
Wang et al. 
Chinese Journal of Mechanical Engineering          (2023) 36:100  
https://doi.org/10.1186/s10033-023-00924-3

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Chinese Journal of Mechanical Engineering

Hierarchical CNNPID Based Active Steering 
Control Method for Intelligent Vehicle Facing 
Emergency Lane‑Changing
Wensa Wang1, Jun Liang1*   , Chaofeng Pan1 and Long Chen1 

Abstract 

To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due 
to proportional-integral-differential (PID) parameter variation, an active steering control method based on Convolu-
tional Neural Network and PID (CNNPID) algorithm is constructed. First, a steering control model based on normal 
distribution probability function, steady constant radius steering, and instantaneous lane-change-based active 
for straight and curved roads is established. Second, based on the active steering control model, a three-dimensional 
constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem 
with supersaturation and sideslip due to emergency lane changing. In addition, a hierarchical CNNPID Controller 
is constructed which includes two layers to avoid collisions facing emergency lane changing, namely, the lane change 
path tracking PID control layer and the CNN control performance optimization layer. The scaled conjugate gradient 
backpropagation-based forward propagation control law is designed to optimize the PID control performance based 
on input parameters, and the elastic backpropagation-based module is adopted for weight correction. Finally, com-
parison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness, significance, 
and advantages of the proposed controller.

Keywords  Intelligent vehicle, Rear-end collision avoidance, Steering control, Dynamics model, Neural Network, PID 
control

1  Introduction
Given architectural changes in the automotive industry 
and the incorporation of multi-sensor electronics, a vehi-
cle is no longer an isolated individual and is instead an 
intelligent terminal that can be interconnected with the 
outside world. In contrast to traditional vehicles, intel-
ligent vehicles integrate various sensors (such as radar 
and cameras), controllers, actuators, and other compo-
nents to achieve efficient perception of human-vehicle-
road information and good control of the vehicle during 

driving [1]. However, intelligent vehicle traffic accidents 
occur frequently, thereby raising serious questions 
regarding the safety of intelligent vehicles [2–4]. Statis-
tics indicate that more than 80% of rear-end accidents are 
caused by drivers [5], and untimely and insensitive steer-
ing during emergencies is the main cause of accidents [6, 
7]. In China’s complicated road environment, especially 
in high-velocity driving scenarios, it is not possible for 
risk avoidance to be achieved in the rear-end collision 
transient state, which increases the probability of major 
accidents such as serial collisions [8].

Current research mainly focuses on intelligent vehi-
cle rear-end early warnings [9], steering control [10, 11], 
emergency braking control [12–15], and trajectory track-
ing control [16–18]. Tawari et al. examined the accurate 
identification and evaluation technology of rear-end 
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risk and collision warning strategies, which is well veri-
fied in practical applications [9]. However, research on 
further treatment measures after a rear-end warning 
is not clear. Therefore, an active steering method based 
on model predictive control [10] is proposed although 
the calculation velocity is slow and the dynamic perfor-
mance of the system is unsatisfactory. Hence, research 
proposed using the predictive value of the lateral force 
of the tire as a parameter for active steering control [11]. 
Many advanced control methods [19–23], such as sliding 
mode variable structure control and optimal control, are 
applied in research on emergency braking and steering 
control [24–26]. However, there is a paucity of research 
on intelligent vehicle active steering control in rear-end 
transients.

Given this assumption, vehicle cornering velocity, 
tire cornering angle, yaw rate, and other parameters are 
derived [27]. In a simulation experiment [28], the pro-
posed sliding mode control method adequately controls 
the vehicle in the drift state. This is insufficient to intel-
ligently control the movement of the uniform drift and 
track the time-varying curvature path. Therefore, the 
selection of prediction models is also a critical issue to 
consider in trajectory tracking control [29–33]. A tra-
jectory tracking controller based on a 2-DOF driving 
model and a 14-DOF dynamics model is designed to 
prove that the complex dynamics model is not always 
an optimal choice [34–36]. In contrast, it is important 
to reasonably simplify the model and select constraints 
that satisfy the driving conditions. The control stability 
analysis of a constant acceleration yaw dynamics model 
is completed under a fixed curvature although the time-
varying acceleration model and time-varying curvature 
trajectory are not considered [37–39]. An energy-shaping 
control method that analyzes the stability of the trajec-
tory tracking control using a combination of roll and slip 
constraints during steering [40] is developed. The above 
study indicated that the dynamic model is reasonably 
simplified at the expense of a certain control accuracy to 
ensure real-time control in the process of risk avoidance.

During emergency steering, mechanisms includ-
ing slow system response, steering angle overshoot, 
and concussion are important [23–25]. In a traditional 
proportional-integral-differential (PID) controller, it is 
necessary to adjust PID control parameters at a certain 
velocity when used for rear-end collision avoidance con-
trol. Hence, the PID parameters must be dynamically 
adjusted in response to velocity. Otherwise, it is subject 
to decreases in the control performance, increases in the 
overshoot, and oscillation, which significantly affect driv-
ing safety [41, 42].

To solve this challenging problem, a hierarchical 
Convolutional Neural Network and PID (CNNPID) 

controller is constructed which comprises two layers, 
namely a lane-change path-tracking PID control layer, 
and a CNN control performance optimization layer. The 
error between the setting points of the lateral motion 
can be eliminated in the lane-change path-tracking PID 
control layer to accurately track the lane-changing path. 
In the CNN control performance optimization layer, the 
scaled conjugate gradient backpropagation-based for-
ward propagation control law is designed to optimize 
the PID control performance based on parameter vari-
ation, and elastic backpropagation is adopted for weight 
correction.

