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Abstract 

The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference informa-
tion. However, the separation performance depends largely on the construction of reference signals. To improve 
the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed, 
the reference-based cubic blind deconvolution algorithm is proposed in this paper. The proposed algorithm can be 
combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration. 
The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function 
is theoretically proved. By deriving the optimal step size of gradient iteration under the new contrast function, we 
propose an efficient adaptive step optimization method. Furthermore, the contribution evaluation method based 
on vector projection is presented to implement the source contribution evaluation. Numerical simulation analysis 
is carried out to validate the availability and superiority of this method. Further tests given by the simulated satellite 
experiment and satellite ground experiment also confirm the effectiveness. The signals of control moment gyroscope 
and flywheel were extracted, respectively, and the contribution evaluation of vibration sources to the sensitive load 
area was realized. This research proposes a more accurate and robust algorithm for the source separation and pro-
vides an effective tool for the quantitative identification of the mechanical vibration sources.

Keywords  Quantitative identification, Reference-based cubic contrast function, Semi-blind deconvolution, Satellite 
micro-vibration, Adaptive step size

1  Introduction
The micro-vibration of the sensitive load area is one of 
the key factors which affect the positioning accuracy and 
observation resolution of the satellite [1, 2]. The ampli-
tude of the satellite micro-vibration is generally in the 
order of μm or even smaller. And its acceleration is gen-
erally in the order of mg. The micro-vibration with small 
amplitude does significant harm to satellite performance. 
The contribution proportions of the main sources to the 

sensitive load area obtained through the source quanti-
tative identification can provide trustworthy guide for 
satellite micro-vibration suppression and possess great 
significance for improving satellite positioning accuracy, 
resolution and other performance.

The acquisition of pure source signals is one of the 
critical factors to accurately evaluate the contributions of 
the sources to the sensitive load area. However, the mix-
tures formed after mixing of multiple vibration sources 
rather than the source signals themselves are measured 
by the sensors. Therefore, extracting pure source signals 
from these mixtures is the basis for the smooth progress 
of source quantitative identification. The classical signal 
processing methods, such as variational mode decom-
position (VMD) [3, 4], empirical mode decomposition 
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(EMD) [5, 6] and wavelet transform (WT) [7, 8], have 
been proposed to acquire the source information from 
the mixture. It is to be regretted that these methods may 
fail in the satellite system, because the nonlinear charac-
teristics caused by aluminum honeycomb sandwich panel 
and bolted connections will produce many harmonics, 
which increases the difficulty of source signals extraction.

Without prior information or with a small amount, 
Blind Source Separation (BSS) [9–11] possesses the abil-
ity for source separation only based on the mixed signals. 
It is extensively applied in acoustic signal processing [12, 
13], biomedical signal processing [14, 15], communica-
tion system [16], image processing [17, 18] and mechani-
cal systems [19, 20]. For complex mechanical systems, 
such as the satellite system, the mixing form of the mul-
tiple vibration signals is close to the convolutive mix-
ing model. After years of research, many classical blind 
deconvolution algorithms have been proposed. By con-
verting the convolutive mixing into the linear ones, the 
fast multi-channel blind deconvolution (MBD) algorithm 
is proposed by Thomas et al. [21]. Simon et al. [22] took 
higher-order cumulant as contrast function to realize 
the source signal extraction from the convolutive mix-
tures. In recent years, the semi-BSS algorithm improves 
the separation accuracy by introducing reference infor-
mation, and has received considerable attentions. Cas-
tella et  al. [23] introduced the reference signal into the 
higher-order cumulant and proposed the reference-based 
quadratic contrast function, which is effective on the i.i.d. 
and non-i.i.d. sources. In the framework of the reference-
based quadratic contrast function, some optimization 
methods are proposed [24, 25]. On this basis, Dubroca 
et  al. [26] proposed the reference-based cubic contrast 
function. The new contrast function shows less depend-
ent on the reference signal, which provides great conven-
ience for constructing the reference signal and improves 
the feasibility of the algorithm in practical application. 
As the optimization to the new contrast function, a gen-
eral algebraic algorithm based on the best rank-1 tensor 
approximate is carried out. But this algebraic optimiza-
tion method requires a good knowledge of the order of 
the filter due to its sensitivity on the rank estimation. 
Hence, Brahim et  al. [27] proposed a new optimization 
algorithm which is based on a fixed step gradient and 
does not require any rank estimation. However, the fixed 
step optimization is time-consuming.

For the high-precision source extraction, the reference-
based cubic blind deconvolution (RBCBD) algorithm is 
proposed. We first propose the normalized reference-
based cubic contrast function and theoretically prove its 
validity. The new contrast function is then optimized by 
the adaptive step iteration, which does not require any 
rank estimation and which improves the efficiency. We 

also introduce the reference signal iterative updating and 
the deflation procedure to further improve the accuracy. 
Furthermore, the contribution evaluation method based 
on vector projection is presented to accurately evaluate 
the source contribution, so as to achieve the source quan-
titative identification. The validation of the proposed 
method is given by numerical simulation. The simulated 
satellite experiment constructed with reference to the 
real satellite was carried out to further verify this method. 
To confirm the effectiveness of the satellite micro-vibra-
tion source quantitative identification, the proposed 
method was applied to the satellite ground experiment 
to extract the signals of control moment gyroscope and 
flywheel and to compute the contribution proportions of 
the vibration sources to the sensitive load area.

