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Abstract 

Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable, inducing strong vibration 
in the equipment and shortening its lifecycle. The investigation of optimization methods for an industrial 
centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these 
devices. Considering the time-consuming transient simulation of unsteady pressure, a novel optimization strategy 
was proposed by discretizing design variables and genetic algorithm. Four highly related design parameters were 
chosen, and 40 transient sample cases were generated and simulated using an automatic program. 70% of them 
were used for training the surrogate model, and the others were for verifying the accuracy of the surrogate model. 
Furthermore, a modified discrete genetic algorithm (MDGA) was proposed to reduce the optimization cost 
owing to transient numerical simulation. For the benchmark test, the proposed MDGA showed a great advantage 
over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables 
by dramatically increasing the convergence rate. After optimization, the performance and stability of the inline pump 
were improved. The efficiency increased by more than 2.2%, and the pressure fluctuation intensity decreased by more 
than 20% under design condition. This research proposed an optimization method for reducing discrete transient 
characteristics in centrifugal pumps.

Keywords Centrifugal pump, Unsteady performance optimization, Discrete design variable, Discrete genetic 
algorithm

1 Introduction
Centrifugal pumps are widely used in irrigation, 
petroleum, chemicals, and nuclear power as the core of 
fluid transport. A vertical inline pump is a special type of 
centrifugal pump with an elbow-shaped inlet structure. 
It is widely utilized to solve limited installation space, 
such as urban water supply and ship transportation [1]. 
However, the curved inlet channel deteriorates the inflow 

condition, which decreases the hydraulic performance 
and increases the risk of damage. Pressure fluctuation is 
one significant factor that affects the pump’s operation 
stability and efficiency. Pressure fluctuation increases 
vibration and cannot be eliminated, even under the 
design condition [2, 3]. Therefore, finding the optimal 
design balancing both the reduction in pressure 
fluctuation and increasing energy savings is significant.

Many researchers have tried to reduce pressure 
fluctuation in centrifugal pumps. Fu et al. [4] investigated 
the influence of the stagger angle of a double-entry 
impeller on pressure fluctuation and found an optimized 
impeller arrangement. Li et  al. [5] modified the leading 
edge shape of a pump-turbine impeller (working in pump 
mode) to reduce the pressure fluctuation in the hump 
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region. However, the most optimal solution might not 
be achieved due to the limited variables and samples. 
Optimization with multiple parameters is necessary to 
reduce pressure fluctuation inside centrifugal pumps. 
However, optimizing pressure fluctuation reduction is 
still a novel topic because of the time-consuming CFD 
simulation process to obtain accurate pressure data. 
Although steady-state simulation has been popular in 
efficiency optimization with the advantage of time-saving, 
it is necessary to conduct a transient simulation to obtain 
a pressure fluctuation signal, and enough simulation time 
is also significant to improve the resolution of time and 
frequency, which is time-consuming. Thus, appropriate 
optimization methods should be selected to accelerate 
the optimization process. Pressure fluctuation also 
appears to be nonlinear and discrete. It is significant to 
appropriately establish the relationship between the 
fluctuation and the pump parameters.

Benefitting from the development of computational 
resources, contemporary optimization methods 
combining parametric design, CFD prediction, surrogate 
models, and intelligent algorithms are broadly applied to 
improve the performance of pumps. At the same time, 
many studies have confirmed the feasibility and stability 
of these approaches [6–10].

The common surrogate models used in the optimizing 
design of pumps include response surface model (RSM) 
[6, 9, 11], artificial neural network (ANN)   [7, 12–14], 
Kriging model [8, 15], etc. The capacity of different 
models was tested [16], and ANN with two hidden layers 
was proven to have great accuracy in predicting multi-
peak functions [17], which is suitable for optimizing 
pressure fluctuation.

On the other hand, pump optimization problems 
usually show great complexity and are computationally 
resource-intensive [18]. Therefore, improving the 
convergence speed of the algorithms is essential to 
reduce computational costs and improve optimization 
efficiency. Many studies have been reported to improve 
the algorithm performance to solve complicated 
optimization problems (e.g., improving cavitation 
performance) by modifying the existing algorithms (e.g., 
Genetic Algorithm [19, 20], Particle Swarm Optimization 
[21]). Nourbakhsh et  al. [22] presented research that 
compared the performance of NSGA-II and MOPSO 
for a centrifugal pump optimization problem, which 
indicated that the PSO algorithm produced better results 
than the GA.