The study has three main implications: First, a normal 
distribution probability function, steady constant radius 
steering, and instantaneous lane-change-based active 
steering control model for straight and curved roads are 
established. Second, based on the active steering con-
trol model, a three-dimensional constraint-based fifth-
order polynomial equation lane-change path is designed 
such that the stability problem with supersaturation and 
sideslip due to emergency lane changing is successfully 
addressed. In addition, a Hierarchical CNNPID Control-
ler for intelligent vehicles to avoid collisions facing emer-
gency lane changing is constructed, and it comprises two 
layers: the lane change path tracking PID control layer 
and the CNN control performance optimization layer. 
The scaled conjugate gradient backpropagation-based 
forward propagation control law is designed to opti-
mize the PID control performance according to the input 
parameters, and elastic backpropagation is adopted for 
weight correction.

The rest of this paper is organized as follows: The sys-
tem model is presented in Section  2. Accordingly, a 
Three-Dimension Constraint-based fifth-order polyno-
mial equation lane-change path is designed in Section 3. 
Furthermore, a Hierarchical CNNPID Controller is pro-
posed in Section  4. Simulation examples are provided 
and discussed in Section  5. Finally, the conclusions are 
presented in Section 6.

2 � System Model
2.1 � Kinematic Model for Intelligent Vehicle
A vehicle kinematic model [12] is crucial to establish an 
active steering control model. To balance the complex-
ity of the model and computational load, a four-DOF 
vehicle model is constructed, and the steering system is 
simplified as a linear relationship between the steering 
wheel and the front wheel angle. Figure 1 shows a sche-
matic of the four-DOF vehicle model. To improve the 
effectiveness of the model, the following assumptions are 
included.
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1)	 To ignore the vertical movement of the intelligent 
vehicle when driving on a flat road.

2)	 To ignore vehicle load transfer.
3)	 To ignore lateral and longitudinal aerodynamics.

The model has four degrees of freedom for chas-
sis velocity: longitudinal velocity, lateral velocity, 
roll angular velocity, and yaw rate. The equations of 
motion for the system are expressed as follows:

where MZi denotes moment on the z-axis; ms and mt 
denote the total sprung masses of the vehicle; vx and vy 
denote longitudinal and lateral velocities of the vehicle, 
respectively; IZ denotes yaw moment; δ denotes the steer-
ing angle; Fxwi and Fywi denote longitudinal and lateral 
forces.
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Based on the kinematic model, an active steer-
ing control model is constructed to avoid rear-end 
collisions.

2.2 � Active Steering Control Model to Avoid Collision 
Facing Emergency Lane‑Changing

To address emergency lane-changing scenarios of 
vehicles on straight and curved roads, an active steer-
ing collision avoidance control model is constructed 
based on a normal distribution function, steady con-
stant radius steering, and instantaneous lane change on 
straight and curved roads.

In Figure  2, the emergency lane-change behavior 
on curved roads consists of the following four stages: 
constant-radius steering, sinusoidal steering (turning 
left/right), sinusoidal steering (turning right/left), and 
constant-radius steering. When a vehicle is driving on a 
straight road, the lane-change behavior consists of only 
two sinusoidal steering stages. Therefore, lane-change 

Figure 1  Schematic diagram of the four-DOFs vehicle: (a) Top view of the vehicle model, (b) Front view of the vehicle model
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Figure 2  Diagram of vehicle lane change
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behavior on straight roads can be considered as part of 
the same on a curved road.

A normal-distribution probability function is intro-
duced when changing lanes on straight roads. Thus, lat-
eral velocity is as follows:

where vYc denotes lateral velocity of the vehicle dur-
ing steering in the XOY coordinate system; d, µy , and σy 
denote related parameters of the vehicle’s lateral velocity.

Lane-change behavior on curved roads can be decom-
posed into the following two states: steady-state con-
stant-radius steering on curved roads and transient 
lane-change behavior on a straight road. Therefore, the 
vehicle’s lateral movement can be considered a combina-
tion of the two states above. In the XOY coordinate sys-
tem, the lateral velocity [15] is expressed as follows:

where vY  denotes the vehicle’s lateral velocity, and vY 0 
denotes the vehicle’s lateral velocity during steady-state 
constant-radius steering.

Given that the yaw angle of a vehicle is relatively low 
when changing lanes on curved roads at high velocities, 
the lateral velocity under steady-state constant-radius 
steering is approximately as follows:

where R0 denotes the vehicle’s steering radius; vx0 and ax 
denote the vehicle’s longitudinal initial velocity and lon-
gitudinal acceleration, and t denotes driving time.

In emergency lane-changing scenarios, it is difficult to 
ensure safety from collisions only by braking when a sta-
tionary or low-velocity vehicle appears in front. A con-
trol parameter response delay and execution error exist 
based on the driver response time and braking hysteresis. 
Therefore, a strategy combining braking and steering is 
adopted to avoid collisions with the vehicle in front. The 
vehicle longitudinal velocity vx and longitudinal displace-
ment xe can be approximated as follows:

where t0 denotes driver response time, tb denotes time 
required to step on the brake pedal and overcome the 
brake clearance, and ab denotes the vehicle braking 
deceleration.