The main structure of this paper is arranged below. The 
newly proposed RBCBD algorithm is introduced in Sec-
tion 2. Contribution evaluation method based on vector 
projection is presented in Section 3. Section 4 gives the 
performance analysis of the source quantitative identifi-
cation method through several numerical simulations. 
Then its availability is further confirmed by the simulated 
satellite experiment and satellite ground experiment in 
Section 5. Section 6 presents the conclusions.

2 � Reference‑Based Cubic Blind Deconvolution 
Algorithm

Extracting pure sources is the first step to obtain accu-
rate source contribution, thus the RBCBD algorithm 
is proposed in this section to achieve efficient source 
extraction. Firstly, the blind deconvolution model is 
briefly introduced. Subsequently, the normalized refer-
ence-based cubic contrast function is presented. Finally, 
the novel contrast function is optimized through the 
adaptive step optimization method to realize the source 
extraction.

2.1 � Blind Deconvolution Mathematical Model
For the N-dimensional unknown sources s = (s1,

s2, . . . , sN )
T , the mathematical expression of their convo-

lution mixing result is

where the M-dimensional mixed signals x = (x1,

x2, . . . , xM)T are collected by multiple sensors; A denotes 
the mixing matrix filter; M is the number of mixed sig-
nals; N is the number of source signals. It’s commonly 
presumed that M is not less than N.

If the blind separation results are demanded to be 
closer to the expected one, some assumptions must be 
imposed on the unknown source signals and convolutive 
mixing system:

(1)x(n) =
∑

m∈Z

A(m)s(n−m),
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A1. s(n) are statistically independent.
A2. The mixing system is stable and invertible.
In the multi-input/single-output (MISO) context, the 

purpose of the blind deconvolution is to obtain the sepa-
ration vector filter w and then the estimated source signal 
can be obtained by:

where y(n) is an effective recovery of the source signal.
The global vector filter g(n) is defined as:

Thus,

where ∗ is the symbol of the convolution operation.
Without prior information of any sources or the hybrid 

system, there exist some indeterminacies in the esti-
mation results only through the observed signal. The 
extraction of the source signal can be achieved when the 
following condition is met:

where gi(n) � (g(n))i represents the ith element of the 
global vector filter; δi,i0 is the Kronnecker impulse func-
tion; ε is a non-zero impulse response filter.

Eq. (5) expresses that separated signal y(n) is equivalent 
to a filtering of the source si0 by a impulse response filter 
ε(n). Thus, the extracted signal is a filtered and permuted 
version of the source signal. These indeterminacies will 
not affect the contribution evaluation, which will be 
shown in the contribution evaluation section.

2.2 � Normalized Reference‑Based Cubic Contrast Function
One critical factor of blind separation is the contrast 
function. BSS can be considered as one optimization 
issue because maximizing or minimizing the appropriate 
contrast function can give an effective estimation of the 
source. Here, the general contrast function of BSS needs 
to meet the following properties:

P1.

where Y denotes the set of output of Eq. (4).
P2. The equivalence in Eq. (6) holds if and only if y(n) 

is a source filtered version obtained by the impulse 

(2)y(n) =
∑

m∈Z

w(m)x(n−m),

(3)g(n) �
∑

m∈Z

w(m)A(n−m).

(4)y(n) = (g ∗ s)(n) =
∑

m∈Z

g(m)s(n−m),

(5)
gi(n) = ε(n)δi,i0 ,

∃i0 ∈ {1, . . . ,N }, ∀i ∈ {1, . . . ,N },

(6)∀y(n) ∈ Y, J
{

y(n)
}

≤
N

max
i=1

sup J {(ε ∗ si)(n)},

response filter ε(n), that is, when the global vector filter 
satisfies Eq. (5).

We present the normalized reference-based cubic con-
trast function as follows:

The reference signal r(n) is presumed to satisfy the 
assumption below:

A3. r(n) is obtained by filtering the source signal with a 
vector filter h(m):

Under assumptions A1, A2 and A3, J in Eq. (7) is a con-
trast function, i.e., J satisfies the properties P1 and P2. 
The proof is given below.
Cr

{

y(n)
}

� Cum
{

y(n), y(n), y(n), r(n)
}

 denotes the 
reference-based cubic fourth-order cumulant.

Define J(y) by:

It is easy to know that the proof of J as the contrast 
function is equivalent to the proof of J  as the contrast. 
Alternatively, the proof of J  as contrast function will be 
made.

Firstly, the denominator part of Eq. (9) is analyzed. We 
define 

∥

∥gi
∥

∥

2

i
 by:

Then we can get:

and thus,

Secondly, the numerator part 
∣

∣Cr

{

y(n)
}∣

∣ of Eq. (9) is 
analyzed. Define yi(n) by:

where

(7)J (y) �

∣

∣

∣

∣

∣

∣

∣

Cum
{

y(n), y(n), y(n), r(n)
}

E
{

∣

∣y(n)
∣

∣

2
}3/2

∣

∣

∣

∣

∣

∣

∣

2

.

(8)r(n)=
∑

m∈Z

h(m)s(n−m).

(9)J (y) �

∣

∣Cr

{

y(n)
}∣

∣

E
{

∣

∣y(n)
∣

∣

2
}3/2

.