Genetic algorithm (GA) is a biological evolutionary 
model based on Charles Darwin’s theory of natural selec-
tion and is widely used in signal processing, machine 
learning, combinatorial optimization, adaptive control, 

and artificial life [23]. Genetic algorithm can also be used 
for discrete optimization problems.

Although the efforts of many scholars have significantly 
improved these algorithms, their performance in 
solving optimization problems with large computational 
volumes is still unsatisfactory. Thus, current pump 
optimization schemes mainly focus on improving 
efficiency, head, and other steady characteristics [24–
27]. Few studies have investigated optimizing unsteady 
characteristics, such as pressure fluctuation intensity, 
due to the enormous computation requirements. Other 
than increasing computational resources, the best 
way to improve optimization is to reduce the sample 
quantity requirements for this situation. Two aspects are 
considered to reduce the optimization period: the design 
variables are made discrete, and a novel discrete genetic 
algorithm is proposed to solve the discrete optimization 
problems.

This research proposed a modified discrete genetic 
algorithm (MDGA) based on the classic genetic 
algorithm with a binary encoding of discrete fetching 
positions to improve convergence and search 
performance. The detailed modification and testing 
procedures are presented in Section 2.4.

In this research, the accuracy of the simulation was 
verified by comparing both pump performance and 
pressure fluctuation before and after optimization. The 
intensity of pressure fluctuation near the volute tongue of 
a vertical inline pump was considered as the optimization 
objective. Four design parameters of the impeller blades 
were selected. Meanwhile, the MDGA was proposed 
to reduce the sample requirements. Finally, a further 
comparison of the performance and flow conditions 
between the original and optimized cases was carried 
out to analyze the reasons for the observed performance 
improvements.

2  Methodology
2.1  Numerical Methodology
2.1.1  Computational Model
In this research, the impeller of an industrial inline 
pump (specific speed ns = 132; in Chinese standard, the 

Figure 1 Computational domain
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definition is given as Eq. (1)) was optimized, and the 
characteristics of the original case, sample cases, and the 
optimized case were predicted using numerical simula-
tions. As shown in Figure 1, the flow domain was divided 
into five parts in the CFD calculations, including the suc-
tion pipe, the curved inlet pipe, the impeller, the volute, 
and the discharge pipe. The design flowrate Qd is 50 
 m3/h, the design head Hd is 20 m, and the nominal rota-
tion speed n is 2910 r/min. Other geometry parameters 
of the original model are listed in Table 1.

where ns is the specific speed, n is the nominal rotation 
speed, Qd is the design flowrate, and Hd is the design 
head.

2.1.2  Grid Distribution
The grids of each domain shown in Figure  1 were gen-
erated using ANSYS ICEM CFD coupled with the 
multi-block strategy to improve the overall grid quality. 
The near-wall regions were refined to capture accurate 
near-wall flow behaviours, and the number of nodes in 

(1)ns =
3.65n

√
Qd

H
3/4
d

,

each flow passage was determined using grid sensitivity 
analysis.

The test results are listed in Table 2. It can be observed 
that the computational head was approaching stabil-
ity when the grid number increased by 4.29 million, so 
grid scheme G was chosen for further research. The grid 
specifications are given in Table 3. Meanwhile, the maxi-
mum y+ for the whole flow domain is less than 30, and 
the figure for crucial areas such as the leading edge and 
the tongue was less than 10, which met the requirement 
of flow feature predictions in the pump by using the shear 
stress transport k-ω turbulence model (SST) [28, 29]. The 
final grid conditions are shown in Figure 2.

2.1.3  Numerical Setup
In this research, the three-dimensional Unsteady 
Reynolds-averaged Navier–Stokes equations were solved 
by the commercial CFD code ANSYS CFX coupled with 
the SST k-ω turbulence model for the flow predictions.