The critical location relation for vehicle collision avoid-
ance can be divided into straight- and curved-section 
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2
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2,

conditions. Figure  3 shows the critical location rela-
tionship for vehicle collision avoidance on straight and 
curved roads. In Figure 3(a), the requirement for a vehi-
cle to avoid a collision on a straight line is that when the 
vehicle drives to time tp , point P at the right front does 
not contact the left rear of the front vehicle. In Fig-
ure  3(b), the constant-radius steering yaw angle of the 
vehicle at tp time on curved roads is ϕ0(tp) . To analyze 
changes in the vehicle’s lateral position during lane, the 
O′X ′Y ′ coordinate system is introduced by rotating the 
OXY  coordinate system ϕ0(tp) counterclockwise at the 
tp time. At this point, the angle between the longitudi-
nal axis of the lane-change vehicle and the O′X ′ axis is 
defined as the lane-change yaw angle ϕc(tp) . The require-
ment for a vehicle to avoid a collision corresponds to that 
when the vehicle drives to time tp , point P at the right 
rear does not contact the left rear of the front vehicle. 
Based on the position, geometry, and motion of the vehi-
cle, the above conditions for straight and curved roads 
are expressed as Eqs. (7) and (8), respectively:
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(
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Figure 3  Critical location relation of vehicle collision avoidance: (a) 
Straight road condition, (b) Curved road condition
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where ye
(

tp
)

 and y′e
(

tp
)

 denote the vehicle’s lane-change 
lateral displacement at time tp in the OXY and O′X ′Y ′ 
coordinate system, respectively; w denotes the front vehi-
cle width, and w1 denotes width of the host vehicle. In 
addition, L denotes length of the host vehicle. b denotes 
longitudinal displacement from the host vehicle mass 
center to the rear axle, and b′ denotes the rear overhang 
length.

The probability that the vehicle completes the entire 
lane-change process in the period of sinusoidal steering 
and motion delay is set as p. The driving-safety control 
objectives are expressed as follows:

1)	The vehicle can avoid the front vehicle to prevent col-
lision.

2)	Vehicle parameters can be corrected in time and lat-
eral displacement meets adjacent lanes.

3)	The vehicle can satisfy driving stability and its lateral 
acceleration should be less than the limit value to 
avoid sideslip or rollover.

By combining the driver’s response time and the vehi-
cle’s motion response delay time, the related parameters 
in Eq. (3) are as follows:

where f denotes the driver’s sinusoidal steering frequency, 
which is generally 0.3–0.5 Hz in case of emergency steer-
ing. td denotes delay time of the vehicle’s lateral velocity, 
which is related to vehicle dynamics. � ∈[5, 6] denotes the 
probability coefficient, subject to 98.56%≤ p ≤ 99.84%.

At t = µy , which corresponds to the pre-collision time, 
the lateral velocity reaches its maximum value. The lat-
eral and longitudinal displacements of the host vehicle 
should be minimized to the maximum possible extent to 
satisfy the requirements of the critical position for col-
lision avoidance. The critical conditions for emergency 
collision avoidance on straight and curved roads are 
expressed in Eqs. (10) and (11), respectively:
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As shown in Eq. (10), the maximum value of the lane-
change lateral acceleration on straight roads is subject 
to the vehicle’s initial longitudinal velocity vx0, delay 
time of the vehicle’s lateral velocity td, driver’s steer-
ing frequency f, and probability coefficient λ. However, 
the maximum value of the lane-change lateral accel-
eration on curved roads is based on the above param-
eters and also to the curvature of the road R0. The 
maximum value of the lane-change yaw angle ϕc(tp)max 
is also based on the vehicle’s longitudinal velocity, 
which determines the minimum lateral displacement 
ye(tp)min , point-in-time tp , and minimum safe distance 
[3] of the lane-change vehicle.

Based on the minimum safe distance, the minimum 
safe distance for lane changing under braking condi-
tions between the host vehicle and the front vehicle are 
as follows:

where Sb =
∫ t
0

∫ τ

0 (ab − a0)dτdt denotes braking dis-
tance, Sc = (vx0 − v′x0)µy denotes pre-collision distance, 
v′x0 denotes the front vehicle’s initial longitudinal veloc-
ity; and a0 denotes the front vehicle’s initial longitudinal 
deceleration.
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3 � Three‑Dimension Constraint Based Fifth‑Order 
Polynomial Equation Lane‑Change Path

In this section, a fifth-order polynomial equation lane-
change path model is expressed as follows:

with

where x, and y denote longitudinal and lateral coordi-
nates, respectively, of the host vehicle for the collision-
free path, and an(n = 1, 2, ..., 5) denotes the polynomial 
coefficient.

To ensure lane-change accuracy, the boundary con-
straints of the fifth-order polynomial are defined as 
follows:

where xc and yc denote the longitudinal and lateral coor-
dinates of the host vehicle at the pre-collision time, 
respectively, and K  denotes the path curvature. The val-
ues of yc , vY  , and ρ0 for straight and curved roads are 
expressed in Eqs. (16) and (17), as follows:

where ϕ0(tc) denotes the host vehicle’s constant-radius 
steering yaw angle on a curved road at the pre-collision 
time.