(10)

∥

∥gi
∥

∥

2

i
�

∑

(k1,k2)∈Z2

gi(k1)gi(k2)E
{

si(n)si(n− (k2 − k1))
}

.

(11)E
{

∣

∣y(n)
∣

∣

2
}

=

N
∑

i=1

∥

∥gi
∥

∥

2

i
,

(12)

E
{

∣

∣y(n)
∣

∣

2
}3/2

=

( N
∑

i=1

∥

∥gi
∥

∥

2
i

)3/2

≥

N
∑

i=1

(

∥

∥gi
∥

∥

2
i

)3/2
=

N
∑

i=1

∥

∥gi
∥

∥

3
i .

(13)yi(n) � (gi ∗ si)(n),
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Define Cmax
r  by:

where

Using the assumption A3, the mutual independence of 
signals yi(n) and properties of cumulants, we have:

thus,

Finally, using Eq. (12) and Eq. (18), we have:

The above inequality proves the property P1 is satisfied.
When equality is satisfied, we have:

Then, at most one of 
∥

∥gi
∥

∥

2

i
 is non-zero for all 

i ∈ {1, · · · ,N } . And Cmax
r =Cr, i for this value of i. So far, 

the above derivation proves that property P2 can also be 
satisfied.

Therefore, we theoretically prove the validity of the 
normalized reference-based cubic contrast function.

In this section, we present the reference-based cubic 
contrast function, transforming the blind deconvolution 
problem into the optimization problem of maximizing 
the contrast function.

2.3 � Optimization Method
2.3.1 � Adaptive Step Size Gradient Optimization
We suppose that the separation vector filter w is a FIR 
filter with the filtering order D. The blind deconvolution 
model can be expressed by another form, that is, the ICA 
model:

(14)gi =

{

gi
�gi�i

,
∥

∥gi
∥

∥

i
�= 0,

0,
∥

∥gi
∥

∥

i
= 0.

(15)Cmax
r �

N
max
i=1

Cr, i,

(16)Cr, i= sup
�gi�i=1

∣

∣Cr

{

(gi ∗ si)(n)
}∣

∣.

(17)Cr

{

y(n)
}

=

N
∑

i=1

∥

∥gi
∥

∥

3

i
Cr

{

yi(n)
}

,

(18)

∣

∣Cr

{

y(n)
}∣

∣ ≤

N
∑

i=1

∥

∥gi
∥

∥

3

i

∣

∣Cr

{

yi(n)
}∣

∣ ≤ Cmax
r

N
∑

i=1

∥

∥gi
∥

∥

3

i
.

(19)

J (y) �

∣

∣Cr

{

y(n)
}∣

∣

E
{

∣

∣y(n)
∣

∣

2
}3/2

≤

Cmax
r

N
∑

i=1

∥

∥gi
∥

∥

3

i

E
{

∣

∣y(n)
∣

∣

2
}3/2

≤ Cmax
r .

(20)
(

N
∑

i=1

∥

∥gi
∥

∥

2

i

)3/2

=

N
∑

i=1

(

∥

∥gi
∥

∥

2

i

)3/2
.

where

R � E
{

x(n)x(n)T
}

 is defined as the covariance matrix 
of the mixed signals, then we have E

{

∣

∣y(n)
∣

∣

2
}

= wRwT . 
The contrast function J is a function of w:

where

The iterative process with the gradient method is:

where k is the iteration number; μ is the iterative step; 
and d represents the gradient of J(w), that is:

where

with

The convergence performance in terms of speed and 
accuracy will be directly influenced by the value of μ. 
As explained in Ref. [28]: A small μ will cause the algo-
rithm slowly converge to the extreme point, while a large 
one will accelerate the convergence, also produce large 
steady-state error. To obtain w rapidly and stably, it is 
expected that we can adaptively obtain the optimal value 
of μ to maximize the contrast function at every iteration, 
that is:

The adaptive step size µadap is calculated below.

(21)y(n) = wx(n),

(22)w = (w(0),w(1), . . . ,w(D − 1)),

(23)
x(n) =

(

x(n)T, x(n− 1)T, . . . , x(n− D + 1)T
)T

.

(24)J (w) = J (w)2,

(25)J(w) �
Cr

{

wx
}

(wRwT)3/2
.

(26)w(k + 1) = w(k)+ µd,

(27)d =
∂J (w)

∂w
= 2J (w)

∂J (w)

∂w
,

(28)

∂J (w)
∂w

=

∂Cr{w x}
∂w (wRwT)3/2−3Cr

{

wx
}

(wRwT)1/2wR

(wRwT)3
,

(29)

∂Cr
{

wx
}

∂w
=

3
Ne

(

wx
)2

· rxT

−
3
N 2
e

(

2wxrTwxxT + wxxTwTrxT
)

.

(30)µadap = arg max
µ

J (w + µd).
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The derivative at the extreme point for a continuous 
function is 0, so the optimal step should meet that:

Deduce the left side of Eq. (31), we have:

where K is a constant; and

where ◦ is the symbol of Hadamard product; and

Constant K does not affect the solution. Then the real 
roots of the polynomial p(μ) = a3μ3 + a2μ2+ a1μ+a0 are 
the candidates of μadap. Substitute each candidate value 
into J(w + μd), the candidate that maximize J(w + μd) is 
the adaptive step size μadap. In each iteration, μadap is cal-
culated first, which can significantly improve efficiency 
and ensure stability.

