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Abstract 

Shield machines are currently the main tool for underground tunnel construction. Due to the complexity 
and variability of the underground construction environment, it is necessary to accurately identify the ground 
in real-time during the tunnel construction process to match and adjust the tunnel parameters according 
to the geological conditions to ensure construction safety. Compared with the traditional method of stratum 
identification based on staged drilling sampling, the real-time stratum identification method based on construction 
data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large 
diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy 
of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In 
response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates 
multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms 
is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly 
used classification models are used to train and test the obtained effective feature data, and the model accuracy 
and recognition time are used as evaluation indicators, and the classification with the best combination with VFS 
is obtained. The experimental results of shield machine data of 6 different geological structures show that the average 
accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, 
the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing 
best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide 
applicability for stratum identification in the process of tunnel construction, and can be matched with a variety 
of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, 
the identification of the construction stratum environment of shield tunnels can be well realized, and further 
theoretical guidance for underground engineering construction can be provided.
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1 Introduction
With the development of large-scale machinery 
and construction technology in our country, shield 
machine plays an increasingly important role in 
underground tunnel engineering, and the complex and 
changeable geological environment puts forward higher 
requirements for the safety of shield machine [1–3]. Since 
the Shield Machine can only advance and can not retreat 
during the tunnel excavation process, if it encounters 
geological disasters during the construction process, 
it will be accompanied by accidents such as landslides 
and falling blocks, which will delay the construction 
period and increase the construction cost. Therefore, it 
is very important to monitor and identify the geological 
environment of the tunnel excavation face, and adjust 
the shield machine parameters in real-time to match 
the geological environment. The shield machine should 
maintain good working conditions and ensure the safety 
and efficiency of underground construction [4–6]. In the 
traditional excavation method, the geological conditions 
of the construction route must first be investigated and 
studied, usually by drilling holes at certain intervals, and 
inferring the overall geological conditions according 
to the drilling data. With the development of artificial 
intelligence and data mining technology, data-driven 
formation identification methods have been widely 
used in underground construction due to their superior 
performance in real-time, accuracy and other aspects. 
The stratum can be identified through the mapping 
rule between the geological environment and the data 
parameters of the equipment’s tunneling operation [6, 
7], and different strata conditions can be reflected in 
real-time, so as to make real-time adjustments to the 
tunneling parameters and ensure the safety of the shield 
tunneling machine under different geological conditions. 
Since there are hundreds of shield machine data features, 
to complete the accurate mapping of data features and 
formation features, it is necessary to select the most 
representative data features from many data features 
as the input of the recognition model, so as to improve 
the calculation efficiency and shorten the recognition 
time. The data characteristic parameters commonly 
used in formation identification are mainly divided 
into two categories, the working parameters of shield 
machine equipment, such as excavation speed, pressure 
and temperature of each working chamber, and the 
parameters measured by sensors when interacting with 
the geological environment, such as cutter head Torque, 
propulsion, penetration, etc. The manual selection 
of features is a commonly used method at present. 
Engineers select effective data features through geological 
theory and engineering experience [8, 9], such as digging 
speed, total thrust, cutterhead speed, cutterhead torque, 

penetration force, etc, which are often used as input 
features for geological identification [10–12]. Although 
the manual selection of features has certain pertinence 
and reliability, it is not conducive to further improving 
the recognition accuracy, and it also needs to rely on 
rich engineering experience and professional knowledge, 
which does not have wide applicability. In contrast, the 
feature extraction method in machine learning (ML) 
requires less professional experience and knowledge, 
and it is more objective and efficient to use data analysis 
techniques to select data features with wider coverage 
[13–15].