The boundary conditions were set in accordance 
with the actual working conditions. Specifically, the 

Table 1 Original geometry parameters

Parameter Name Value

Pump inlet diameter Ds (mm) 80

Pump outlet diameter Dd (mm) 80

Impeller inlet diameter D1 (mm) 72

Impeller outlet diameter D2 (mm) 136

Impeller inlet width b1 (mm) 34.5

Impeller outlet width b2 (mm) 17.8

Impeller blade number z 6

Impeller blade angle at the leading edge β1 (°) 38

Impeller blade angle at the trailing edge β2 (°) 23

Table 2 Grid sensitivity analysis

Scheme index Node number (×106) Head (m)

A 0.976 20.122

B 1.126 19.698

C 1.434 19.776

D 1.817 20.185

E 2.387 20.196

F 3.482 20.245

G 4.290 20.275

H 6.603 20.281

I 8.390 20.284

Table 3 Grid specifications

Component Suction 
Pipe

Inlet 
Pipe

Impeller Volute Discharge 
Pipe

Nodes 
number

779544 581578 933510 1216305 779544

Figure 2 Grid condition: a Volute, b Impeller, c Curved inlet pipe
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total pressure inlet with the value of 1 atm and the 
mass flowrate outlet were used to describe the pump 
outlet. All physical surfaces in the flow domains were 
set as no-slip walls with a roughness of 25 μm. The 
solution under steady state was first conducted with 
the “Frozen Rotor” strategy for interfaces between the 
rotors and stators. The result was utilized as the initial 
situation for transient computation. For the transient 
cases, the interfaces between the rotors and stators 
were changed to the “Transient Rotor–stator. Thus the 
relative position between the impeller and the volute 
was updated at each timestep [29]. The timestep in the 
transient cases was set as 1.718×10-4 s, the time required 
for the impeller to rotate by 3 degrees. The typical time 
duration is 0.5155 s, corresponding to the time it takes 
to perform 25 rotations. The average mathematical value 
of each variable of the last rotation was used to describe 
pump performance, and the pressure data from the last 
15 rotations (0.2062– 0.5155 s) were selected for the 
pressure fluctuation analysis.

Furthermore, in order to evaluate the pressure 
fluctuation intensity, a dimensionless pressure 
fluctuation intensity coefficient (PFIC) was defined in 
Eq. (2). A monitor point V1 was added to obtain the 
pressure fluctuation features near the tongue (as shown 
in Figure 3).

where, N is the number of pressure samples, p ̃ is the peri-
odic pressure component, node is the grid node index, 
t0 is the start of the rotation period, ρ is the fluid den-
sity, and u2 is the circumferential velocity at the impeller 
outlet.

(2)
C∗
p =

√

1
N

N−1
∑

j=0

p̃
(

node, t0+j�t
)2

ρu22/2
,

2.2  Optimization Procedure
The overall optimization procedure for the inline 
pump is shown in Figure 4, which can be classified into 
four main parts: optimization problem definition (Step 
1 and Step 2), sample data set generation (Step 3 and 
Step 4), surrogate model training (Step 5 and Step 6), 
and solving the model (Step 7).

The optimization process based on transient sample 
cases requires a lot of computational resources and 
time. Therefore, two approaches were applied in this 
study to reduce the sample size requirements. Firstly, 
it is well-known that the accuracy of surrogate models 
is highly related to the used samples, and the required 
sample size is related to the number of variables [18]. 
Hence, in Step 2, a data mining process was carried out 
to select highly correlated variables, and four decision 
variables were chosen for the optimization process. On 
the other hand, the pump optimization problem does 
not require high convergence precision because the 
model’s precision is limited, and more iterations mean 
higher computational costs. Thus, to fix this situation, Figure 3 Location of monitor point at volute tongue

Figure 4 Optimization procedure
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a modified discrete genetic algorithm was proposed in 
Step 7 to achieve a fast convergence performance.

