 0.00 0.17 0.00 0.16

LA26-30 20×10 0.71 1.30 0.45 0.74 0.52 0.59 0.10 0.58

LA31-35 30×10 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00

LA35-40 15×15 0.20 0.66 0.19 0.44 0.10 0.41 0.08 0.32

TA01-10 15×15 0.54 0.98 0.25 0.55 0.25 0.57 0.21 0.47

TA11-20 20×15 1.46 1.99 0.96 1.42 0.84 1.64 0.65 1.27

TA21-30 20×20 2.90 3.67 2.41 3.03 2.72 3.16 2.29 2.93

TA31-40 30×15 1.33 1.86 0.92 1.36 1.02 1.94 0.70 1.24

TA41-50 30×20 5.46 6.30 4.40 5.27 4.72 5.56 3.84 4.86

TA51-60 50×15 0.00 0.21 0.00 1.22 0.02 0.89 0.00 0.30

TA61-70 50×20 0.08 0.52 0.06 0.51 0.16 0.90 0.10 0.50

TA71-80 100×20 0.00 0.20 0.10 0.90 0.03 0.57 0.00 0.06

ORB01-10 10×10 0.04 0.38 0.07 0.22 0.06 0.24 0.02 0.22

SWV01-05 20×10 1.61 2.59 1.37 2.59 1.30 2.70 1.77 3.26

SWV06-10 20×15 6.71 8.06 5.72 7.58 6.12 7.56 6.77 8.34

ABZ05-06 10×10 0.00 0.11 0.00 0.02 0.00 0.02 0.00 0.02

ABZ07-09 20×15 2.55 3.08 1.83 2.27 1.78 2.14 1.49 2.07

YN01-04 20×20 5.03 5.49 4.64 5.12 4.63 5.34 4.40 5.21

FT06 6×6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FT10 10×10 0.00 0.52 0.00 0.34 0.00 0.39 0.00 0.31

FT20 20×15 0.00 0.24 0.00 0.60 0.00 0.97 0.00 0.56

Page 13 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

In this part of the experiment, we compared four dif-
ferent neighbourhood structures. From the experimental
results, it is easy to know that the neighbourhood struc-
ture proposed in this paper is obviously superior to other
existing neighbourhood structures. To further illustrate,
this paper selected four instances and drew box diagrams
under different neighbourhood structures, as shown in
Figure 12, which showed the superiority of the neigh-
bourhood structure proposed in this paper.

6.3 Comparison with Other Local Search Algorithms
Although the focus of this paper is not on the design of
the new algorithm for the JSP, in order to further illus-
trate the effectiveness of the new neighbourhood struc-
ture, this paper will use TS with NNS to compare with
the results listed in Ref. [31], which are also non-popu-
lation based meta-heuristic algorithms. The algorithms
mentioned in the paper contain i-TSAB [8], TS/SA [10],
TS/PR [12], and IEBO [31]. The instances used here were
YN1-4, SVW01-10, and TA01-50, which are the most dif-
ficult ones. The termination criterion was the number

of disimproving iterations, which was 1 million. In addi-
tion, if the current optimal solution is not updated after
100,000 iterations, a solution will be randomly gener-
ated as the current solution of the next iteration. Each
instance was run 10 times. The best and the average
results were presented. The MREb is used to represent
the MRE of the best solution, and the MREav is used to
represent the mean performance. The results are shown
in Table 3.

As seen from the experimental results in Table 3,
although the results in this paper are slightly inferior to
the best results in existing studies, the differences are
very small. It should be noted that the improved algo-
rithm based on tabu search is used in other literature,
but only the tabu search algorithm is used in this paper,
which illustrates the effectiveness of the neighbourhood
structure in this paper from another aspect. The specific
results of each instance are shown in Table 4, where Cb
and Ca mean the best and average results, and T means
the mean calculation time.