In the actual operation of the shield tunneling machine, 
we usually maintain the tunneling direction and attitude 
of the shield tunneling machine by constantly adjusting 
tunneling parameters to ensure its good rock-breaking 
efficiency. At present, a more practical method in 
engineering is to extract effective features from a large 
number of data sets through machine learning, and 
establish a mapping relationship between relevant 
tunneling parameters of the shield machine and the 
actual working state, so as to realize real-time monitoring 
and adjustment of the working state of the shield 
machine. Feature extraction is a widely used research 
direction in machine learning [16–18]. Current feature 
extraction methods (FSM) are usually divided into three 
categories: Filter FSM, Wrapper FSM and Embedded 
FSM. Filter FSM first performs feature extraction on 
the data set, and then trains the classification model. 
The feature extraction process and the subsequent 
classification model are relatively independent two 
processes. Compared with Filter FSM, Wrapper FSM 
directly uses the performance indicators of the final 
classifier as the evaluation criteria for feature subsets, 
and optimizes for a given classification model, so the 
performance of Wrapper’s classification model is better 
than Filter, but Wrapper is in the feature extraction 
process. The classifier needs to be trained multiple times, 
and its time complexity is much more complicated than 
that of the Filter. The embedded FSM integrates the 
feature extraction process and the classification model 
training process, both of which are the same optimization 
process. In recent years, in order to solve the problem of 
local optima of a single FSM, a new feature extraction 
method, ensemble learning-based feature extraction 
(ELFS) [19–22], has been studied. The main principle of 
ELFS is to evaluate and select a better subset of features 
in an attribute-weighted or prioritized manner from the 
results of multiple feature extractors. From the analysis 
of the difficulty of integration, Wrapper and Embedded 
are more difficult to integrate into ELFS than Filter, so 
we usually consider integrating Filter into ELFS. The 
data features selected by the filter FSM mainly include 
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feature variance, the correlation between data features 
and target values, such as Pearson correlation coefficient, 
Spearman correlation coefficient, Kendall correlation 
coefficient, information gain, gain ratio, symmetric 
uncertainty, RF, One- R and Chi-square.  Olsson et  al. 
[23–25] used multiple Filter FSMs to process software 
failure datasets PROMISE database and NASA metrics 
database. The weights of all features were calculated 
through each FSM, and finally, the weights of each 
feature were accumulated. After averaging and sorting, 
it was found that the subset of features selected by the 
combination of information gain and PCA has the best 
recognition results. However, in the field of underground 
construction, due to the high hybridity and redundancy 
of shield machine massive data, there is currently no data 
feature machine for processing shield machine Learning 
feature extraction method. Therefore, in order to reduce 
the time complexity of the ELFS algorithm, improve 
the applicability of the algorithm, and at the same time 
give full play to the advantages of ELFS to easily extract 
data features with larger weights and ensure higher 
recognition accuracy, this paper studies and proposes A 
VFS (Voting based Feature Selection) algorithm based on 
feature frequencies in all FSMs is proposed to filter shield 
machine raw data and reduce its hybrid redundancy.

The accuracy of stratigraphic identification not only 
requires characteristic data with high correlation with geo-
logical conditions, but also depends on the correct estab-
lishment of identification models. Classification algorithms 
are often closely related to the accuracy of the recognition 
model. Currently, the commonly used classification algo-
rithms mainly include linear discriminant analysis (LDA) 
[26], quadratic discriminant analysis (QDA), support vec-
tor machine (SVM) [27], K-nearest neighbor (KNN) [28], 
neural network (NN) [29], naive Bayes (NB) [30], Ada-
Boost (AdaB) [31], gradient boosted decision tree (GBDT) 
[32] and random forest (RF) [33], etc. In a single geologi-
cal environment, the formation recognition achieved good 
recognition results. However, since there are only 60 sets 
of data available for training and testing, the generalization 
ability of the model in complex geological environments 
needs to be further tested. In order to test the effective-
ness of the VFS algorithm proposed in this paper, this 
paper selects 10 commonly used classification algorithms 
to match with VFS, performs stratigraphic identification in 
6 different geological structures, and compares them with 
the basic feature set. Through the matching and compari-
son of multi-class classification algorithms, the best recog-
nition model combined with VSF is obtained, which also 
verifies the wide applicability of the VFS algorithm.

Feature screening of shield machine data is a very 
important research direction. Due to a large number 
of data features of shield machine itself, it is of great 

significance to reduce the dimensionality of the data and 
select the optimal feature subset for formation identifica-
tion to reduce the computational cost and improve the 
identification accuracy.

Therefore, in the actual construction process, it is in 
urgent need of a feature subset screening method that can 
be applied together with a variety of classification algo-
rithms at a high speed, so as to quickly extract the param-
eter feature set that is most relevant to the working state 
of the shield tunneling machine, establish an accurate 
mapping relationship, and improve the accuracy of stra-
tum identification. In response to this problem, this paper 
proposes a voting-based feature extraction (VFS) method, 
which integrates 4 filter FSMs to obtain the optimal feature 
subset according to the frequency of features in all FSMs. 
After matching with 10 commonly used classification 
algorithms, it is proved that the proposed VFS can effec-
tively shield the highly redundant and highly hybrid data, 
and has the advantages of short time-consuming, strong 
adaptability and wide applicability. The organization of 
this paper is as follows: Section 2 introduces the research 
object and shield machine construction data characteris-
tics and data sources; Section  3 introduces the principle 
and design process of the VSF algorithm; Section 4 designs 
several experiments to verify the superiority of VSF, Data 
preprocessing and results are discussed; Section 5 presents 
the conclusions of this paper and future work.