We substitute Eq. (13) into the constraints in Eq. (15), 
and Eq. (18) is obtained as follows:

where
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Coefficient A is obtained as follows:

Based on Eqs. (13) and (19), an equation for the desired 
lateral position of the vehicle track that satisfies the lane-
change conditions and boundary constraints is derived as 
follows:

Remark 1:  The traditional steering control model [19, 
22] considers only kinematic constraints. However, when 
emergency lane changing occurs [29], the system will 
be supersaturated and side-slipped, thereby leading to 
vehicle instability. Generally, a vehicle is in lateral stabil-
ity when the actual sideslip angle tracks the desired side-
slip angle. Therefore, with the exception of the kinematic 
constraint which is considered in the active steering con-
trol model, the yaw and lateral motions are considered 
in the fifth-order polynomial equation lane-changing 
model, that is, the three-dimensional constraint-based 
fifth-order polynomial equation lane-change path model, 
to maintain vehicle stability.

Yaw and lateral motions are developed to supplement the 
kinematic constraints as follows:

where aY = vXγ + v̇Y  , β denotes the sideslip angle of the 
host vehicle; γ denotes the yaw rate of the host vehicle, 
and V denotes the velocity of the host vehicle.

The yaw rate and sideslip angle of the host vehicle are 
constant when the vehicle is in a stable state. Then, the 
desired yaw rate γd and sideslip angle βd are expressed as 
follows:

where L denotes the vehicle’s wheelbase, and S denotes 
the stability factor. Generally, the lateral acceleration of 
a vehicle is constrained by the road adhesion coefficient, 
and the following relation is obtained:
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(21)
maY = −2Cf (β + aγ /V − δ)− 2Cr(β − bγ /V ),

(22)
IZ γ̇ = −2aCf (β + aγ /V − δ)− 2bCr(β − bγ /V ),

(23)γd =
vx/L

1+ Sv2x
δ,

(24)βd =
b/L+mav2x/(L

2Cr)

1+ Sv2x
δ,
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where µ denotes the road adhesion coefficient, and γmax 
denotes the maximum yaw rate. Combining Eqs. (23) and 
(25), the correction formula of γd is obtained as follows:

where sgn(δ) denotes the sign function. Based on Eqs. 
(23), (24) and (8), the maximum value of βd is calculated 
as follows:

Then, βd in Eq. (7) is expressed as follows:

4 � Hierarchical CNNPID Controller
In this section, a hierarchical CNNPID controller that 
comprises two layers to avoid collisions facing emergency 
lane changing is constructed as shown in Figure 4, which 
corresponds to the lane-change path tracking PID control 
layer and the CNN control performance optimization layer. 
The error between the setting points of the lateral motion 
is eliminated in the lane-change path-tracking PID con-
trol layer to accurately track the lane-changing path. In the 
CNN control performance optimization layer, the scaled 
conjugate gradient backpropagation-based forward propa-
gation control law is designed to optimize the PID control 
performance based on input parameters, and elastic back-
propagation-based Back Propagation is adopted for weight 
correction.

(25)γd ≤ |γmax| =
µg

vx
,

(26)γd = min

{∣

∣

∣

∣

vx/L

1+ Sv2x
δ

∣

∣

∣

∣

, |γmax|
}

· sgn(δ),

(27)|βmax| = µg

(

b

v2x
+

ma

CrL

)

.

(28)
βd = min

{∣

∣

∣

∣

b/L+mav2x/(L
2Cr)

1+ Sv2x
δ

∣

∣

∣

∣

, |βmax|
}

·sgn
(

b/L+mav2x/(L
2Cr)

1+ Sv2x
δ

)

.

4.1 � Lane Change Path Tracking PID Control
PID control [34] is adopted to eliminate the error between 
the setting points of the lateral motion. A control system 
includes Proportional Control (P) to increase the system 
response rate, Integral Control (I) to minimize or eliminate 
the error between the setting points of the lateral motion, 
and control derivative (D) to reduce the overshot/under-
shot [18]. Performance controls (P), (I), and (D) are based 
on the values of the constants Kp , Ki , and Kd . The propor-
tional-integral-derivative (PID) controller is developed 
using the following input parameters: yaw rate, path, and 
lateral acceleration errors. This is related to the objective 
of minimizing the error between the predicted and desired 
trajectory points.

where e(n) denotes the input error. We substitute Eq. (29) 
into the constraints in Eq. (30), and Eq. (31) is obtained as

Hence, Eq. (31) is simplified as follows:

with

(29)
u(n) = Kpe(n)+ Ki

∑T

0
e(n)+ Kd[e(n)− e(n− 1)],

(30)�u(n) = u(n)− u(n− 1),

(31)
�u(n) = Kp[e(n)− e(n− 1)] + Kie(n)

+Kd[e(n)− 2e(n− 1)+ e(n− 2)].

(32)�u(n) = Ae(n)+ Be(n− 1)+ Ce(n− 2),

PID
Controller Filter

de/dt

Control
model

Neural 
network

Ki KdKp

+

-

e(n) Δu(n)

Figure 4  Constructure of the CNN controller

Figure 5  Neural Network architecture
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4.2 � CNN Control Performance Optimization
Through the calculation of the hidden layer, the three out-
puts correspond to the three parameters, Kp , Ki , and Kd , 
of the PID controller. Given that the three parameters can-
not be negative, the transform function of the Neural Net-
work in the output layer is assumed to be a nonnegative 
sigmoid function. The architecture of the double-hidden-
layer Neural Network is shown in Figure 5. Neural nodes 
in the input, first hidden, second hidden, and output layers 
are represented by i, j, k, l, respectively. Superscripts (1), (2), 
(3) and (4) denote the input, first hidden, second hidden, 
and output layers, respectively. We assume that Yr[yrk ] cor-
responds to the actual output through forward propagation 
and Dr[drk ] corresponds to the desired output.