Figure 12 Box diagrams for four instances

Page 14 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

Table 3 The comparison with other local search algorithms

Instance Size i-TSAB TS/SA TS/PR IEBO TS(NNS)

MREav MREb MREav MREb MREav MREb MREav MREav MREav

TA01-TA10 15×15 0.00 0.01 0.11 0.01 0.01 0.00 0.01 0.01 0.07

TA11-TA20 20×15 0.22 0.25 0.79 0.14 0.38 0.14 0.22 0.16 0.49

TA21-TA30 20×20 1.98 1.97 2.49 1.98 2.19 1.88 2.01 1.99 2.39

TA31-TA40 30×15 0.34 0.37 0.75 0.22 0.40 0.25 0.38 0.58 0.73

TA41-TA50 30×20 3.22 3.17 3.93 2.84 3.34 2.90 3.30 3.68 3.93

SVW01-05 20×10 – 0.17 1.14 0.10 0.23 0.11 0.35 0.27 0.35

SVW06-10 20×15 – 4.25 5.95 3.79 4.33 3.74 4.34 4.29 4.39

YN1-4 20×20 – 3.98 4.51 3.87 4.10 3.87 4.02 4.23 4.50

Table 4 The specific results of each instance

Instance LBbest Cb Ca T(s) Instance LBbest Cb Ca T(s)