2  Related Work
When the shield machine is excavated in the horizontal 
direction underground, it comes into contact with differ-
ent geological environments in turn. Due to the relatively 
large diameter of the mud-water balance shield machine, 
it often contacts one or more sedimentary geological lay-
ers in the longitudinal direction. In the current construc-
tion process, the difference between different geological 
environments is mainly reflected in the combination of 
different sedimentary geological layers. Common geo-
logical structures include a silty sand structure layer, 
silty clay sandwiched silty soil layer, silty fine sand layer, 
and pebbleslayers, gravel-sand layers, and combinations 
of layers, etc. When the super-diameter shield machine 
comes into contact with strata with different geological 
structures, its own excavation parameters will change to 
a certain extent. Therefore, by studying the correlation 
between the changes of the excavation parameters and 
the changes of the geological environment, we can estab-
lish the mapping law between the geological environ-
ment and the parameters of the equipment excavation 
operation, so as to construct a data-driven identification 
model, reasonably match the excavation parameters of 
the shield, and ensure the construction quality and safe 
operation.
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Super-large mud-water shield machine pumps a cer-
tain concentration of mud into the mud-water shield 
chamber. As the soil residue and groundwater cut by the 
cutter head flow into the excavation chamber along the 
cutter groove, the mud concentration and pressure in the 
mud-water chamber gradually increase, and balance with 
the earth pressure and water pressure on the excavation 
face, forming a mud film or a permeable wall formed by 
mud-water pressure on the excavation face, and forming 
a stable excavation on the excavation face. Super-large 
mud-water balance shield machine is generally composed 
of an air cushion, mud-water tank, cutter head system, 
main drive, scouring device, crusher, slurry pipe suction 
port, pipe fitting assembly machine, main engine row, 
slurry pump, etc. Its three-dimensional model is shown 
in Figure 1 below. The data used in this paper is the sen-
sor data of a super-large diameter mud shield machine 
in a tunnel construction in my country. There are a total 
of 197 data features, including 5 data features commonly 
used in existing studies, namely, travel speed, total pro-
pulsion force, cutter head speed, cutter head torque, and 
penetration. In addition, the 201 features also include 
the volume of the mud conveying mud circulation sys-
tem and the mud discharge volume, the grouting pump 
capacity of the grouting system, the rated torque and out-
put torque of the milling head of the drive system, as well 
as the rotational speed, working chamber pressure, and 
rotational speed range, cylinder working pressure, etc.

This paper obtained 800 data sample points from 6 
geological layers during the construction of a certain tun-
nel, as shown in Table 1. Figure 2 depicts the correlation 
between each feature and a graph of five commonly used 
features.

Figure  2(a) shows the correlation thermal map of the 
commonly used five features, and the depth of color rep-
resents the correlation difference among the five features. 
Figure 2(b) shows the correlation thermal diagram of 197 

features; The following Figure is the graph of these five 
features and the classification limits of 800 sample data. 
Label 1, label 2, label 3, label 4, label 5 and label 6 repre-
sents respectively the six kinds of geological conditions.

After data preprocessing, 197 original shield data 
features were initially obtained. If all the above features 
are applied to formation identification, it will increase 
the complexity and calculation time of the identification 
model, which is not conducive to the real-time and 
efficient completion of subsequent data-driven geological 
identification. Therefore, it is necessary to complete 
feature extraction through appropriate feature selection 
methods, realize data dimensionality reduction, and 
select core data features for subsequent stratigraphic 
identification.

3  Proposed Method
3.1  Design Principle of VFS Method
The minimum number of features selected by different 
Filter FSMs is different, so it is necessary to integrate the 
advantages of each feature selection method. In this way, 
the selected feature subset is not affected by the charac-
teristics of the feature method, and a more reasonable fea-
ture subset is selected. Similar to the principle of ensemble 
learning, this paper proposes a feature selection (VFS) 
method through voting, as shown in Figure 3.

Figure  3 illustrates the whole process of the cal-
culation using the VFS method in detail. First, after 
the original feature set is cleaned, m features can be 
obtained, and the m features are quantified and num-
bered from 1 to m. For example, 135 represents the 
135th feature. Assuming that there are n types of fea-
ture selection methods, each of the first p features with 
better priority levels can be used to obtain n feature 
subsets. These subsets form a feature pool (FP). In FP, 
each feature is selected at most n times, and the fea-
tures are prioritized according to the number of times 
the features appear in the FP, and finally n-Rank fea-
ture subsets can be obtained. Assuming that a certain 

Figure 1 Slurry balance shield machine

Table 1 Classify the tunnelling data into classification labels

Label name Target value Sample 
numbers

Geologic layer type

label 1 1 65 Muddy silty clay

label 2 2 146 Mixed layer of clay and silt

label 3 3 220 Fine sand layer

label 4 4 235 Mixed layer of fine sand 
and gravel

label 5 5 67 Fine sand, gravel sand 
and gravel

label 6 6 67 Mixture of fine sand and gravel
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feature in FP appears more than q times, it is consid-
ered to be an effective feature that can be selected. 
The number k of the effective feature subsets finally 
selected by VFS depends on whether the selected 

feature subsets can reach the accuracy of the classifi-
cation model. Therefore, the parameters p, q, and k in 
VFS are adjusted according to the prediction accuracy 
of the classifier.