4.2.1 � Scaled Conjugate Gradient Back‑Propagation Based 
Forward Propagation Control Law

The input vector I (1)i (n) is defined as:

where the bias is treated as a weight factor with a con-
stant input of one. N denotes the number of nodes in the 
input layer. The output is defined as follows:

The input v(2)i (n) and output O(2)
i (n) of the first hidden 

layer is calculated based on the following equation:

where w(2)
ij  denotes the weight coefficient between the 

input layer and the first hidden layer, and M denotes 
the node number of the first hidden layer. The activa-
tion function f (x) is sigmoid which is expressed as 

(33)











































A = Kp

�

1+
TG

Ki
+

Ki

TG

�

,

B = −Kp

�

1+ 2
Kd

TG

�

,

C = Kp
Kd

TG
,

u(n) = �u(n)+ u(n− 1).

(34)
I
(1)
i (n) =

[

βd(n), eβd (n), ay(n), 1
]

, i = 1, 2, ...,N ,

(35)O
(1)
i (n) = I

(1)
i (n),

(36)O
(1)
N (n) ≡ 1.

(37)v
(2)
j (n) =

∑N

i=0
w
(2)
ij O

(1)
i ,

(38)O
(2)
j (n) = f [v(2)j (n)], j = 1, 2, ...,M,

(39)O
(2)
M (n) ≡ 1,

1/(1− e−x) . The input to the second hidden layer is 
denoted as follows:

The input v(3)k (n) and output O(3)
k (n) of the second hid-

den layer are calculated as follows:

where w(3)
jk  denotes the weight coefficient between the 

first and second hidden layers, and Q denotes the node 
number of the second hidden layer. The input of the out-
put layer is expressed as follows:

The input v(4)l (n) and output O(4)
l (n) of the output layer 

are calculated as follows:

Then

where w(4)
kl  denotes the weight coefficient between the 

second hidden layer and the output layer. The activation 
function g(x) is expressed as follows:
g(x) = 1+tanh(x)

2 = ex

ex+e−x .

Therefore, the error signal of the k-th neuron in the 
output layer erk(n) is as follows:

The error energy of the output neurons is defined as 
e2rk(n) . Hence, the sum of the error energies of all neurons 
E(n) is expressed as follows:

(40)I
(1)
j (n) = O

(1)
j (n).

(41)v
(3)
k (n) =

∑M

j=0
w
(3)
jk O

(2)
j (n),

(42)O
(3)
k (n) = f

[

v
(3)
k (n)

]

, k = 1, 2, ...,Q,

(43)I
(3)
k (n) = O

(2)
k (n),

(44)O
(3)
Q (n) ≡ 1.

(45)v
(4)
l (n) =

∑Q

k=0
w
(4)
kl O

(3)
k (n),

(46)O
(4)
l (n) = g

(

v
(4)
l (n)

)

, l = 1, 2, 3.

(47)O
(4)
l (1) = Kp,O

(4)
l (2) = Ki,O

(4)
l (3) = Kd ,

(48)erk(n) = drk(n)− yrk(n).

(49)E(n) =
∑3

k=1
e2rk(n).
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4.2.2 � Elastic Back‑Propagation Based Weight Correction 
Module

The elastic backpropagation algorithm calculates the 
weight corrections �w

(4)
kl (n),�w

(3)
jk (n) and �w

(2)
ij (n) 

between the output layer and second hidden layer, sec-
ond hidden layer and first layer, first hidden layer, and 
input layer in the proper order. In the BP algorithm, 
weight correction is proportional to the partial differen-
tial of the energy error with respect to the weight [37]. 
The weight corrections �w

(4)
kl (n),�w

(3)
jk (n) and �w

(2)
ij (n) 

are expressed as follows:

The weight correction coefficient �w
(4)
kl (n),�w

(3)
jk (n) 

and �w
(2)
ij (n) are uniformly described by R(m)

pq (n) . To 
maximize the calculation results of the last correction 
weight, the improved correction of correction weight is 
obtained by introducing the inertial coefficient α:

Therefore, the new correction weight R(n+ 1)c for the 
next iteration is as follows:

(50)�w
(4)
kl (n) = −η

∂E(n)

∂w
(4)
kl (n)

,

(51)�w
(3)
jk (n) = −η

∂E(n)

∂w
(3)
jk (n)

,

(52)�w
(2)
ij (n) = −η

∂E(t)

∂w
(2)
ij (n)

,

(53)

∂E(t)

∂w
(4)
kl (n)

=
∂E(n)

∂erk(n)
·
∂erk(n)

∂yrk(n)
·
∂yrk(n)

∂v
(4)
l (n)

·
∂v

(4)
l (n)

∂w
(4)
kl (n)

,

(54)

∂E(t)

∂w
(3)
kl (n)

=
∂E(n)

∂erk(n)

∂erk(n)

∂yrk(n)

∂yrk(n)

∂v
(4)
l (n)

×
∂v

(4)
l (n)

∂vl(n)

∂O
(3)
k (n)

∂v
(3)
k (n)

∂v
(3)
k (n)

∂w
(3)
jk (n)

,

(55)

∂E(t)

∂w
(2)
ij (n)

=
∂E(n)

∂erk(n)

∂erk(n)

∂yrk(n)

∂yrk(n)

∂v
(4)
l (n)

∂v
(4)
l (n)

∂O
(3)
k (n)

×

∂O
(3)
k (n)

∂v
(3)
k (n)

∂v
(3)
k (n)

∂O
(2)
j (n)

∂O
(2)
j (n)

∂v
(2)
j (n)

∂v
(2)
j (n)

∂w
(2)
ij (n)

.