Owing to the inevitable scaling indeterminacy of BSS, 
the scale of the separation vector filter will not affect the 
separation performance. Hence, the constraint of unit-
power E{|y(n)|2} = 1 is common in BSS. This constraint is 
achieved by normalizing w(k + 1) after each iteration in 
the following form:

Repeat iteration until convergence, and the extraction 
of one source can be achieved by:

The convergence can be judged by comparing the con-
trast function values before and after iteration.

Therefore, the steps of the single source signal extrac-
tion are as follows:

(1)	 Center the mixed signals x(n).

(31)
∂J (w + µd)

∂µ
= 0.

(32)
∂J (w + µd)

∂µ
= K (a3µ

3 + a2µ
2 + a1µ+ a0),

(33)

a3 = (−np ◦ q2 + lq3 + n2p − lnq)rT,

a2 = (−2np2 ◦ q + lp ◦ q2 +mq3 + 3lnp − 2l2q −mnq)rT,

a1 = (−lp2 ◦ q + 2mp ◦ q2 − np3 + 2l2p +mnp − 3mlq)rT,

a0 = (−lp3 +mp2 · q +mlp −m2q)rT,

(34)

p = wx,

q = dx,

l = wRdT,

m = wRwT,

n = dRdT.

(35)w(k + 1) =
w(k + 1)

E
{

∣

∣w (k + 1)x(n)
∣

∣

2
}1/2

.

(36)y(n) = wx(n).

(2)	 Rewrite the mixed signals x(n) into its time-delay 
form x(n).

(3)	 Initialize w randomly and normalize it by Eq. (35).
(4)	 Calculate the gradient d by Eq. (27).
(5)	 Calculate the adaptive step size by Eq. (30).
(6)	 Iterate w by w (k + 1) = w (k)+ μadapd.
(7)	 Normalize w (k + 1) by Eq. (35).
(8)	 If not convergence, go back to step (4).
(9)	 If convergence, extract the source signal by Eq. (36).

2.3.2 � Optimization of Reference Signal Iterative Updating
An optimization method by iteratively updating refer-
ence signal [26] is introduced to further improve the sep-
aration accuracy.

The signal y(n) extracted through the maximization 
of contrast function J (w) is more identical to the source 
si(n) than the reference signal r(n). Therefore, taking 
the extracted signal y(n) as a new reference signal, we 
extract the source again by the proposed algorithm in 
Section  2.3.1. Then repeat the above operations several 
times. Single source signal extraction with the optimiza-
tion method is carried out as follows:

(1)	 Construct the reference signal r(n).
(2)	 Set l = 0.
(3)	 Obtain the separation vector filter w and the 

extracted signal y(n) = wx(n) by the proposed algo-
rithm in Section 2.3.1.

(4)	 Set l = l + 1.
(5)	 If l does not reach the preset number of iterations, 

i.e., l < lrs, set r(n) = y(n) and go back to step (3).
(6)	 If l reaches the preset number of iterations, i.e. 

l ≥ lrs, the single source signal extraction is achieved.

2.4 � Extraction of Multiple Source Signals
Let the mixed signals subtract the contribution of the 
previously extracted source signal, which can reduce sep-
aration difficulty and improve separation accuracy [29]. 
Wiener filter is taken to extract the source contribution. 
The parameters of the Wiener filter extracting the contri-
butions of yi in x can be solved by:

where Rxyi is an (M×L) matrix in which Rxyi
(u, v)

= E
{

xu(n)yi(n− v + 1)
}

 ; Ryi is an (L×L) matrix in which 
Ryi(u, v) = E[yi(n− v)yi(n− u)] ; L is the Wiener filter 
length.

Then the contributions of yi in x can be obtained by:

(37)hi = arg min
hi

E
{

∥

∥x − hi ∗ yi
∥

∥

2
}

= RxyiR
−1
yi

,
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where ŷij denotes the contribution of yi in xj.
Replacing the original mixed signals x with the remain-

ing mixed signals xr = x − ŷi reduces the source num-
ber in the mixtures. Then continue the source extraction 
based on the remaining mixed signals. Repeat the 
extraction process until all estimated source signals 
y = (y1, y2, . . . , yN )

T are obtained.
The flowchart of multiple source signals extraction is 

illustrated in Figure 1.

3 � Contribution Evaluation Based on Vector 
Projection

Source quantitative identification includes source extrac-
tion and relative influence evaluation of the different 
sources on the observations. The contribution evaluation 
is an intuitive mathematical expression of this relative 
influence proportion. The contribution evaluation is usu-
ally based on signal energy [30, 31]. However, under the 
conditions of frequency-band overlap, the energy sum 
of each source contribution is not equal to the energy of 

(38)ŷi = (ŷi1, . . . , ŷiM)T = hi ∗ yi,
the mixed signal, causing the energy-related contribution 
evaluation can’t accurately express the true influence.

The contribution evaluation method based on vec-
tor projection is presented. By the form of vector inner 
product, the source contribution ŷij is projected on the 
mixed signal xj as:

where · represents the inner product operation; �·�2 
denotes the 2-norm.