The advantages of VFS are as follows: Other ELFS 
based on feature weights need to iteratively calculate 
the weights of all features, and filter the effective 
feature subsets based on the weights, but it often 
requires hundreds or even thousands of iterations 
to achieve the accuracy of the classifier, and the time 
is complicated. The VFS greatly simplifies the weight 
calculation process, and can directly obtain the level 
of all features in the feature pool in one step, reducing 
the computational complexity a lot, at the same 
time, compared to a single Filter FSM, the evaluation 
indicators of each Filter are comprehensively 
considered in the VSF, and the characteristics obtained 
by the screening are excellent in each FSM, and its 
practicability and popularization are high, which meets 
the requirements of shield construction. The goal of 
stratum recognition can be accomplished well, and the 
time spent on feature selection is reduced.

The pseudo code of the VFS algorithm is shown below.

Figure 2 Correlation heatmap of features and graphs of five features

Figure 3 Process of VFS method
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In this paper, m =  197, n =  4 Filter FSMs with smaller 
computational complexity, and p  =  30, the four feature 
subsets form the feature pool of VFS. Each feature in the 
feature pool appears at most a = 4 times, so all the features 
in the feature pool are divided into four levels of feature 
subsets. Here, the feature subsets of Rank 1 and Rank 2 
are selected to be the input of the classification model 
algorithm 3.2 Four FSMs of VFS introduces the process of 
feature selection in detail.

3.2  Four FSMs of VFS
In this paper, the filtering feature selection method is as 
follows: variance, Pearson correlation coefficient, Chi-
square and information entropy gain.

3.2.1  Variance
The variance of features measures the dispersion degree of 
each feature, and the larger variance of each feature used 
in the classification algorithm is, the greater fluctuation 
of the feature is. So the larger variance of feature is, the 
larger the information contained in feature is. The samples 
of each class may have great differences in the six kinds 
of geological layers, which can make the classifier easier 
to distinguish between various geological layers and to 
separate the strata of different categories. In Eq. (1), xi 
represents one of the 800 features, s2 is variance of the 
feature xi , N shows the number of total samples.

where x =
1
N

∑N
i=1 xi,N = 800.

(1)s2 =
1

N − 1

∑N

i=1
(xi − x)2,

3.2.2  Pearson Correlation Coefficient
The classifier uses the feature data with higher 
correlation with the formation to get better accuracy. 
Here refers to the Pearson Correlation Coefficient 
between each feature and target value. In Eq. (2), the rx,y 
represents the correlation coefficient between feature x 
and target value y (values of y are 1, 2, 3, 4, 5, 6).

Figure  4(a) shows the variance distribution diagram 
calculated by 197 features according to Eq. (2), and Fig-
ure  4(b) shows the correlation coefficient distribution 
diagram calculated by 197 features according to Eq. (2). 
Among them, the distribution diagram form of spe-
cific parameters can better capture more representative 
features.

3.2.3  Information Entropy Gain
In this paper, Information Entropy Gain is one of the 
filtering techniques to select the features. The concept 
of this technique is used to choose the best feature to 
construct the tree in Decision Tree algorithm. Each 
feature gains a specific score and features (maybe more 
than one) with the highest scores will be selected to be 
the optimal subset of features that are considered input 
variables of the classifier. We can find the explanation 
in more detail in Ref. [34].

3.2.4  Chi‑Square
Chi-square ( χ2 ) test is the deviation degree between 
the actual observed value and the theoretical inferred 
value of statistical samples. The deviation degree 
between the actual observed value and the theoretical 
inferred value determines the size of chi-square value. 
On the contrary, the smaller the deviation between 
the two; if the two values are completely equal, the 
chi-square value is 0, indicating that the theoretical 
value is completely consistent. In Eq (3), fi represents 
the number of samples on interval, the number of 
intervals are l  . pi represents the probability of a sample 
appearing on the interval i [35].