(56)
�R(m)

pq (n+ 1)c = �R(m)
pq (n)c + α�R(m)

pq (n− 1)c.

(57)R(m)
pq (n+ 1)c = �R(m)

pq (n)c + α�R(m)
pq (n)c.

Remark 2:  For traditional PID control [30, 34], if Kp is 
excessively high, it causes an instability overshoot and 
even instability in the system. Conversely, it reduces the 
precision adjustment and places the system in a static 
state so that the dynamic characteristics are lost. At a 
constant value of Ki , if Ki is excessively high, it will cause 
an overshot of the response. In contrast, it is difficult to 
eliminate the steady-state error and affect the accuracy 
of the system. If Kd is too high, it will slow down the 
response, and the ability of the system will decrease.

To eliminate the effect of parameter variation on the 
PID control performance, a four-layer CNN architec-
ture consisting of an input layer, two hidden layers, and 
an output layer is developed to optimize the PID perfor-
mance according to the input data. The scaled conjugate 
gradient backpropagation-based forward propagation 
control law is designed to represent a nonlinear function 
and optimize the performance according to the input 
parameters. And elastic backpropagation-based back-
propagation is adopted for weight correction.

4.3 � Model Training and Testing
The design of the Neural Network is completed, and this 
is followed by training and testing. To ensure the superi-
ority and reliability of the Neural Network, it is necessary 
to collect large quantities of rear-end driving experience 
data. Given that it is difficult to collect a high amount of 
rear-end collision avoidance data, we chose data sum-
marized from real driving collected by the Virginia Tech 
Transportation Institute (VTTI) based on test secu-
rity on a real road and then simulated rear-end collision 
avoidance [33]. Through data screening, 4000 groups of 
vehicle driving data that successfully completed collision 
avoidance are selected as the sample data. In addition, 
300 groups are used for offline training and testing (3:1). 
After approximately 150000 steps, the training results 
satisfied expectations. The output error of the neural net-
work is approximately 4.98%, which is less than the target 
error of 5% and meets the application requirements.

Table 1  Neural Network training parameters

System structure Input Hidden Output

Number of neurons 3 30, 30 1

Transfer function Tansg Tansig Purelin

Training algorithm Trainlm

Maximum cycle time 2000

Learning rate 0.01

Target error 0.1

Maximum gradient 1e-8
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A schematic of the Neural Network is shown in Fig-
ure 5, and training parameters are given in Table 1.

5 � Experimental Verification and Analysis
5.1 � Model Training and Testing
In this section, simulation experiments and actual vehi-
cle tests are presented to verify the effectiveness of the 
proposed control method for intelligent vehicles. Simu-
lation experiments based on a hardware-in-the-loop 
(HIL) simulation platform with a high-fidelity full-vehicle 
model can verify the reliability of steering and collision 
avoidance in high-velocity scenarios. A real vehicle test 
can prove the accuracy and practicality of the tracking 
method under real conditions.

Figure  6 shows the HIL simulation platform which is 
a 6 DOF QJ-4B dynamic test platform that includes an 
interactive visual system, cockpit, and visual software. It 
can achieve a pixel view of up to 3072 × 168 pixels and 
a visual display rate of more than 24 fps. The response 
times of the machine operation and the visual display are 
less than 30 ms.

The critical experimental conditions are set on the plat-
form. By setting up the scene, a simulator can be used to 
analyze the effectiveness of the vehicle control system. To 
ensure the safety of the test, the following methods are 
adopted. First, we designed a rear-end transient scene 
and obtained the optimal lane-changing path based on 
training samples. Second, a driver with more than 10 
years of driving experience is selected to drive the HIL 
simulation platform to collect vehicle path data under the 
same conditions. Finally, a real vehicle reproduced the 
experimental scene to verify the following effect on the 
expected path: The intelligent vehicle model is shown in 
Figure 7.

Figure 6  Hardware-in-the-loop simulation platform

Figure 7  The appearance, interior layout of the intelligent vehicle

Figure 8  The static parameter setting of the vehicle
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The Intelligent vehicle platform, which is converted 
from a Harvard off-road vehicle, is equipped with sen-
sors, including laser radar, millimeter-wave radar, cam-
era, and a GPS/INS integrated navigation system. The 
entire control system consists of a decision-making unit 
and a control unit. With the perception component, the 
functions of vehicle, lane, and obstacle identification are 
realized. An RT2000 GPS/INS integrated navigation sys-
tem is used to measure the movement of the vehicles.