Then the contribution proportion (CP) of the ith 
extracted source yi to the jth mixed observation xj is 
expressed through the proportion of ŷ′ij in xj:

Easy to get that the mixed signal at one observation 
point is the sum of each source contributions at this 
point, that is

Combining Eqs. (40)−(41) and the linear characteris-
tic of inner product, the totality of each source contri-
bution proportions at the  jth observation point is

The sum of contribution proportions is 1, which indi-
cates that the obtained CP can truly and quantitatively 
evaluate the relative influence of each source in the 
mixed signals.

But for the energy-based contribution evaluation 
does not always meet x2j =

∑N
i=1 ŷ

2
ij , so 

∑N
i=1 ŷ

2
ij

/

x2j  is 
not always equal to 1, indicating that the obtained con-
tribution by the energy-based contribution quantifica-
tion can’t truly express the relative impact from each 
source.

It should be noted that Eq. (40) is the case of one 
direction. For the case of multi-directional vibration 
such as the vibration in X-direction, Y-direction and 
Z-direction, the source contributions in each direction 
need to be obtained respectively, and then the overall 
CP of the ith source to xj is calculated as follows:

(39)ŷ
′
ij = ŷij ·

xj
∥

∥xj

∥

∥

2

,

(40)CPij =
ŷ
′
ij

∥

∥xj

∥

∥

2

=
ŷij · xj

xj · xj
.

(41)xj =

N
∑

i=1

ŷij .

(42)

N
∑

i=1

CPij =

N
∑

i=1

ŷij · xj

xj · xj
=

xj
N
∑

i=1

ŷij

xj · xj
=

xj · xj

xj · xj
= 100%.

(43)

CPij =
(ŷij)X · (xj)X + (ŷij)Y · (xj)Y + (ŷij)Z · (xj)Z

(xj)X · (xj)X + (xj)Y · (xj)Y + (xj)Z · (xj)Z
,

Figure 1  Flowchart of multiple source signals extraction



Page 7 of 16Luo et al. Chinese Journal of Mechanical Engineering           (2023) 36:98 	

where ()x, ()y and ()z represent the signal in X-, Y- and 
Z-direction, respectively.

4 � Simulations Analysis
4.1 � Superiority of the RBCBD Algorithm
The following comparison algorithms are taken to verify 
the superiority of the RBCBD algorithm. Algorithm A: 
The contrast function is the normalized reference-based 
quadratic contrast function and its optimization method 
is the adaptive step optimization method; Algorithm B: 
The reference-based cubic contrast function and the 
fixed step optimization method; Algorithm C: The clas-
sical fourth-order cumulant contrast function and the 
adaptive step optimization method.

The types of the source signals are set as below: s1(t) 
is a sinusoidal wave; s2(t) and s3(t) are multi-component 
signals. The generated source signals follow the form of 
these functions:

where f1, f2, f3 and the signal phases are generated sto-
chastically. The sampling frequency is 1024 Hz. The 
entire sampling time is 1 s. The filtering order of the ran-
domly generated mixing filter A is 10. 25 dB white noise 
is added to the model shown in Eq. (1) to obtain the 
mixed signal x.

The source extraction performance is measured by the 
global filter error index in Ref. [26], which is defined as:

The value range of the error index is [0, 1]. And the 
closer this error index is to 0, the better the extraction 
performance is.

4.1.1 � Selection of the Iterative Number of the Reference 
Signal

This section explores the influence of the iterative num-
ber of the reference signal lrs on extraction performance. 
The source signals are generated by the functions in Eq. 
(44). The mixed signals x obtained by x = A*s are pro-
cessed by the proposed algorithm with different lrs. The 
first mixed signal x1 is selected as the reference signal. 

(44)

s(t) =





s1(t)

s2(t)

s3(t)





=





sin
�

2π f1t
�

0.69 sin
�

2π f2 t
�

+ 0.55 sin
�

4π f2t
�

+ 0.47 sin
�

6π f2 t
�

0.79 sin
�

2π f3 t
�

+ 0.48 sin
�

4π f3t
�

+ 0.38 sin
�

6π f3 t
�



,

(45)eg � 1−

max
i∈{1,··· ,N }

∥

∥gi
∥

∥

2

i

∑

i∈{1,··· ,N }

∥

∥gi
∥

∥

2

i

.

The algorithm parameters are set as follows: The maxi-
mum iteration number is 50000; the separation filter 
order D is 10; the convergence threshold is 10−6. The 
average eg of 20 random runs is brought to evaluate the 
extraction performance. In each run, the coefficients of A 
and the phases of each source are regenerated stochasti-
cally. Figure  2 demonstrates the error index of different 
iterative number lrs with the increase of the number of 
samples Ne.

As can be seen from Figure  2, the extraction per-
formance will not be significantly improved with the 
increase of lrs under the condition of lrs > 3. Therefore, in 

Figure 2  Extraction performance of RBCBD algorithm with different 
lrs

Figure 3  Separation performance versus β by the proposed 
algorithm and the comparison algorithms
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the next simulations and experiments, lrs are set to 3 both 
in the RBCBD algorithm and the algorithm A and B.

4.1.2 � Effect of the Reference Signal
This section explores the effect of the reference signal and 
compares the proposed algorithm with algorithm A and 
algorithm B. We choose r(n) = βs1(n)+ (1− β)s2(n) 
with β ∈[0, 1] as the reference signal. The proposed 
RBCBD algorithm and the comparison algorithms are 
taken to deal with the mixed signals respectively. The 
eg of the three algorithms is drawn versus β in Figure 3 
where each eg is the average of 20 runs. The three algo-
rithms use the same parameter settings: The maximum 
iteration number is 50000; the separation filter order D is 
10; the convergence threshold is 10−6.