Figure  5(a) shows the Chi-square distribution dia-
gram calculated by 197 features according to Eq. (3), 
and Figure  5(b) shows the Information entropy gain 
distribution diagram calculated by 197 features accord-
ing to Eq. (3). Among them, the distribution diagram 

(2)rx,y =

∑N
i=1 (xi − x)

(

yi − y
)

√

∑N
i=1(xi − x)2

√

∑N
i=1(yi − y)2

.

(3)χ
2
=

∑l

i=1

(f i − Npi)
2

Npi
.
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Figure 4 Variance and correlation coefficients of 197 features

Figure 5 Chi-square and information gain of 197 features
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form of specific parameters can better capture more 
representative features.

This paper calculates the four attributes of the feature, 
including variance, Pearson correlation coefficient, chi-
square and information entropy gain. The first 30 features 
of the four attributes are obtained respectively, and thus 4 
feature subsets are obtained. The feature subset is shown 
in Table 2. In this table, the number represents the serial 
number of each feature.

Only one feature (Feature numbered 135, which is bold 
in Table  3) appears in the four feature subsets, ranking 
this feature as Rank 1. The features that appear three 
times, two times and one time in the four feature sub-
sets are listed as Ranks 2-4 successively. After statistical 
calculation, the feature subset of the four ranks is shown 
in Table 3.

4  Experiments and Discussion
4.1  Experimental Design and Baseline
In order to verify the superiority of the VFS algorithm, 
this paper chooses 10 common classification algorithms, 
random forest (RF), linear discriminant analysis (LDA), 
quadratic discriminant analysis (QDA), support vector 
machine (SVM), K nearest neighbor (KNN), Neural Net-
work (NN), Naive Bayes (NB), Bagging (Bag), Ada-Boost 
(Ada) and Gradient Boosting Tree (GBDT). Random for-
est is an algorithm that integrates multiple trees through 
the idea of ensemble learning. Its basic unit is a decision 
tree, and its essence belongs to ensemble learning, a big 
branch of machine learning. Linear discriminant analysis 
(LDA) is a generalization of Fisher’s linear discriminant 
approach, which uses statistics, pattern recognition and 

machine learning methods to try to find a linear combi-
nation of the characteristics of two classes of objects or 
events in order to be able to characterize or distinguish 
them. The resulting combination can be used as a lin-
ear classifier or, more commonly, to reduce dimensions 
for subsequent classifications. Similar to the linear dis-
criminant analysis, the quadratic discriminant analysis 
is obtained from the perspective of the probability dis-
tribution. The difference is that the linear discriminant 
analysis assumes the same covariance matrix for each 
category, while the quadratic discriminant analysis has 
a different covariance matrix for each category. Support 
Vector Machine (SVM) is a generalized linear classifier 
that classifies data according to supervised learning; its 
decision boundary is the maximum-margin hyperplane 
for solving the learning sample. SVM uses hinge loss 
function to calculate empirical risk and adds regulariza-
tion terms into the solving system to optimize structural 
risk, which is a classifier with sparse and robust. SVM is 
one of the common kernel learning methods, which can 
be used for nonlinear classification by kernel method. 
k-Nearest Neighbor (KNN) classification algorithm is 
a relatively mature method in theory and one of the 
simplest machine learning algorithms. The idea of this 
method is as follows: in the feature space, if most of the 
k nearest samples near a sample belong to a certain cat-
egory, the sample also belongs to this category. Neural 
network (NN) is a mathematical model or computational 
model that imitates the structure and function of biologi-
cal neural network. Neural networks are computed by a 
large number of artificial neuron connections. In most 
cases, artificial neural network can change the internal 

Table 2 Four feature subsets of Top 30 in four FSMs

Attributes of features Top 30 of the 197 features

Variance 14, 161, 57, 90, 50, 94, 98, 89, 16, 159, 29, 91, 122, 132, 135, 86, 158, 189, 193, 170, 183, 174, 184, 175, 194, 154, 136, 79, 160, 39

correlation coefficient 122, 86, 89, 161, 88, 87, 90, 103, 154, 99, 135, 25, 21, 20, 148, 19, 60, 23, 96, 24, 109, 22, 51, 100, 2, 45, 53, 119, 69, 48

Chi-square 94, 148, 161, 119, 91, 50, 142, 14, 154, 90, 89, 57, 132, 122, 0, 21, 135, 189, 184, 194, 175, 170, 25, 193, 183, 174, 136, 86, 88, 87

information gain 153, 152, 145, 143, 141, 135, 2, 175, 144, 11, 170, 151, 109, 160, 159, 150, 179, 189, 142, 106, 194, 184, 148, 158, 149, 104, 6, 191, 
186, 177