2.2.1  Objective Function
In order to improve both efficiency and operating 
reliability of the inline pump, minimizing the pressure 
fluctuation coefficient under the nominal condition was 
considered the objective function. On the other hand, the 
efficiency and the head were utilized as the constraints 
through the optimization process to prevent drops 
in performance. The mathematical description of the 
objective function is given in the Eq. (3):

where CV1
p  is the PFIC at the monitor V1 (Eq. (2) and 

Figure  3), η is the efficiency, and H is the head. The 
superscripts OPT and ORI represent the cases generated 
during the optimization process and the original case, 
respectively. The subscript 1.0Qd indicates the nominal 
condition.

2.2.2  Decision Variables
This research aims to improve the stability and unsteady 
performance of an inline pump. The impeller is the only 
energy conversion component in the pump and has the 

(3)

min(CV1
p,1.0Qd

),

subject to

{

ηOPT
1.0Qd

> ηORI
1.0Qd

,

HOPT
1.0Qd

≥ 0.90HORI
1.0Qd

,

greatest impact on performance. Therefore, four design 
variables of the impeller were chosen as the decision 
variables through the data mining process; their ranges 
are listed in Table 4.

2.2.3  Automatic Simulation Technique
An automatic simulation program for the inline pump 
was proposed based on MATLAB code and ANSYS 
WorkBench. The geometries of the impeller cases were 
generated using ANSYS BladeGen parametrically and 
then meshed using ANSYS TurboGrid. Finally, the CFD 
cases were created and calculated using ANSYS CFX [7].

2.2.4  Design of Experiment
We used the Latin hypercube sampling (LHS) method 
for sampling, and 40 sets of valid design samples were 
selected in the discrete variable decision space. The 
performance data and pressure fluctuation intensity 
obtained by unsteady simulation are shown in Table 5.

2.3  Surrogate Model
2.3.1  Response Surface Model
The response surface model (RSM) combines experi-
mental design and mathematical modelling. The model 
can fit the mathematical relationship between the target 
value and the design variables through fewer trials and 
construct the equation between the optimization target 
and the design variables so that the approximate model 
is closer to the real functional relationship between them 
[30]. Many studies also report that the RSM method 
performs well in predicting the characteristics of pumps 
such as efficiency and head [6, 9].

In this research, the RSM method was applied to fit the 
relationship between the external characteristics and the 

Table 4 Decision variables and boundaries

Parameter Range

Blade angle at trailing edge β2(°) [20, 40]

Impeller outlet diameter D2(mm) [128, 134]

Impeller outlet width b2(mm) [15, 20]

Blade wrapping angle θ(°) [80, 120]

Table 5 Sampling data and simulated results

NO β2(°) D2(mm) b2(mm) θ(°) ηy(%) H (m) Cp*

1 32 131 19 80 79.48 22.11 0.1829

2 36 133 16 110 82.76 22.11 0.0946

3 24 129 20 115 83.44 20.68 0.1419

4 36 128 18 105 84.41 21.12 0.0531

5 28 132 16 105 82.36 21.00 0.1030

… … … … … … … …
36 40 133 17 90 81.48 22.71 0.1171

37 28 129 19 100 81.88 20.91 0.1115

38 28 134 15 110 82.53 21.55 0.0828

39 32 130 15 85 80.83 20.43 0.1652

40 40 128 17 95 83.59 21.11 0.1445
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decision variables (Section 2.2.2), and the final prediction 
functions are given in Eqs. (4) and (5):

In addition, a regression analysis was carried out to 
evaluate the model’s reliability. The sample case set 
was divided into two groups: 70% were used to train 
the model, and the other 30% were used for testing. 
The overall R2 (the definition given in Eq. (6)) of these 
two models are 0.9502 and 0.9976, respectively. Hence, 
the accuracy of these two models is good enough for 
the predictions during the optimization process.

(4)

η =− 326.48+ 2.22β2 + 4.65D2 + 4.03b2+0.99θ

− 0.0086β2

2 − 0.0147D
2

2 − 0.0691b
2

2 − 0.0015θ2

− 0.0096β2D2 − 0.0027β2b2 − 0.0029β2θ

− 0.0188D2b2 − 0.0047D2θ + 0.0075b2θ ,

(5)

H =265.53+ 1.73β2 − 4.49D2 − 1.08b2+0.05θ

− 0.0079β2

2 + 0.0183D
2

2 − 0.0002b
2

2 − 1.1228θ2

− 0.0060β2D2 − 0.0096β2b2 − 0.0017β2θ

+ 0.1403D2b2 + 0.0002D2θ − 0.0012b2θ .