As shown in Figure 3, better results of the three algo-
rithms are all obtained when β is near to 0 or 1. With β 
near to 0.5, algorithm A fails to extract, while the pro-
posed algorithm still works well. Since the adaptive step 
optimization method is adopted in the proposed algo-
rithm, the oscillation near the convergence point can be 
effectively eliminated, reducing the steady-state error. 
Therefore, the proposed algorithm has higher separa-
tion accuracy than algorithm B with fixed step size. 
These results verify that the proposed algorithm is a 
more robust algorithm. The satisfying result can still be 
obtained by RBCBD algorithm even with the inaccu-
rate reference signal, which illustrates that the proposed 
RBCBD algorithm is less sensitive to the reference signal. 
This provides great convenience for the construction of 
the reference signal and improves the feasibility of the 
algorithm in practical application.

4.1.3 � Comparison in Extraction Accuracy
To analyze the extraction performance in noisy situa-
tions, RBCBD algorithm and the comparison algorithms 

are adopted to deal with the mixed signals x with noise. 
The average eg of the four algorithms is drawn versus the 
signal-to-noise ratio (SNR) of the added noise in Figure 4 
where each eg is the average of 20 runs.

As can be perceived from Figure 4, the algorithms with 
reference is superior to algorithm C without reference 
in extraction accuracy, indicating that the introduction 
of the reference signal can improve the extraction accu-
racy. The algorithm A with accurate reference signals also 
has high separation accuracy. However, algorithm B has 
lower separation accuracy than the proposed algorithm 
and algorithm A due to the influence of steady-state 
error.

4.1.4 � Comparison on Extraction Efficiency
To compare the extraction efficiency, the RBCBD algo-
rithm and comparison algorithms are taken to deal with 
the mixtures x with 25 dB noise. The number of iterations 
is drawn versus the number of samples in Figure 5 where 
each number of iterations is the average of 20 runs. The 
running time of the four algorithms is drawn versus the 
number of samples in Figure 6 where each running time 
is the average of 20 runs.

As can be perceived in Figures  5 and 6, the RBCBD 
algorithm with the adaptive step optimization is superior 

Figure 4  Extraction performance of the four algorithms in the case 
of noise

Figure 5  Iterations comparison of the algorithms

Figure 6  Running time comparison of the algorithms
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to algorithm B with the fixed step optimization in effi-
ciency, indicating that the adaptive step optimization 
can significantly improve the efficiency. It should be 
noted that the suitable value 0.01 is selected for the 
step size of algorithm B in this comparison through the 
attempt of different values in advance. A smaller step size 
will lead to the slower convergence, while a bigger step 
size will result in difficult convergence due to the larger 
steady-state error. Therefore, the efficiency advantage of 
the RBCBD algorithm will be more obvious in practical 
applications where there is no prior information for a 
suitable step size.

However, the extraction efficiency of the proposed 
algorithm is lower than that of the quadratic algorithm 
A with the adaptive step optimization. Compared with 
algorithm C, which also adopts the adaptive step optimi-
zation, the proposed algorithm does not show obvious 
efficiency advantage. The computational complexity in 
each iteration of the proposed cubic algorithm is greater 
than that of the quadratic algorithm, magnifying the 
advantage of algorithm A in running time. Therefore, the 
improvement of the reference-based cubic algorithm in 
terms of separation accuracy and robustness on the refer-
ence signals is at the cost of reducing the efficiency, while 
the proposed algorithm relieves the efficiency problem by 
the adaptive step optimization.

To sum up, through the above comparisons, the pro-
posed method has the following superiorities. The 
extraction accuracy is improved by introducing refer-
ence signal. The proposed algorithm is more robust to 
the reference signal selection. The proposed algorithm 
improves the efficiency by the adaptive step size gradient 
optimization.

4.2 � Validation of the Source Quantitative Identification
The frequencies f1, f2 and f3 in Eq. (44) used to generate 
the sources are set to 70  Hz, 80  Hz and 50  Hz respec-
tively. The phases of the corresponding sources are 
generated stochastically. The temporal waveforms and 
frequency spectrums of simulation sources are displayed 
in Figure 7. The mixed signals as shown in Figure 8 are 
obtained by x = A*s and adding an additional 25 dB noise. 
The mixed signals are handled with the proposed RBCBD 
algorithm, and the extracted source signals are presented 
in Figure 9. The error indexes eg of each extracted signal 
are 8.41×10−4, 2.78×10−4, and 4.37×10−4, respectively, 
indicating that the successful source extraction has been 
achieved by the RBCBD algorithm.

Then the CP of each source to different observed sig-
nals is worked out by the contribution evaluation method 
presented in Eq. (40), so as to achieve the quantitative 
identification of sources.

The true source contributions can be calculated by the 
known s and A, and then the true CP can be obtained. 
Figure 10 lists both the calculated CP and the true one. 
It is obvious that the calculated CP are very close to the 
true CP. The mean error is 0.51% and the maximum is 
only 1.07%. The results firmly verified the availability of 
the source quantitative identification method.

