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Abstract 

Fast and accurate measurement of the volume of earthmoving materials is of great significance for the real-time 
evaluation of loader operation efficiency and the realization of autonomous operation. Existing methods for volume 
measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based 
method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel 
load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) 
was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability 
model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, 
the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain 
the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used 
to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment 
was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation 
method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume 
estimation and bucket fill factor estimation, and it has significant theoretical research and engineering application 
value.
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1  Introduction
A loader’s earthwork is a mechanized operation process 
that necessitates productivity planning, project progress 
evaluation, and labor fund release. It is important to 
quantify the amount of earthwork materials using various 
technologies and methodologies and then use it as a key 
parameter to evaluate loader operation and performance 
[1, 2]. For instance, according to the amount of material 
shoveled at a time, the time required to finish the entire 
earthwork operation is estimated and used as a reference 

to estimate the labor compensation to be provided to 
operators [3, 4].

An entire measurement or a single shovel measure-
ment of the earthwork stockpile can be used to deter-
mine the volume of the earthworks. The total station 
robot scanner is widely employed in the comprehensive 
measurement of earthworks as an efficient 3D modeling 
and measurement technology. The volume is estimated 
by employing the total station to reconstruct the 3D sur-
face of the entire earthwork material surface while scan-
ning the 3D coordinates of the relevant feature points 
[5]. Furthermore, a photogrammetric technique based 
on UAV aerial photography can be used to provide 3D 
information on the material surface, which is suitable for 
measuring the entire volume of earthwork [3, 6]. How-
ever, during the actual operation of earthwork, engineer-
ing construction managers often pay greater attention to 
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the project’s ongoing progress throughout the operation 
process and assess the efficiency of the project operation. 
The entire measurement method is suitable for planning 
the productivity of the entire earthwork. However, it is 
challenging to assess the operational efficiency in real 
time, necessitating a single shovel measurement. Existing 
research on single shovel measurements mainly focuses 
on constructing a 3D point cloud model of the bucket 
and the materials in the bucket, estimating the volume of 
materials in the bucket, and evaluating the bucket filling 
rate and shovel loading efficiency [7–10]. However, buck-
ets of different earth-moving machines have different 
specifications and sizes. The limitations of this method 
for estimating the bucket loading volume based on the 
bucket 3D point cloud model include its poor general-
ity and high reliance on the bucket model. Therefore, it is 
critical to investigate the single shoveling volume meas-
urement method of loaders based on the 3D reconstruc-
tion of material piles to evaluate the ongoing project 
progress and the operating efficiency of operators.

Nowadays, 3D laser scanning systems and visual sen-
sors are commonly utilized to gather object volume infor-
mation using non-contact measurements to build a 3D 
reconstruction of an object’s surface [11, 12]. Yakar et al. 
[13] used a ground laser scanner to create a 3D point 
cloud and estimate the volume on the surface of shovel 
materials at a construction site, and then compared the 
results with photogrammetry. The results showed that 
the laser scanning method had a higher measurement 
accuracy. However, there are some limitations to using a 
laser scanning system for the 3D reconstruction of com-
plex object surfaces. Because the amount of point cloud 
data generated using the laser scanning system for object 
scanning is significantly greater than that of the visual 
sensor, post-processing and 3D reconstruction of the 3D 
point cloud will be a more time-consuming task, and it 
is challenging to meet the requirements of real-time 
updating of object volume information. Additionally, the 
application of a 3D laser scanning system in earthwork 
is somewhat constrained by its limitations in terms of 
shape and size sensitivity, inability to gather color infor-
mation, and cost.

To resolve the aforementioned issues, 3D recon-
struction employing visual sensors offers an advanta-
geous approach for the real-time estimation of single 
shovel loads in earthworks. The visual sensor can detect 
dynamic changes in the surrounding environment faster 
than laser radar because it can record the working site 
environment more quickly. Additionally, vision-based 
3D reconstruction requires less computation time, is 
less expensive, and is lighter than laser-scanning-based 
3D reconstruction. As a result, vision-based methods 
are increasingly being employed in the 3D modeling of 