The static parameter settings of the vehicle used in 
the simulation experiments are shown in Figure 8. Some 
of the key parameters are listed in Table  2. The vehicle 
velocity is set to 90 km/h. To verify the effectiveness of 
the control method, we simulated a sudden traffic acci-
dent on a certain road section based on the HIL simula-
tion platform. The accident occurred on a road where a 
vehicle passed, and we tested whether the system is able 
to respond to the rear-end collision transient in a timely 
and accurate manner. The system response acceleration, 
feedback response error, and other parameters are col-
lected and compared with the results of the traditional 
control method.

5.2 � Simulation Results and Analysis
Figure  9(a) shows the constant-radius steering response 
error of lateral acceleration results under the control of 
the PID and CNNPID controllers. For the control perfor-
mance, the control errors of both methods can converge. 
The error control curve of PID surges from 0.1 to − 0.6 
m/s2, and there exist two peaks based on sharp changes 
such as these. In addition, the error ranges from −0.6 to 
0.3 m/s2. In contrast, the error control curve of CNNPID 
is stable, with a fluctuation range of − 0.2 to 0.2 m/s2. In 
most cases, steady-state errors which are less than 0.05 
m/s2 satisfy the requirements of quick collision avoidance 
by active steering. This is due to the CNN control perfor-
mance optimization layer, which eliminates the effect of 
parameter variation on the PID control performance.

The control error of the lateral acceleration is shown 
in Figure 9(b) and indicates that the linearity of the lat-
eral acceleration under the control of the CNNPID is 
higher. Except the absolute overshoot at the beginning 
is less than 0.5 m/s2, the steady-state error in the rest of 
the time is limited within (− 0.5~0.1) m/s2. Figure 9(c) 
shows that the CNNPID controller exhibits an excel-
lent ability to deal with the uncertainty of acceleration 
changes. When compared to the PID controller, the 
control effect of the CNNPID controller is more stable, 
the steering is more accurate, and it does not require a 
complex algorithm or long-term training of the Neural 
Network.

Figure 9(d) shows the comparison of the lane-change 
path of the vehicle under the control of two control-
lers. As shown in the figure, the vehicle path controlled 
by CNNPID is smooth, and the overall slope changes 
smoothly. The vehicle’s path controlled by the PID 
exhibits a high slope at the beginning of steering and 

Table 2  The vehicle parameters

Parameters Value

Vehicle preparation quality (kg) 1330

Body size (m) BB Width=2.060
BB Length=4.331
BB Height=1.574

Wheelbase (m) 2.730

Tire stiffness (N/rad) Ccr = 92710

Ccf = 55273

Rotational inertia around Z axis (kg·m2) 2280

Figure 9  Results of the simulation experiments: (a)Constant-radius steering response error of the lateral acceleration, (b) Control error of the lateral 
acceleration, (c) Sinusoidal response error of the lateral acceleration, (d) Path of active steering, (e) Steering angle, (f) Tracking error
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then gradually becomes smooth. The proposed control 
method increases system stability.

As shown in Figure  9(e), the steering angle based 
on the minimum safe distance presents a stable curve. 
Although the system response performance decreases, 
some response characteristics are lost to ensure steer-
ing safety during the rear-end collision transient. The 
results indicate that the CNNPID control method 
increases the stability of the system.

Figure  9(f ) demonstrates that the control system 
exhibits a low overshoot although the overall control 
results for the path are satisfactory.

The curves in Figure 10 show a comparison of the mini-
mum safe distance of the vehicle in the rear-end collision 
transient where b denotes the required lateral distance. 
An analysis of these curves indicates that for the same 
lateral distance, the minimum safe distance required for 
the steering and braking operations exceeds that required 
for the steering and braking operations.

Table 3 presents a performance comparison between 
the PID and CNNPID control methods. As shown in 
the table, the error of the improved control method 
significantly decreases, and the control accuracy 

significantly improves. This indicates that the improved 
control method is superior to the PID control method.

In summary, the response delay and overshoot prob-
lems of intelligent vehicles facing emergency lane chang-
ing due to variations in PID parameters are addressed. 
Finally, we process and analyze data obtained from 30 
sets of experiments. The vehicle’s lateral performance is 
summarized in Table 3.

5.3 � Real Vehicle Test and Analysis
Given the complexity of a real driving environment, a 
real vehicle test must be conducted to further verify the 
effectiveness and reliability of the control method. Con-
sidering the danger of transient conditions, we chose a 
one-way road with a relatively small traffic volume and a 
velocity limit of 100 km/h.

Two test conditions (a straight road scenario and a 
curved road scenario) are designed to verify the valid-
ity of the CNNPID controller. Seven drivers of different 
ages are selected to participate in the tests under each 
condition. Subjects 1–3 possessed 1–3 years of driving 
experience; subjects 4–6 possessed 3–5 years of driving 
experience; subject 7 possessed > 5 years of driving expe-
rience. Participants 1 and 4 are female, whereas the oth-
ers are male. Road information, vehicle path, and other 
parameters are collected with an integrated system of 
inertial navigation/GPS by performing every condition 
several times.

Scenario on straight roads: First, we designed an active 
steering system for a straight road. The host vehicle is 
driven at a velocity of 120 km/h along the road, and the 
obstacle vehicle travelled in the same lane at a velocity of 
72 km/h in front of the host vehicle located 50 m away.