Figure 7  Simulation source signals s: a Temporal waveforms, b 
Frequency spectrums
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5 � Experimental Verification
Further test is given by the vibration experiment of simu-
lated satellite of aluminum honeycomb structure. Next, 
satellite ground experiment is carried out to prove the 
validity of the proposed method in the quantitative iden-
tification of the satellite micro-vibration sources.

5.1 � Simulated Satellite Experiment
In this section, we conducted the excitation experiment 
on a simulated satellite to further verify the availability of 
this method.

5.1.1 � Experimental Setup
An experimental device simulating the actual satellite 
structure was manufactured, and the excitation experi-
ment was carried out. The overall experimental system is 
exhibited in Figure 11.

The experimental model is made of the aluminum 
honeycomb sandwich plate, and the plates are con-
nected by embedded bolts. The manufacturing mate-
rials and the connection form widely appear in actual 

Figure 8  Simulation mixed signals x: a Temporal waveforms, b 
Frequency spectrums

Figure 9  Simulation extracted signals y: a Temporal waveforms, b 
Frequency spectrums
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satellites. The model is divided into upper and lower 
cabins to simulate the payload and propulsion cabin 
respectively. The camera is simulated by an aluminum 
column structure, which is arranged on the top.

The model was lifted on the steel tubes bracket by the 
elastic slings to isolate the ground vibration. Motors 
and vibration exciters for generating four experimental 
source signals were arranged around the lower cabin. 
The experimental model is shown in Figure 11a.

The experimental control instruments shown in Fig-
ure  11b were placed in another room to isolate the 
self-generated noise, where HBM DAS recorded the 
vibration signals measured by PCB356b18 accelerom-
eters. The vibration exciters were controlled through 
power amplifier and signal generator, and the motors 
were controlled through the speed controllers to obtain 
the desired source signals.

The arrangement of the accelerometers is shown in 
Figure  11c. The accelerometers 1 and 2 were respec-
tively arranged on the top and bottom of the cam-
era simulator, and the accelerometers 3 and 4 were 
arranged on the surface of the experimental model.

5.1.2 � Experimental Validation
The experimental source signals were measured by those 
accelerometers placed near each motor or vibration 
exciter when each source operates separately. The tem-
poral waveforms and frequency spectrums of the experi-
mental source signals are displayed in Figure  12, where 
the first two signals are the source signals of the excit-
ers and the other two are those of the motors. The sam-
pling frequency was 5000  Hz. The entire sampling time 

Figure 10  Results of the quantitative identification using the RBCBD 
algorithm in simulations analysis

Figure 11  Simulated satellite experiment system: a Simulated 
cabin structure, b Experimental control instruments, c Arrangement 
of the accelerometers
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were 2  s. The subsequent spectrums only give the part 
of 0−200 Hz to visually display the detailed characteris-
tics. The collected experimental mixed signals when all 
sources work simultaneously are presented in Figure 13.

The RBCBD algorithm was brought to process experi-
mental mixed signals and realized source extraction. The 
parameter settings were as follows: The maximum itera-
tion number was 5000; the separation filter order D was 
15; the convergence threshold was 10−7; the iterative 
number of the reference signal lrs was 3. The nonlinear 
mode decomposition method [32–34] was adopted to 
deal with the mixed signals, from which the harmonics 

were extracted to be the reference signals. It can be seen 
from Section 4.1.2, the reference signals do not need to 
be very accurate, so the reference signals constructed by 
nonlinear mode decomposition can meet the require-
ments. Figure  14 exhibits the experimental extracted 
signals. It can be drawn from the comparison between 
Figure 12 and Figure 14 that the frequency composition 
and temporal waveform of the extracted signals are basi-
cally identical with those of the source signals. It can be 
considered that each extracted signal is a filtering of the 
corresponding source signal, so the experimental source 
extraction has been successfully achieved.

Figure 12  Experimental source signals: a Temporal waveforms, b 
Frequency spectrums

Figure 13  Experimental mixed signals: a Temporal waveforms, b 
Frequency spectrums
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Then, the contribution quantification was imple-
mented to evaluate the contributions of the sources. 
The micro-vibration at camera position is an important 

factor to the decline of observation satellite resolu-
tion, so we are concerned with the vibration of the 
camera simulator. Therefore, the CP of each source 
to the measuring position 1 needs to be calculated. 
When each source worked separately, the true contri-
bution of each source at measuring position 1 was the 
signal measured by accelerometer 1, and then the true 
CP could be obtained. Table 1 lists both the calculated 
and true CP. The errors of the calculated CP are 1.96%, 
2.49%, 0.05% and 0.45%, and the mean error is 1.24%.

The satisfactory results of this simulated satellite 
experiment demonstrate that the proposed method can 
successfully extract each source from the experimental 
mixtures and accurately evaluate the vibration effect of 
each source to the camera simulator. The availability of 
the proposed method is further confirmed.

Figure 14  Experimental extracted signals: a Temporal waveforms, b 
Frequency spectrums

Table 1  Contribution calculation results of the model 
experiment

S1 S2 S3 S4 Average

True CP (%) 22.92 18.00 51.47 7.62 −

Calculated CP (%) 24.87 15.51 51.42 8.07 −

Error (%) 1.96 2.49 0.05 0.45 1.24

Figure 15  Diagram of the experiment satellite: a Construction 
of experiment satellite, b Layout of the micro-vibration sources
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5.2 � Satellite Ground Experiment
For the feasibility test in the satellite micro-vibration 
source identification, this method was applied to satel-
lite ground experiment to extract the signals of control 
moment gyroscope and flywheel and to calculate the 
contribution proportions of vibration sources to the sen-
sitive load area.