Table 3 Feature subset of Rank1, Rank 2, Rank 3 and Rank 4

Feature rank Feature subset Features 
number

Rank 1 Only 135 1

Rank 2 194,189,184,175,170,161,154,148,122,90,89, 86 12

Rank 3 193, 183, 174, 160, 159, 158, 142, 136, 132, 119, 109, 94, 91, 88, 87, 57, 50, 25, 21, 14, 2 21

Rank 4 191, 186, 179, 153, 152, 151, 150, 149, 145, 144, 143, 141, 106, 104, 103, 100, 99, 98, 96, 79, 69, 60, 53, 51, 
48, 45, 39, 29, 24, 23, 22, 20, 19, 16, 11, 6, 0

37
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structure on the basis of external information, which is 
an adaptive system. Naive Bayes (NB) is one of the most 
widely used classification algorithms, which is a classifier 
method based on Bayesian definition and feature condi-
tion independent assumption. Bagging(Bag) is short for 
Bootstrap Aggregating. In short, the method of bootstrap 
sampling was used to construct several different training 
sets. Then, the corresponding base learners are trained 
on each training set. Finally, these base learners are 
aggregated to get the final model. Adaboost is an iterative 
algorithm whose core idea is to train different classifiers 
for the same training set, and then assemble these weak 
classifiers to form a stronger final classifier. Gradient 
Boosting Decision Tree(GBDT), also known as MART 
(Multiple Additive Regression Tree), is an iterative deci-
sion tree algorithm consisting of multiple decision trees. 
The conclusions of all the trees are added together to 
make the final answer. The parameters of the 10 classifi-
ers are adjusted as much as possible to the optimal value. 
In addition, we select the five basic features of shield 
machine (mining speed, total thrust, tool speed, tool 
torque, penetration force) to be combined with the above 
ten classification algorithms, and the classification results 
are used as the Baseline of the VFS algorithm. In order to 
minimize the error in the training and testing process, we 
adopt the 10-fold cross-validation (Cross-Validation is 
usually abbreviated as CV) method to compare and ana-
lyze the test accuracy and test time of each classifier.

The test results of the five basic features under 10 clas-
sifiers are shown in Table 4.

4.2  Experimental Results
VFS has obtained four characteristic grades, as shown 
in Table  3. In order to compare the pros and cons of 
different grade features of VFS, each grade feature was 
used as the input of 10 classification algorithms, and 
the test accuracy was used as the evaluation index for 
comparative analysis. Considering that there is only one 
feature in the Rank1 feature set, the feature subsets of 
Rank1 and 2 are put together as the new feature subset 
Rank1+2, and the final four levels of feature subsets are 
Rank1+2, Rank2, Rank3 and Rank4; At the same time, 
a comparative analysis of VFS and four Filter FSMs was 
carried out to detect the superiority of VFS compared to 
a single FSM.

4.2.1  Comparative Analysis of Four Rank Feature Subsets 
of VFS

Tables 5 and 6 show the test results of different levels of 
feature subsets. For a clearer comparison and analysis, 
Tables 4, 5, 6 are visualized as Figure 6.

From Tables 4, 5, 6, it is found that the accuracy of the 
random forest classifier is mostly higher than the other 9 
classifiers, and the accuracy of the random forest is rela-
tively stable. The accuracy of QDA and NN is very low; 
Bag, AdaB, and GBDT have good classification results, 

Table 4 Accuracy baseline of ten classifiers (10 and 5 Fold CV)

Feature Rank RF LDA QDA SVM KNN

5 CV 0.738 0.623 0.724 0.627 0.710

10 CV 0.845 0.715 0.789 0.674 0.830

Feature Rank NN NB Bag Ada GBDT

5 CV 0.544 0.742 0.747 0.628 0.734

10 CV 0.637 0.798 0.838 0.733 0.825

Table 5 Testing results of different features rank (5 Fold CV)

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.867 0.878 0.682 0.848 0.844

Rank2 0.864 0.875 0.704 0.846 0.838

Rank3 0.8017 0.767 0.081 0.676 0.705

Rank4 0.7993 0.833 0.746 0.641 0.798

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.826 0.786 0.841 0.702 0.874

Rank2 0.294 0.783 0.849 0.710 0.859

Rank3 0.709 0.769 0.734 0.580 0.835

Rank4 0.625 0.751 0.771 0.523 0.804



Page 10 of 15Yang et al. Chinese Journal of Mechanical Engineering          (2023) 36:128 

but their accuracy is not as stable as random forest. Fur-
thermore, the test accuracy of most classifiers decreases 
as the feature subset level degrades.