TA01 1231 1231 1231 102 TA 33 1788 1804 1808.5 888

TA 02 1244 1244 1244.1 175 TA 34 1828 1832 1832.7 1241

TA 03 1218 1218 1218.3 162 TA 35 2007 2007 2007 339

TA 04 1175 1175 1176.8 198 TA 36 1819 1819 1819.4 758

TA 05 1224 1224 1224.2 219 TA 37 1771 1780 1786.3 834

TA 06 1238 1238 1239.8 265 TA 38 1673 1673 1675.9 1161

TA 07 1227 1228 1228 108 TA 39 1795 1795 1796.8 967

TA 08 1217 1217 1217 125 TA 40 1651 1687 1690.4 1121

TA 09 1274 1274 1276.7 196 TA 41 1906 2028 2031.8 1219

TA 10 1241 1241 1241.9 163 TA 42 1884 1959 1963.7 1174

TA 11 1357 1357 1359.9 554 TA 43 1809 1868 1874.6 1201

TA 12 1367 1367 1370.6 364 TA 44 1948 1992 1999.1 1155

TA 13 1342 1342 1348.1 157 TA 45 1997 2001 2002.8 1350

TA 14 1345 1345 1345 148 TA 46 1957 2029 2032.4 1300

TA 15 1339 1339 1344.7 361 TA 47 1807 1913 1917.6 1325

TA 16 1360 1360 1361.8 347 TA 48 1912 1968 1971.7 1072

TA 17 1462 1462 1470.1 364 TA 49 1931 1981 1985.8 1156

TA 18 1377 1398 1403.9 361 TA 50 1833 1936 1943.2 774

TA 19 1332 1333 1340.7 596 SWV01 1407 1409 1410 236

TA 20 1348 1348 1350.7 297 SWV02 1475 1478 1480.7 223

TA 21 1642 1642 1647.7 359 SWV03 1398 1407 1407.6 207

TA 22 1561 1600 1610.7 185 SWV04 1464 1465 1466 255

TA 23 1518 1560 1564.3 409 SWV05 1424 1428 1428.6 253

TA 24 1644 1645 1652.3 376 SWV06 1630 1675 1676.4 271

TA 25 1558 1595 1597.4 438 SWV07 1513 1600 1600.7 232

TA 26 1591 1650 1654.5 533 SWV08 1671 1770 1772.3 319

TA 27 1652 1680 1687.1 277 SWV09 1633 1662 1662.6 243

TA 28 1603 1603 1614.7 311 SWV10 1663 1750 1753 357

TA 29 1583 1629 1631 110 YN01 854 887 889.2 180

TA 30 1528 1588 1595.9 141 YN02 870 907 910.5 162

TA 31 1764 1764 1764 658 YN03 859 894 897 189

TA 32 1774 1809 1814.9 889 YN04 929 972 973.5 260

Page 15 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

6.4 Discussion
In this paper, the performance of NNS is verified by three
parts of the experiments. In the first part of the experi-
ment, the characteristics of the NNS neighbourhood
structure are highlighted by comparing it with the exist-
ing neighbourhood structure. Compared with N5, N6,
and N7 neighbourhood structures, NNS can obtain the
most feasible neighbourhood solutions, especially for
problems with large n/m values. Of course, NNS takes
more computation time, but by using the hybrid method
proposed in this paper, the computation time can be
greatly reduced. In the second part of the experiment,
152 examples were solved by using the same algorithm
configuration in different neighbourhood structures.
By comparing the experimental results, we can see that
the NNS neighbourhood structure has advantages. The
third part of the experiment uses TS with NNS to com-
pare with other local search algorithms. The experi-
mental results show that although only the basic tabu
search algorithm is used in this paper, the gap between
the results from the tabu search algorithm with the pro-
posed neighbourhood structure and the best results in
the existing literature is very small, which further demon-
strates the effectiveness of NNS.

7 Conclusion and Future Work
In this paper, the reason for generating infeasible solu-
tions in the JSP is analyzed, and the sufficient and nec-
essary conditions to ensure feasible neighbourhood
solutions are proposed and proved. A new neighbour-
hood structure, NNS, is proposed by combining the pro-
posed conditions and the existing domain knowledge.
After that, a fast calculation method for this neighbor-
hood structure. Compared with the existing famous
neighbourhood structures, NNS can obtain more feasible
neighborhood solutions with a small computational time
increase. In addition, the new neighborhood structure
shows better performance in most of the instances, which
further shows the superiority of NNS. In future research,
the following aspects are worthy of further study:

1) Extending NNS to other scheduling problems: Since
the problems, like flexible job-shop scheduling prob-
lems and job-shop scheduling problems with differ-
ent constraints, also have infeasible solutions, and the
reasons for them are the same as in this paper. There-
fore, the work in this paper can be extended to these
scheduling problems.

2) Clipping the neighborhood solutions: Although the
neighbourhood structure in this paper can obtain the
most feasible neighbourhood solutions, a large part

of them are not improved on the current solutions.
Therefore, these unimproved neighborhood solutions
can be removed by constraint to improve the effi-
ciency of local search.

3) Analysing the fitness landscape of the JSP: Most
of the research on the JSP is focused on the min-
ing and application of local domain knowledge, but
the research on the global domain knowledge, such
as the fitness landscape, is relatively few. Therefore,
exploring the fitness landscape for the JSP is worthy
of further study.

Acknowledgements
Not applicable.

Author contributions
LG made contributions to the conception, experiment, and writing; XL super-
vised the whole work and substantively revised it; LG made contributions
to the design of the work; CW made contributions to the conception, and
experiment. All authors read and approved the final manuscript.

Authors’ Information
Lin Gui, born in 1995, is currently a Ph.D. candidate at State Key Laboratory of
Digital Manufacturing Equipment and Technology, Huazhong University of Sci-
ence and Technology, China. He received his bachelor degree from Shandong
University, China, 2018. His main research interests are shop scheduling and
algorithm optimization.
Xinyu Li, born in 1985, is currently a professor at State Key Laboratory of Digital
Manufacturing Equipment and Technology, Huazhong University of Science and
Technology, China. He received his Ph.D. degree in industrial engineering
from Huazhong University of Science and Technology, China, in 2009. His main
research interests are intelligent manufacturing systems, shop scheduling,
intelligent optimization and machine learning.
Liang Gao, born in 1974, is currently a professor at State Key Laboratory of Digi-
tal Manufacturing Equipment and Technology, Huazhong University of Science
and Technology, China. He received his Ph.D. degree in mechanical engineer-
ing from Huazhong University of Science and Technology, China, in 2002. His
main research interests are intelligent optimization method and its application
in design and manufacturing
Cuiyu Wang, born in 1983, is currently a Ph.D. candidate at State Key Laboratory
of Digital Manufacturing Equipment and Technology, Huazhong University of
Science and Technology, China. She received her master degree from Huazhong
University of Science and Technology, China. Her main research interests are
shop scheduling and algorithm optimization.