earthwork environments. Currently, the three primary 
types of vision-based 3D reconstruction technologies 
are structured light, time-of-flight, and stereo vision. 
Structured light 3D measurement technology has the 
advantages of simple hardware configuration, fast meas-
urement speed, and high reconstruction accuracy. How-
ever, its applicability in outdoor earthwork is constrained 
by its failure to function in environments with strong 
light sources. The time-of-flight vision system works on 
the principle of calculating the depth information of an 
object in relation to the length of time it takes for a pulse 
of light (generally invisible light) to travel from the point 
of emission to the point of reception after being reflected 
by the object. However, owing to the fast propagation 
speed of light, the measurement accuracy is relatively low 
and the 3D reconstruction effect of the object surface is 
poor. Stereo vision has been extensively used as a typical 
passive measurement technique. Binocular stereo vision 
is one such method that employs two cameras to imitate 
human eyes to take pictures of the object being meas-
ured from various angles, find the corresponding match-
ing points of the same spatial point in the left and right 
camera images based on image characteristics, and then 
compute and solve the spatial coordinate points using the 
parallax principle and spatial correspondence. This tech-
nique provides dense depth information quickly and at a 
low cost. It is suitable for 3D reconstruction of earthwork 
material piles [14, 15].

Earthmoving machinery such as loaders usually 
operates in an unstructured terrain environment that 
changes dynamically in real time. Their operating 
scenes are characterized by complex working condi-
tions and harsh environments, which pose a significant 
challenge to earthwork volume estimation based on the 
3D reconstruction of stereo vision. On the one hand, it 
is difficult to reconstruct earthwork material piles in 3D 
because of their irregular appearance, lack of texture 
on the surface, different soil softness, and poor lighting 
conditions. However, with the continuous operation of 
earthwork machinery, the local characteristics of the 
material pile shape change significantly, which puts 
forward higher requirements for the real-time update 
of earthwork volume estimation. Therefore, a fast esti-
mation method for the load volume of a loader by 3D 
reconstruction of material piles using binocular stereo 
vision is proposed in this study. First, the improved 
quadtree ORB algorithm (QORB) was utilized to 
extract the feature points in the surface of material piles 
to improve the feature point detection uniformity, solv-
ing the issues of the traditional ORB algorithm, such as 
overly centralized and overlapping feature point detec-
tion and insufficient feature description ability. The 
homography matrix transformation was then applied 
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to accomplish feature point matching correction, and 
more sparse matching feature points were created to 
improve the accuracy of the 3D reconstruction of the 
material piles and shovel loading volume calculation. 
Subsequently, the robust sparse feature points and 
parallax matched by the QORB algorithm were used 
as prior knowledge. The dense parallax map was then 
calculated by creating a MAPM using Bayesian esti-
mation, and the material piles were 3D reconstructed 
using the binocular vision stereo imaging principle. 
Subsequently, the ICP algorithm was used to register 
the 3D point cloud on the surface of the material piles, 
both before and after shoveling. The point cloud model 
of the shoveling area was then obtained according to 
the boundary constraint segmentation, and the volume 
of shoveling was estimated using the Alpha-shape algo-
rithm of Delaunay triangulation. Finally, the shovel vol-
ume measurement experiment in loose soil conditions 
verifies the effectiveness of this research method.

This study provides the following contributions. Firstly, 
the authors propose a fast estimation method for the vol-
ume of a loader’s shovel load through 3D reconstruction 
of the material pile surface before and after shoveling. 
It addresses the limitations of existing techniques, such 
as the inability of entire volume measurement methods 
using total stations or UAVs to assess operational effi-
ciency in real-time. Additionally, it overcomes the strong 
reliance on bucket models and the limited applicabil-
ity of single-shovel measurement methods for buckets 
of different specifications and sizes. While visual-based 
3D reconstruction technology has been widely applied 
in various fields, this study represents a novel attempt to 
apply visual-based 3D reconstruction of the material sur-
face before and after loading to estimate the volume of 
a loader’s shovel load. Secondly, a dense stereo matching 
method based on the QORB-MAPM algorithm is pro-
posed. This method offers significant advantages in terms 
of reconstruction accuracy and computational efficiency, 
providing robust technical support for the fast and accu-
rate measurement of a loader’s shovel load volume. Fur-
thermore, the proposed novel method for estimating a 
loader’s shovel load volume can also serve as a valuable 
reference and guide for addressing similar issues in other 
types of construction machinery.

The remainder of this paper is organized as follows. 
Section  2 presents related works on feature matching, 
3D reconstruction, and volume estimation. Section  3 
explains the methodology used in the proposed scheme. 
The experimental results and discussion are presented 
in Section 4. Finally, conclusions and prospects are pre-
sented in Section 5.