Figure 5 Regression analysis of multi-layer feedforward artificial 
neural network

Figure 6 Position encoding

Table 6 Benchmark function specifications

Name Formula Dim Decision
Domain

Optimum Variable Global 
Optimum

Ackley
f (x) = −a exp

(

−b

√

1
d

d
∑

i=1

x
2
i

)

− exp

(

1
d

d
∑

i=1

cos(cxi)

)

+ a+ exp(1)
6 [−32.768, 

2.768]
[0, ……, 0] 0

Bulkin N.6
f (x) = 100

√

∣

∣ x2 − 0.01x21

∣

∣+ 0.01| x1 + 10 | 2 x1∈[−15, −5],
x2∈[−3, 3]

[−10, 1] 0

Drop- Wave
f (x) = −

1+cos
(

12
√

x
2
1+x

2
2

)

0.5 (x21+x
2
2 )+2

2 [−5.12, 5.12] [0, 0] −1

Griewank
f (x) =

d
∑

i=1

x
2
i

4000
−

d
∏

i=1

cos
(

xi√
i

)

+ 1
6 [−600, 600] [0, ……, 0] 0

Table 7 Test results for comparison of MDGA and original GA

Note: the subscript "avg" means the average mathematical value of 20 repeated tests, "min" and "max" represent the minimum and maximum value, "median" means 
the median value of the results, and "std" means the standard deviation of the results

Function Algorithm CR SSavg SSmin SSmax SSmedian SSstd

Ackley GA 0 - - - -

MDGA 100% 90.2 29 311 64.5 69.86

Bulkin N.6 GA 0 - - - -

MDGA 100% 6.9 2 52 3 11.37

Drop-Wave GA 25% 229 130 538 151 174.23

MDGA 100% 7.45 2 42 4 9.65

Griewank GA 0 - - - -

MDGA 100% 72.35 23 129 73 32.76
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where, m is the size of the sample set, yi is the actual 
value in the sample set, y is the average mathematical 
value of the sample set, and ŷ is the predicted value. The 
closer the value of R2 is to 1, the higher the accuracy of 
the surrogate model.

2.3.2  Artificial Neural Network
An artificial neural network (ANN) is a nonlinear 
mathematical model of distributed parallel 
information processing abstracted from brain neural 
networks, with high fault tolerance and self-learning, 
self-adaptive, and associative features. ANNs are 
widely used in signal processing, artificial intelligence, 
pattern recognition, automatic control, and other 
research fields [31].

As mentioned in Section 1, the relationship between 
inner flow features and decision variables shows a 
strong nonlinearity, and it is hard to predict accurately. 
Hence, a feedforward network was applied to fix this 
situation to fit the relationship between PFIC and the 
decision variables.

(6)R2 = 1−

m
∑

i=1

(yi − y)2

m
∑

i=1

(ŷ− yi)2
,

A regression analysis was also applied to ensure the 
stability of the trained model. The results indicated 
that the R2 of the ANN obtained is 0.9303 (Figure  5), 
which showed great predicting precision.

2.4  Modified Discrete Genetic Algorithm
2.4.1  Modifications
Based on the classical genetic algorithm, this research 
proposed two main modifications: (1) position 
encoding and (2) adaptive genetic factors.

(1) Position Encoding
DM is defined as an n-dimensional bounded discrete 

space, and M represents a two-dimensional optional 
value array, as shown in Eq. (7):

where m is the number of decision variables, li is the 
number of optional values of the i-th decision variables, 
and val means optional value.

(7)M =























�

val11,val12, · · · ,val1l1

�

�

val21,val22, · · · ,val2l2

�

· · ·
�

valm1,valm2, · · · ,valmlm

�























,

Figure 7 Test rig

Figure 8 Positions of pressure sensors

Table 8 Experimental sensors specifications

Parameter Sensor Model Range Uncertainty

Inlet pressure Pressure sensor HM90 0-0.2MPa ±0.1%

Pressure at P2 Pressure sensor HM90 0-0.7MPa ±0.1%

Flowrate Turbine 
flowmeter

LW-80 12-120m3/h ±0.5%

Outlet pressure Pressure sensor WIKA 0-1MPa ±0.1%

Figure 9 Comparison of performance curves
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That is, for the i-th decision variables, there are li 
optional values. In this research, the position index of 
each optional value was encoded as a binary descrip-
tion for further optimization. An example of the encod-
ing logic is shown in Figure 6.