Funding
Supported by National Natural Science Foundation of China (Grant Nos.
U21B2029 and 51825502).

Data availability
The data that support the findings of this study are openly available in http://
optim izizer. com/ TA. php.

Declarations

Competing Interests
The authors declare no competing financial interests.

Received: 24 December 2022 Revised: 15 June 2023 Accepted: 25 June
2023

http://optimizizer.com/TA.php
http://optimizizer.com/TA.php

Page 16 of 16Gui et al. Chinese Journal of Mechanical Engineering (2023) 36:87

References
 [1] M M Ahmadian, A Salehipour, T C E Cheng. A meta-heuristic to solve the

just-in-time job-shop scheduling problem. European Journal of Opera-
tional Research, 2021 288(1): 14-29.

 [2] P Zou, M Rajora, S Y Liang. A new algorithm based on evolutionary com-
putation for hierarchically coupled constraint optimization: methodology
and application to assembly job-shop scheduling. Journal of Scheduling,
2018, 21(5): 545-563.

 [3] G Al Aqel, X Y Li, L Gao. A modified iterated greedy algorithm for flexible
job shop scheduling problem. Chinese Journal of Mechanical Engineering,
2019, 32: 21.

 [4] L Gui, L Gao, X Y Li. Anomalies in special permutation flow shop schedul-
ing problems. Chinese Journal of Mechanical Engineering, 2020, 33: 46.

 [5] H Xiong, S Shi, D Ren, et al. A survey of job shop scheduling problem: The
types and models. Computers & Operations Research, 2022, 142: 105731.

 [6] O H Constantino, C Segura. A parallel memetic algorithm with explicit
management of diversity for the job shop scheduling problem. Applied
Intelligence, 2022, 52(1): 141-153.

 [7] Y An, X Chen, K Gao, et al. Multiobjective flexible job-shop reschedul-
ing with new job insertion and machine preventive maintenance. IEEE
Transactions on Cybernetics, 2022, 53(5): 3101-3113

 [8] E Nowicki, C Smutnicki. An advanced tabu search algorithm for the job
shop problem. Journal of Scheduling, 2005, 8(2): 145-159.

 [9] C Y Zhang, P G Li, Z L Guan, et al. A tabu search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers
& Operations Research, 2007, 34(11): 3229-3242.

 [10] C Y Zhang, P G Li, Z L Guan, et al. A very fast TS/SA algorithm for the job
shop scheduling problem. Computers & Operations Research, 2008, 35(1):
282-294.

 [11] X Y Li, J Xie, Q J Ma, et al. Improved gray wolf optimizer for distributed
flexible job shop scheduling problem. Science China Technological Sci-
ences, 2022, 65(9): 2105-2115.

 [12] B Peng, Z P Lü, T C E Cheng. A tabu search/path relinking algorithm to
solve the job shop scheduling problem. Computers & Operations Research,
2015, 53: 154-164.

 [13] C R Vela, S Afsar, J J Palacios, et al. Evolutionary tabu search for flexible
due-date satisfaction in fuzzy job shop scheduling. Computers & Opera-
tions Research, 2020, 119: 104931.

 [14] S Mahmud, A Abbasi, R K Chakrabortty, et al. Multi-operator communica-
tion based differential evolution with sequential Tabu Search approach
for job shop scheduling problems. Applied Soft Computing, 2021, 108:
107470.

 [15] J Błażewicz, W Domschke, E Pesch. The job shop scheduling problem:
Conventional and new solution techniques. European Journal of Opera-
tional Research, 1996, 93(1): 1-33.

 [16] E Balas, A Vazacopoulos. Guided local search with shifting bottleneck for
job shop scheduling. Management Science, 1998, 44(2): 262-275.

 [17] J Xie, X Y Li, L Gao, et al. A new neighbourhood structure for job shop
scheduling problems. International Journal of Production Research, 2022,
61(7): 2147-2161.

 [18] Q Luo, Q Deng, G Gong, et al. An efficient memetic algorithm for distrib-
uted flexible job shop scheduling problem with transfers. Expert Systems
with Applications, 2020, 160: 113721.