2 � Related Work
2.1 � Feature Matching and 3D Reconstruction
Image feature matching, a critical component of 3D 
reconstruction methods based on stereo vision, has a 
direct effect on the accuracy and computational effi-
ciency of 3D reconstruction and volume estimates. Ste-
reo matching algorithms are often divided into three 
categories: global stereo matching algorithm, semi-global 
stereo matching algorithm, and local stereo matching 
algorithm. Global stereo matching offers greater match-
ing accuracy, but its applicability in 3D reconstruction is 
severely constrained by its high computational cost and 
memory usage. The semi-global stereo matching algo-
rithm has been proposed and is widely used to increase 
the computational efficiency of the global stereo match-
ing algorithm. Semi global block matching (SGBM) algo-
rithm [16] is one well-known example. Its basic concept 
is to first determine the disparity of the image and then 
establish an energy generation value function related 
to the global image on the disparity map in accordance 
with the smoothing constraint criteria of the pre-selected 
scan. The method has higher matching accuracy and uses 
less computing power than the global stereo matching 
method. However, the algorithm still struggles to meet 
the requirements of real-time updating of earthwork vol-
ume estimation during loader shovel loading operations 
due to the complicated, real-time, and dynamic terrain 
environment. Local feature point stereo matching, in 
contrast to the approaches mentioned above, determines 
the local optimal matching cost by detecting a con-
strained set of pixels and is popular due to its superior 
computing efficiency.

The Seale invariance feature transform (SIFT) algo-
rithm [17], speed up robust features (SURF) algorithm 
[18], and ORB algorithm [19] are the three primary 
traditional feature-matching algorithms. The improved 
oFAST and rBRIEF algorithms comprise the ORB algo-
rithm [20, 21]. In this method, the key points in the 
image are identified using oFAST corners to detect pix-
els that differ considerably from the surrounding pixels. 
Subsequently, the rBRIEF description for each key-
point is calculated. This algorithm, a classic example of 
a binary description technique, outperforms the SIFT 
and SURF algorithms in terms of computing efficiency. 
Deep learning-based image processing techniques are 
also widely used to address image matching issues in 
addition to traditional image matching methods based 
on manual labeling. A large number of deep learning 
networks have also been used to extract image features. 
For example, Chaudhuri et  al. [22] proposed a new 
architecture based on deep neural networks to solve the 
cross-modal information retrieval problem in remote 
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sensing, which can learn a distinguishable shared fea-
ture space for all input modes, and is suitable for infor-
mation retrieval with consistent semantics. Li et al. [23] 
proposed a large-scale remote sensing image retrieval 
method based on deep hash neural networks (DHNN), 
which can automatically learn feature extraction opera-
tions and feature hash mapping under the supervision 
of labeled samples. Furthermore, many deep learning-
based feature matching methods [24–26] apply graph 
neural networks (GNNs) to aggregate neighborhood 
information and form a structured representation of 
nodes and edges, showing good matching performance.

Deep learning-based methods can extract subtle low-
level features and abstract high-level features, which 
can describe features more accurately. Deep learning 
networks, on the other hand, typically have complex 
structures and high computing costs, and they cannot 
meet the needs of real-time computing without graph-
ics processing unit (GPU accelerators). Traditional fea-
ture description methods based on manual labeling, 
such as the ORB algorithm, have significant advantages 
in computing speed and cost, making them more suit-
able for 3D reconstruction of earthwork material piles 
and shovel loading volume estimation in real-time. How-
ever, this method has the following drawbacks: 1) The 
ORB algorithm employs the oFAST algorithm to detect 
feature points by comparing a pixel’s gray value to its sur-
roundings. This comparison allows the program to iden-
tify feature points in the image that are more noticeable 
than surrounding pixels. However, the algorithm employs 
an arbitrarily selected global fixed threshold, causing 
the detected feature points to be excessively clustered 
or even overlapped in areas with obvious features and 
excessively sparse or even empty areas without obvious 
features, resulting in a loss of information in some image 
areas. 2) The ORB algorithm describes the feature points 
using an improved rBRIEF algorithm. Due to the low fea-
ture description ability of the binary description method, 
it is difficult to obtain more correct matching feature 
points in the feature point matching phase, which seri-
ously affects the accuracy of 3D reconstruction and vol-
ume estimation of the material pile.