(2) Adaptive Genetic Factor
For genetic algorithms, constant crossover and mutation 

probabilities are executed in the preoperational stage 
to ensure that enough chromosomes are genetically 
manipulated to guarantee the diversity of the population, 
but this also reduces the convergence speed of the 
algorithm to some extent. After a certain number of 
iterations, adaptive genetic probabilities are used, the 
calculation formula of which is as follows:

(8)pc =











pc0, fc ≥ favg,

pc0 · cos(
fmin − fc

fmin − favg
), fc < favg,

where pc and pm are the adaptive crossover and mutation 
probabilities, respectively; pc0 and pm0 are the initial 
crossover and mutation probabilities, respectively; fc is 
the smaller fitness value of the two chromosomes that 
have been paired to crossover; fm is the fitness value of 
the chromosome to be mutated; fmin is the minimum 
fitness value in the population and favg is the average 
fitness value of the population; N is the population size; 
and fi is the fitness value of the i-th chromosome.

2.4.2  Benchmark
To evaluate the performance of the MDGA, a test on 
four different benchmark functions was carried out 
with a comparison to the original genetic algorithm. The 
specifications of each benchmark function are listed in 
Table 6. The functions can be found in Refs. [32–34]. Two 
performance indices were utilized: convergence rate (CR) 
and search speed (SS). In addition, each test was repeated 
20 times to ensure the reliability of the results. The 
maximum iteration was set to 1000, and the population 
size N was set to 100.

The test results are listed in Table 7. In terms of conver-
gence rate, for each test function, MDGA achieves 100%, 
i.e., MDGA finds the global optimum. In comparison, 
only the Drop-Wave function of the GA achieves 25% 
convergence rate, and the other three test functions do 
not accurately find the theoretical optimum within the 
maximum number of iterations. In addition, for most 
cases, MDGA could converge in less than 100 iterations, 
which shows amazing search speed and is more suitable 
for the optimization problem in this research.

(9)pm =











pm0, fm ≥ favg,

pm0 · cos(
fmin − fm

fmin − favg
), fm < favg,

(10)
favg =

N
∑

i=1

fi

N
,

Figure 10 Comparison of pressure fluctuation results: a 
Experimental results, b Numerical results

Table 9 Design variables of the original case and the optimized 
case

Parameter β2 (°) D2 (mm) b2 (mm) θ (°)

Original case 23 136 17.8 110

Optimized case 20 133 15 120
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3  Experimental Validation
3.1  Test Rig Setup
To verify the rationality and accuracy of the numerical 
simulation, the external characteristics test and pres-
sure fluctuation measurement test were conducted on 
an open test rig in the Fluid Machinery and Engineering 
Laboratory of Jiangsu University. The schematic diagram 
of the test rig is shown in Figure 7, and the pressure sen-
sor positions are given in Figure  8. The test equipment 
mainly includes import and export pressure gauges and 
the pipeline pump, motor, frequency controller, flow 
meter, throttle valve, etc. The pump inlet pipeline diam-
eter is 80 mm, and the outlet pipeline diameter is 80 mm. 
The specifications of the experimental sensors are listed 
in Table 8.

3.2  Result Comparison
A comparison between the experimental and computa-
tional results of the original case was carried out, and the 
results are given in Figures 9 and 10.

As shown in Figure  9, the computational and experi-
mental results showed good agreement. For the nominal 
operating condition, the deviation between the compu-
tational head and the experimental head is 4.48%, and 
the deviation in efficiency is 4.81%. Hence, the CFD 

predictions had a good accuracy, which is acceptable for 
further use in the optimization process.