4.2.2  Comparative Analysis of VFS and Four Filter FSMs
The four feature subsets in Table  3 have 71 features in 
total. The first 71 features obtained by the four Filter 
methods are sliced, and Top 13, Top 14–33, and Top 
34–71 in a single FSM feature are obtained, which are 
compared with the Rank1 obtained by VFS. +Rank2, 
Rank3 and Rank4 for comparison. Tables 7, 8, 9, 10, 11, 

12 show the test results of four single FSM and VFS: 
Tables 7 and 8 show the test results of the top 13 features 
of each FSM. Tables  9 and 10 show the test results of 
each FSM, and the results of the 14th to 33rd features are 
obtained by screening. Tables 11 and 12 show the results 
of the 34th to 71st features obtained by the screening of 
each FSM.

It is found in Tables 7, 8, 9, 10, 11, 12 that in most cases, 
the random forest algorithm has higher accuracy and 
the best stability than other classifiers. In the case of the 
same number of features, the test results of the features 

Table 6 Testing results of different features rank (10 Fold CV)

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.926 0.894 0.784 0.871 0.902

Rank2 0.918 0.889 0.778 0.871 0.896

Rank3 0.921 0.808 0.120 0.748 0.774

Rank4 0.902 0.893 0.883 0.752 0.909

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.797 0.860 0.911 0.699 0.933

Rank2 0.293 0.854 0.921 0.705 0.914

Rank3 0.669 0.801 0.812 0.601 0.902

Rank4 0.615 0.856 0.894 0.550 0.875

Figure 6 Visualization of Tables 4, 5 and 6
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selected by the VFS are generally better than the results 
of the features selected by a single Filter FSM. For a 
clearer comparison and analysis, Tables 9, 10, 11, 12 are 
visualized in Figure 7.

After looking up Tables 7, 8, 9, 10, 11, 12, 13 features 
selected from the VFS can be determined, as shown in 
Table 13 below.

In addition to the accuracy of the algorithm, the con-
suming time is also one of the evaluation indicators to 

measure the quality of the algorithm. At the end of this 
section, we use the cross-validation method to compare 
the time taken by the 10 classification algorithms, as 
shown in Figure 8. In Figure 8, the abscissa is a different 
classification algorithm, and the ordinate is consuming 
time. The testing device is a ThinkPad notebook com-
puter, the processor is AMD A8-7100 Radeon R5, 1.8 Hz. 
It can be found that the time taken by the random for-
est algorithm is slightly longer than that of LDA, QDA, 

Table 7 5 fold CV of feature set Top 13

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.867 0.878 0.682 0.848 0.844

Rank2 0.821 0.631 0.081 0.622 0.718

Rank3 0.865 0.879 0.723 0.739 0.818

Rank4 0.921 0.808 0.278 0.748 0.770

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.826 0.786 0.830 0.702 0.873

Rank2 0.639 0.689 0.764 0.802 0.766

Rank3 0.664 0.761 0.795 0.713 0.852

Rank4 0.767 0.755 0.816 0.678 0.855

Table 8 10 fold CV of feature set Top 13

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.926 0.894 0.784 0.871 0.902

Rank2 0.938 0.733 0.081 0.672 0.806

Rank3 0.913 0.901 0.750 0.799 0.883

Rank4 0.980 0.873 0.302 0.821 0.839

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.797 0.860 0.921 0.705 0.932

Rank2 0.784 0.754 0.882 0.798 0.866

Rank3 0.673 0.841 0.911 0.707 0.916

Rank4 0.776 0.777 0.881 0.869 0.927

Table 9 5 fold CV of feature set Top 14–33

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.801 0.767 0.081 0.676 0.705

Rank2 0.891 0.810 0.470 0.694 0.764

Rank3 0.803 0.778 0.536 0.719 0.812

Rank4 0.870 0.868 0.512 0.674 0.784

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.709 0.769 0.767 0.580 0.835

Rank2 0.715 0.781 0.808 0.705 0.830

Rank3 0.759 0.794 0.819 0.412 0.807

Rank4 0.651 0.783 0.784 0.744 0.796
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SVM, KNN and NB, but the accuracy of the random for-
est is higher. Although the accuracy of Bagging, Adab and 
GBDT algorithms is almost the same as that of random 
forest, these algorithms take much more time than ran-
dom forest, and the time consumed by these four algo-
rithms is not very stable.

Through the above experiments, we can see that the 
new method proposed in this paper can effectively 

shield highly redundant and highly mixed data, and has 
the advantages of short time consuming, strong adapt-
ability and wide applicability. It can be well adapted to 
various classification algorithms, proving that it can be 
used to process complex data sets of large equipment 
such as shield tunneling machines. In this way, the real-
time identification of the stratum and the real-time 
adjustment of the working state of the shield machine 
can be realized in practical application.