Figure  11(a) shows the results of active steering. The 
target, ideal, and actual paths are shown in Figure 11(b). 
When combined with a detailed view of the parts marked 
by the red rectangle, it is observed that the consistency 
of each driver is high. The errors between the actual and 
target paths of each driver are shown in Figure 11(c). The 
maximum error is approximately 0.23 m. As shown in 
Figure 11(e) and (f ), the maximum steering wheel angle 
and maximum lateral acceleration are approximately 

Figure 10  Minimum safe distance in different control strategy

Table 3  Comparison of vehicle lateral performance

Parameters PID CNNPID

Mean deviation Standard deviation Mean deviation Standard 
deviation

The system’s response error (m/s2) 0.1857 0.2689 0.0834 0.1365

The lateral acceleration control error (m/s2) 0.3968 0.4536 0.0026 0.0835

The tracking error (m) 0.3694 0.7589 0.13 0.65



Page 13 of 17Wang et al. Chinese Journal of Mechanical Engineering          (2023) 36:100 	

72.99 ° and 5.19 m/s respectively. Therefore, each driver 
can efficiently avoid rear-end collisions.

Scenario on curved roads: We considered another 
active steering action on a curved road. The host vehicle 
is driven at a velocity of 120 km/h along the road, and the 
obstacle vehicle travelled in the same lane at a velocity of 
72 km/h in front of the host vehicle 40 m away. The ini-
tial curvature of the road is zero and the final curvature 
is 0.002.

The results of the steering avoidance which indicate 
that the host vehicle can successfully avoid a collision are 
shown in Figure 12(a). The target, ideal, and actual paths 
are shown in Figure 12(b), and a detailed view of the parts 
marked with a red rectangle is shown to better demon-
strate the differences between drivers during steering. 
The errors between the actual and target paths of each 
driver are shown in Figure  12(c); the maximum error is 
approximately 0.24 m. The maximum steering wheel 

x

x

Figure 11  Results of emergency steering in a straight road: (a) Diagram of collision avoidance, (b) Vehicle’s path, (c) Lateral distance error, 
(d) Steering wheel angle, (e) Lateral acceleration
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angle and lateral acceleration are approximately 32.79 ° 
and 5.19 m/s2 respectively, as shown in Figure 12(e) and 
(f ), respectively. Therefore, the consistency of the steer-
ing wheel angle and lateral acceleration among the driv-
ers improved significantly.

Next, a vehicle driven only by the driver and controlled 
by a PID controller is used as a comparative experiment. 
We used ArcMap software for data processing to analyze 

the results using the three different methods. For secu-
rity purposes, the host vehicle is driven at a velocity of 72 
km/h along the road, and the obstacle vehicle travelled in 
the same lane at a velocity of 40 km/h in front of the host 

x
Y

x

Figure 12  Results of emergency steering on a curved road: (a) Diagram of collision avoidance, (b) Vehicle’s path, (c) Lateral distance error, (d) 
Steering wheel angle, (e) Lateral acceleration
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vehicle located 40 m away. The results of the comparative 
experiments are shown in Figure 13.

As shown in Figure  13(a), when compared with 
driver and PID controller, the driving path controlled 
by CNNPID controller is closer to the target path. The 
results illustrate that the proposed method can satisfy 
the tracking performance requirements. As shown in 
Figure 13(b), the peak value of lateral acceleration con-
trolled by driver, PID controller and CNNPID control-
ler are approximately − 7.78 m/s2, − 7.78 m/s2 and 7.45 
m/s2, respectively. In addition, by collating the results 
in Figure  13(c), it is observed that the proposed solu-
tions exhibit superior dynamic control performance in 
the tracking process of the rear-end collision transient.

As shown in Figure  13(d), the steering angle con-
trolled by the CNNPID controller exhibits fewer oscil-
lations than those controlled by the driver and the PID 
controller. The peak value of the disturbance is approxi-
mately a quarter of the peak steering angle controlled 
by the CNNPID controller.

As shown in Figure 13(e) and (f ), the estimated values 
of the lateral forces on the front and rear axles converge 
consistently to the measured value.

In summary, the proposed controller precisely follows 
the rear-end collision avoidance path in a real vehicle 
test.

6 � Conclusions and discussion
The following conclusions are obtained:

(1)	 An active steering control method for intelligent 
vehicles based on CNNPID in the rear-end collision 
transient under emergency lane-changing is devel-

oped to resolve response delay and overshoot prob-
lems of intelligent vehicles facing emergency lane-
changing due to PID parameter variation.

(2)	 We constructed a normal distribution probabil-
ity function, steady constant radius steering, and 
instantaneous lane-change-based active steer-
ing control model for straight and curved roads. 
Based on this, a three-dimensional constraint-based 
fifth-order polynomial equation lane-change path 
is designed to address the stability problem with 
supersaturation and sideslip given emergency lane 
changing. Furthermore, a Hierarchical CNNPID 
Controller comprising two layers is constructed. 
The extensibility and advantages of the proposed 
hierarchical CNNPID control method are illus-
trated through comparison studies. This corre-
sponded to a significant breakthrough in success-
fully addressing this challenging issue in the context 
of rear-end collision control.

(3)	 Future research will further consider complex 
scenes such as the parallel operation of multiple 
vehicles. In addition, it is necessary to focus on the 
modeling of the intelligent vehicle’s longitudinal 
velocity control, the sensitivity of different control 
systems to different adhesion coefficients, variable 
curvature path tracking, and inconsistencies in road 
adhesion coefficients.
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