On the other hand, to facilitate the analysis of 
the frequency domain characteristics of the signal, 
the pressure fluctuation signal obtained from the 
experimental and numerical simulations is subjected to 
Fast Fourier Transform (FFT), and the Hanning window 
function is applied to calculate the power spectrum 
density (PSD). The shaft frequency fn = n/60 = 48.5 Hz, 
and the blade passing frequency fbpf = z×fn = 291 Hz. f/fn 
is used to show the rotational frequency multiplier of the 
blade.

The main frequency of the pressure fluctuation at the 
monitoring point P2 under different working conditions 
is the blade passing frequency (BPF) because the 
pressure fluctuation near the tongue is mainly due to 
the rotor–stator interaction. As the flow rate increases, 
the frequency amplitude gradually increases as well. The 
change in the amplitude of the blade passing frequency 
under the small flow rate and the design flow rate was 
low, but the value for the overload condition rose by 
578.5% compared to the design condition. Obviously, the 
regularity of the numerical results is consistent with the 
experimental results, but the amplitude prediction was 
not accurate enough at the nominal condition. However, 
the performance was good for the partial load and 
overload conditions.

4  Results and Discussions
4.1  Performance Comparison
An optimization scheme with better comprehensive 
performance was selected based on the MDGA 
algorithm’s search results and validated by numerical 
simulation for three operating conditions: 0.6Qd, 1.0Qd, 
and 1.4Qd. The design parameters between the original 
and optimized cases are listed in Table 9. A comparison 
of their performances is shown in Table 10.

The results of the optimized case predicted by the sur-
rogate models (refer to Section 2.3) are ĈV1

p,1.0Qd
= 0.0451 , 

η̂1.0Qd
= 81.95% , and Ĥ1.0Qd

= 19.53m . It can be found 
that the deviations between the predicted values and 
the computational values of the efficiency and the head 

Table 10 Characteristic comparisons between the original case and the optimized case

Parameter η0.6Qd
η1.0Qd

η1.4Qd
H0.6Qd

H1.0Qd
H1.4Qd CV1

0.6Qd
CV1

1.0Qd
CV1

1.4Qd

Original case 67.34 79.86 77.84 21.51 19.42 15.00 0.1620 0.0887 0.0896

Optimized case 69.25 82.23 79.55 21.29 18.94 14.24 0.1649 0.0533 0.0716

Change 2.84% 2.97% 2.20% −1.02% −2.47% −5.07% 1.79% −39.91% −20.09%

Figure 11 Schematic diagram of volute cross-sections
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under nominal conditions are 0.35% and 3.10%, respec-
tively, and the error for PFIC is 15.36%.

After optimization, the efficiency under all investigated 
conditions is improved significantly, and a maximum effi-
ciency increase of 2.97% is obtained under the nominal 
condition. Compared with the original model, the opti-
mized model has a smaller outlet blade angle, impel-
ler outlet diameter and width, and a larger vane wrap 
angle. Under the selected operating conditions, the head 
has different degrees of reduction, and the largest head 
drop is found under the overload conditions, although 
it still meets the design requirements. In addition, the 
PFIC decreases significantly at the nominal and overload 

condition, while the difference is small for the partial load 
condition.

4.2  Flow Analysis
4.2.1  Volute
In order to understand the flow distribution in the volute, 
ten cross-sections were defined, and the positions of 
these sections are shown in Figure  11. Figure  12 shows 
the velocity distributions in the midsection of the volute 
for the original and optimized cases. The comparison 
of the PFIC distributions in the original and optimized 
models is illustrated in Figures 13 and 14.

For the velocity distribution (Figure  12), the flow in 
the spiral section of the volute is more uniform, and the 

Figure 12 Velocity distribution in the volute of the original case and the optimized case: a Original model, b Optimized model
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changes are mainly concentrated in the diffusion tube 
under the partial load condition. In the original model, 
the low-velocity area in the diffusion tube is larger, which 
changes slightly after optimization. Moreover, the flow 
distribution became more uniform and the velocity in the 
mainstream area increased slightly after optimization. 
For the nominal condition, the flow separation can be 
observed in the diffusion tube of the original model, 
which disappears after optimization, and the near-wall 
velocity decreases. In the overload condition, a small area 
of flow separation is found on the outside of the tongue, 
which is improved after optimization, and the velocity in 
the mainstream area increases.