5.2.1 � Introduction to the Experiment System
The experiment satellite was composed of three parts: 
The thrust and service cabin, payload cabin and payload, 
as shown in Figure  15a. The micro-vibration sources, 
including one flywheel and three control moment gyro-
scopes (CMG 1, CMG 2 and CMG 3), were installed in 
the small cabins around the thrust and service cabin, as 
shown in Figure  15b. All instruments and equipment 
in the cabins were simulated by the counterweight, the 
weight of which was consistent with the design state. A 
camera simulator was used as the payload. The acceler-
ometers were arranged on the top of the camera simula-
tor, where was the sensitive load area.

5.2.2 � Experimental Verification
Take a certain working condition as an example, in which 
CMG1 operated with the high-speed shaft at 6000  r/
min and low-speed shaft locked and flywheel operated at 
800  r/min. By analyzing the vibration signals measured 
by the accelerometers, it can be found that the vibration 
of the measuring point 2 is greater than that of the meas-
uring point 1. Therefore, we are mainly concerned with 
the vibration of the measuring point 2 and each source 
contribution to measuring point 2 needs to be calculated.

Firstly, we dealt with the vibrations in X-direction. Sim-
ilarly, when each source ran separately, the experimental 

source signals were collected. The waveforms of the sig-
nals are very complex but the Fourier spectrums are more 
intuitive, so only the Fourier spectrums are displayed, as 
shown in Figure 16, where the first signal is from the con-
trol moment gyroscope and the second signal is from the 
flywheel. The sampling was kept for 2 s and the sampling 
frequency was 6400 Hz. The 0−1000 Hz part of the sig-
nal spectrum is exhibited to show the signal characteris-
tics in detail. When both sources were running, the first 
mixed signal in Figure 17 was collected by accelerometer 
1 and the second by accelerometer 2.

The RBCBD algorithm was carried out to extract the 
source signals of ground experiment. The nonlinear 
mode decomposition was taken to extract harmonics 
signals from the observation signal of measure point 2 in 

Figure 16  Spectrums of X-direction source signals

Figure 17  Spectrums of X-direction mixed signals

Figure 18  Spectrums of X-direction separated signals
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the X-direction as the reference signals. The maximum 
iteration number was 5000; the separation filter order D 
was 45; the convergence threshold was 10−7; the iterative 
number of the reference signal lrs was 3. The frequency 
components of the extracted signals are displayed in Fig-
ure 18. Consistent frequency components can be discov-
ered between Figure 16 and Figure 18, indicating that the 
extraction of the vibration source signals is successfully 
achieved.

Then, the same steps were taken to process the Y-direc-
tion and Z-direction mixtures respectively to extract 
source signals and source contributions.

Finally, the CP of each micro-vibration source at meas-
uring point 2 was calculated using the proposed con-
tribution evaluation method, so as to accomplish the 
source quantitative identification. True contribution 
proportions were obtained by the true source contribu-
tions. Both the calculated contribution proportions and 
true contribution proportions are presented in Table  2. 
The errors of the calculated contribution proportions are 
1.59% and 1.09%, and the average error is 1.34%, which 
meets the error requirements in engineering application. 
Satisfactory results have been obtained in the quantita-
tive identification of the satellite micro-vibration sources.

6 � Conclusions
In conclusion, the method proposed in this paper can 
effectively achieve the quantitative identification of the 
satellite micro-vibration sources, so as to provide the 
basis for suppressing the satellite micro-vibration.

(1)	 In this paper, aimed at the source quantitative iden-
tification, the source extraction and contribution 
evaluation are studied. To accurately and efficiently 
extract the sources, a semi-blind deconvolution 
algorithm is proposed. We first propose the nor-

malized reference-based cubic contrast function 
and theoretically prove its validity. The cubic con-
trast function enhances the extraction accuracy 
and the robustness of the algorithm. After that, by 
deriving the optimal step size of gradient iteration 
under the new contrast function, we propose the 
adaptive step size gradient optimization method, 
which improves the efficiency. Besides, by introduc-
ing the reference signal iterative updating and the 
deflation procedure, the accuracy of the algorithm 
is further improved. Furthermore, the contribution 
evaluation method based on vector projection is 
presented to realize the high-accuracy source con-
tribution evaluation.

(2)	 Numerical simulation is constructed as the first test 
to authenticate the effectiveness of this method. 
Simulation results reveal that this method has the 
ability to extract simulated sources from convolu-
tion mixtures and accurately evaluate source contri-
bution with error of less than 1.5%. Compared with 
other algorithms, the RBCBD algorithm is advanta-
geous in terms of the accuracy, robustness and effi-
ciency. Then in the simulated satellite experiment, 
experimental source quantitative identification is 
accurately realized with error of less than 3%, which 
further confirmed the availability.

(3)	 The method was also applied to the satellite ground 
experiment. The signals of CMG and flywheel were 
extracted respectively, and the contribution calcu-
lation of the vibration sources to the sensitive load 
area was successfully realized with average error 
1.34%.
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