Table 10 10 fold CV of feature set Top 14–33

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.921 0.808 0.120 0.748 0.774

Rank2 0.931 0.888 0.556 0.800 0.850

Rank3 0.867 0.851 0.561 0.791 0.871

Rank4 0.922 0.890 0.577 0.715 0.866

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.669 0.801 0.815 0.601 0.902

Rank2 0.845 0.828 0.882 0.706 0.935

Rank3 0.794 0.863 0.865 0.437 0.877

Rank4 0.767 0.829 0.871 0.839 0.891

Table 11 5 fold CV of feature set Top 34–71

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.799 0.833 0.746 0.641 0.798

Rank2 0.878 0.890 0.862 0.846 0.892

Rank3 0.854 0.874 0.772 0.699 0.809

Rank4 0.804 0.804 0.759 0.727 0.810

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.625 0.751 0.810 0.529 0.804

Rank2 0.603 0.852 0.900 0.595 0.854

Rank3 0.575 0.681 0.774 0.576 0.841

Rank4 0.723 0.755 0.810 0.515 0.765

Table 12 10 fold CV of feature set Top 34–71

Feature Rank RF LDA QDA SVM KNN

Rank1+2 0.902 0.893 0.883 0.752 0.909

Rank2 0.938 0.932 0.946 0.898 0.919

Rank3 0.895 0.900 0.771 0.719 0.852

Rank4 0.900 0.888 0.865 0.851 0.905

Feature Rank NN NB Bag Ada GBDT

Rank1+2 0.615 0.856 0.911 0.550 0.875

Rank2 0.697 0.919 0.925 0.510 0.905

Rank3 0.641 0.731 0.867 0.619 0.832

Rank4 0.766 0.854 0.905 0.556 0.796
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5  Conclusions
Aiming at the feature selecting problem of shield machine 
excavation data with high redundancy and confounding 
characteristics, this paper proposes a Voting-based Feature 
Selection method (VFS), which integrates multiple FSMs 
to screen and fuse the optimal shield data subsets accord-
ing to the frequentness that the features occur in the fea-
ture pool. And it simplifies the process of feature sorting, 
thereby reducing the time complexity of feature selection. 
The five basic features and the features obtained by VFS 
are respectively combined with 10 common classification 
models to verify the superiority of VFS.

The test results indicate that the highest test accuracy 
of the feature combination of Rank1 and Rank2 in the 
classification is 92.6% (under the ten-fold cross-valida-
tion, the accuracy of the random forest algorithm), which 
successfully completes the task of stratum identification. 
The accuracy rate is higher than the highest accuracy rate 
of 84.5% based on the five basic features. Furthermore, 
the combination of VFS and random forest classifier can 
make the algorithm more effective. Compared to other 
classification models, random forests have shorter recog-
nition time, stronger stability and easy promotion.

The three parameters in VFS will be further optimized 
in our future work to adapt to more complex geological 
environments. The VFS proposed in this article only uses 
Filter FSM. If combined with Wrapper FSM and Embed-
ded FSM, the classification effect may be better while tak-
ing no account of consuming time. The 13 characteristics 
obtained by VFS have good applicability and can provide 
the theoretical guidance for future underground shield 
machine constructions. To sum up, the method proposed 
in this paper can effectively solve the problems of miscel-
laneous and high complexity of shield tunneling machine 
construction data, quickly screen out the most representa-
tive features in a large number of tunneling parameter data 

Figure 7 Visualization of Tables 9, 10, 11, 12

Table 13 The actual feature name corresponding to the FSM 
Top 13 features

Feature Feature name Feature level

135 Total thrust of hydraulic cylinder Rank1

194 Rotation Speed of No. 6 main drive motor Rank2

189 Rotation Speed of No. 5 main drive motor Rank2

184 Rotation Speed of No. 4 main drive motor Rank2

175 Rotation Speed of No. 2 main drive motor Rank2

170 Rotation Speed of No. 1 main drive motor Rank2

161 Screw machine torque Rank2

154 Frequency of No. 4 main drive motor Rank2

148 Frequency of No. 6 main drive motor Rank2

122 Suction pressure of cylinder Rank2

90 Pressure of No. 5 sensor in excavation 
warehouse

Rank2

89 Pressure of No. 3 sensor in excavation 
warehouse

Rank2

86 Pressure of No. 1 sensor in excavation 
warehouse

Rank2

Figure 8 Time spent by different classification algorithms
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sets, and greatly improve the accuracy of stratum identi-
fication related to tunneling parameters. Due to its uni-
versality with various classification algorithms, it can be 
used as a key auxiliary decision-making method to help 
shield tunneling machine maintain a better working state 
in future construction.
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