As shown in Figures 13 and 14, under the partial load 
condition, the high PFIC region is mainly concentrated in 
the area near section II, and the highest PFIC was found 
near the inner side of the tongue. After optimization, 
the PFIC at the volute inlet and near the tongue is 
significantly reduced due to the decrease in the working 
capacity of the impeller. Meanwhile, the PFIC gradient 
is reduced, and the high PFIC area also becomes smaller 
after optimization. Similarly, for the nominal condition, 

the PFIC near the interface and tongue decreases 
dramatically after optimization, the high PFIC region 
around the tongue nearly disappears, and a more uniform 
pressure distribution is achieved. Under the overload 
condition, the overall PFIC in the volute decreases after 
optimization, and the low PFIC area between sections II 
and III decreases greatly compared with the original case.

4.2.2  Impeller
The comparison of the velocity distribution on the impel-
ler’s middle plane between the original case and the opti-
mized case is given in Figure 15, and the comparison of 
the PFIC distribution is shown in Figure 16.

It can be seen from Figure  15 that the flow condition 
was extremely complicated under the partial load 
condition. Serious flow separations could be observed on 
the suction side of the blade. In addition, the recirculation 
could be found near the impeller outlet, which resulted in 
the vortices at the suction side and blocked the passage. 
After optimization, this phenomenon was improved due 
to the drop in pressure in the volute. For the nominal and 
overload conditions, the velocity gradient in the impeller 

Figure 13 PFIC distribution in the volute of the original case: a Volute, b Tongue
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decreased, and a uniform velocity distribution can be 
observed after optimization.

From Figure  16, the PFIC increased from the inlet to 
the outlet because of the work of the impeller. The low 
PFIC region was concentrated on the inlet of the impeller. 
The highest value and the gradient for the PFIC were 
dropped after optimization, especially for the partial 
load condition, mainly due to the improvement in the 
flow distribution. In addition, the low PFIC region in the 
impeller greatly increased after optimization under both 
the nominal and the overload conditions.

5  Conclusions
In this research, design optimization of the impeller 
of the inline pump was carried out to improve the effi-
ciency and working stability based on the transient data-
base. After the data-mining process, four design variables 
were chosen as the decision variables, and 40 sample 
cases were generated and calculated by the automatic 
simulation program in the unsteady state. On the other 
hand, a modified discrete genetic algorithm was pro-
posed to reduce the optimization cost. The accuracy of 

the simulation, considering both pump performance 
and pressure fluctuation, was verified. Finally, a great 
improvement in performance was obtained after optimi-
zation. The main conclusions of this research are given as 
follows.

(1) The cost of optimization to improve the unsteady 
characteristics (i.e., PFIC) of pumps is obviously 
more expensive than the optimization of steady 
features (i.e., efficiency), and this problem will be 
tough to solve if the number of decision variables is 
large.

(2) The accuracy of the simulation is proven to be 
extraordinarily coincidental with the experiment. 
The dominant frequency and the tendency for the 
pressure fluctuations to vary are the same in the 
experiments and simulations.

(3) The surrogate model fits the relationship between 
external characteristics and design parameters. The 
R2 of the ANN is 0.9303, showing great prediction 
precision. However, its prediction for the internal 
flow features is still not efficient.

Figure 14 PFIC distribution in the volute of the optimized case: a Volute, b Tongue
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(4) The proposed MDGA has significant advantages 
over the original GA in terms of its search speed 
and convergence rate. MDGA increases the con-
vergence rate from 25% to 100% for the Drop-Wave 
function. The convergence rate is also 100% for the 
Ackley, Bulkin N.6, and Griewank functions, where 
the GA fails to find the optimum accurately within 
the maximum number of iterations.

(5) The performance and stability of the inline pump 
were significantly improved after optimization. The 
efficiency is greatly enhanced, increasing by more 
than 2.2%, while the pump head drops slightly. The 
pressure fluctuation intensity coefficient drops more 
than 20% under nominal and 1.4Qd conditions but 
increases by 1.79% under the 0.6Qd condition.

Figure 15 Velocity distributions in the impeller of the original case and the optimized case: a Original model, b Optimized model
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