 [19] M S Islam, M P Nepal, M Skitmore, et al. A knowledge-based expert sys-
tem to assess power plant project cost overrun risks. Expert Systems with
Applications, 2019, 136: 12-32.

 [20] C N Potts. Analysis of a heuristic for one machine sequencing with release
dates and delivery times. Operations Research, 1980, 28(6): 1436-1441.

 [21] M Abedi, R Chiong, N Noman, et al. A multi-population, multi-objective
memetic algorithm for energy-efficient job-shop scheduling with dete-
riorating machines. Expert Systems with Applications, 2020, 157: 113348.

 [22] G Zhang, L Zhang, X Song, et al. A variable neighborhood search based
genetic algorithm for flexible job shop scheduling problem. Cluster
Computing, 2019, 22: 11561-11572.

 [23] Z Shao, W Shao, D Pi. Effective heuristics and metaheuristics for the
distributed fuzzy blocking flow-shop scheduling problem. Swarm and
Evolutionary Computation, 2020, 59: 100747.

 [24] P J Van Laarhoven, E H Aarts, J K Lenstra. Job shop scheduling by simu-
lated annealing. Operations Research, 1992, 40(1): 113-125.

 [25] M M Nasiri, F Kianfar. A GES/TS algorithm for the job shop scheduling.
Computers & Industrial Engineering, 2012, 62(4): 946-952.

 [26] J Xie, X Y Li, L Gao, et al. A hybrid algorithm with a new neighborhood
structure for job shop scheduling problems. Computers & Industrial Engi-
neering, 2022, 169: 108205.

 [27] W Li, D Han, L Gao, et al. Integrated production and transportation
scheduling method in hybrid flow shop. Chinese Journal of Mechanical
Engineering, 2022, 35: 12.

 [28] S K Zhao. Research on multi-operation joint movement neighbourhood
structure of job shop scheduling problem. Journal of Mechanical Engi-
neering, 2020, 56(13): 192-206. (in Chinese)

 [29] L Gui, X Y Li, L Gao, et al. An approximate evaluation method for neigh-
bourhood solutions in job shop scheduling problem. IET Collaborative
Intelligent Manufacturing. 2022, 4(3): 157-165.

 [30] J J Van Hoorn. The current state of bounds on benchmark instances of
the job-shop scheduling problem. Journal of Scheduling, 2018, 21(1):
127-128.

 [31] Y Nagata, I Ono. A guided local search with iterative ejections of bot-
tleneck operations for the job shop scheduling problem. Computers &
Operations Research, 2018, 90: 60-71.

	Necessary and Sufficient Conditions for Feasible Neighbourhood Solutions in the Local Search of the Job-Shop Scheduling Problem
	Abstract
	1 Introduction
	2 Description of JSP
	3 Domain Knowledge in Local Search of JSP
	3.1 Domain Knowledge to Guarantee the Effectiveness and the Feasibility of Neighbourhood Structures
	3.2 Neighbourhood Structures Designed by the Domain Knowledge in the JSP
	3.3 Summary of the Domain Knowledge for Local Search in the JSP

	4 Necessary and Sufficient Conditions for Feasible Neighbourhood Solutions
	4.1 Analysis of the Causes of Infeasible Solutions
	4.2 Proof of Sufficiency and Necessity
	4.3 Difference between Feasibility Conditions
	4.4 Calculation for Feasible Neighbourhood Solutions

	5 Tabu Search Algorithm for JSP
	5.1 Initial Solution
	5.2 Proposed Neighbourhood Structure
	5.3 Evaluation of Neighbourhood Solutions
	5.4 Tabu List and the Selection of Neighbourhood Solutions
	5.5 Termination Criterion

	6 Computational Experiments and Analysis
	6.1 The Characteristics of Different Neighbourhood Structures
	6.2 Results Compared with Other Neighbourhood Structures
	6.3 Comparison with Other Local Search Algorithms
	6.4 Discussion

	7 Conclusion and Future Work
	Acknowledgements
	References