In summary, it is necessary to study the feature match-
ing method with higher computing efficiency and 
stronger robustness to realize the 3D real-time recon-
struction of the material piles in the earthwork opera-
tion of the loader in the face of the characteristics of the 
material piles with an irregular shape and no surface 
texture, as well as the real-time dynamic change of the 
material pile surface characteristics during the earthwork 
operation.

2.2 � Volume Estimation
Stereo vision technology has been widely used for the 3D 
measurement of objects in different fields, such as indus-
trial manufacturing [27–29], agriculture and fishing [30, 
31], and aerospace [32, 33]. Research on earthwork vol-
ume measurements using visual techniques is gaining 
increasing interest. Bügler et  al. [3] estimated the pro-
duction efficiency of engineering activities by determin-
ing the entire amount of earth that had been dug using 
photogrammetric technology and combining it with 
video data. Borthwick et al. [34] installed a stereo camera 
on the large arm of a mechanical excavator to shoot the 
truck bucket at a distance and calculated the load volume 
by constructing a 3D surface model before and after the 
truck loaded materials. Yakar et al. [35] rectified the point 
cloud using the placed control points, then, based on the 
corrected point cloud, constructed a grid 3D model of 
the gravel pile and computed the volume. The aforemen-
tioned study may be used to plan the overall productivity 
of earthwork; however, it is challenging to evaluate oper-
ational efficiency in real time. Anwar et al. [7] proposed 
the use of stereo vision to estimate the volume of materi-
als in an excavator bucket and verified the effectiveness of 
the method through simulation and field tests. Guevara 
et  al. [8] used a binocular stereo camera to construct a 
3D point cloud on the material surface of a bulldozer 
bucket, and used the Alpha-shape algorithm of Delau-
nay triangulation to estimate the effective shovel load of 
the bucket. Lu et al. [9, 10] developed a new perception 
system based on the stereo vision perception method, 
as well as advanced technologies such as point cloud 
registration, splicing, and surface interpolation, to real-
ize the 3D point cloud reconstruction of materials in the 
loader bucket and accurate estimation of shovel loading. 
The aforementioned study produced an accurate assess-
ment of the volume of materials in a single bucket during 
earthwork, offering reliable assurance for real-time esti-
mation of earthwork volume and real-time evaluation of 
operational efficiency. However, the majority of current 
investigations are restricted to measuring the amount of 
materials in containers, such as buckets. This approach 
makes it difficult to employ when the bucket size varies 
because it necessitates the construction of an in-advance 
3D model of an empty bucket. Fu et al. [36] suggested a 
fast estimation method for landslide deposit volumes by 
the 3D reconstruction of smartphone images and inter-
polation of the bottom surface considering the steepest 
gradient. This method resolves the issue of estimating the 
volume of irregular landslide deposits. However, it is not 
appropriate for the dynamic change in earthwork that 
occurs before and after loading in real time.
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In summary, the method of single-shovel volume meas-
urement by constructing a 3D point cloud model of the 
bucket and the material in the bucket needs to build a 
3D model of the empty bucket in advance, which has a 
strong dependence on the bucket model and poor uni-
versality, and is difficult to apply to a situation where the 
bucket has different specifications and sizes. As a result, 
research on the measurement method of loader single-
shoveling volume based on 3D reconstruction of material 
piles provides a novel idea for real-time project progress 
and operational efficiency evaluation.

3 � Methodology
3.1 � Overall Framework
The overall research idea of this study, which mainly 
includes data acquisition and processing, feature match-
ing and correction based on QORB algorithm, dense 
3D reconstruction of material piles based on MAPM, 
and volume estimation of the shovel load, is shown in 
Figure  1. First, the camera was calibrated according to 
the acquired binocular image to obtain the internal and 
external parameters of the camera, and then the image 
was calibrated on the same polar line. Second, a feature 
matching and correction method based on QORB algo-
rithm is proposed to improve the feature point detection 
uniformity and obtain more correct matching feature 
points. Third, sparse 3D point clouds are generated by 
employing 2D Delaunay triangulation on the matching 
feature points in accordance with the determined camera 
calibration parameters. MAPM is built using the sparse 
feature points generated via matching as prior knowledge 

to estimate the parallax of the residual pixel points and 
achieve the densification of sparse point clouds. Finally, 
reference and matching models were constructed using 
3D point clouds on the surface of the material piles 
before and after shoveling, respectively. The matching 
and reference models are then registered using the ICP 
algorithm. The point cloud was segmented according to 
the shovel loading boundary, and the shovel load volume 
was estimated using the Alpha-shape algorithm of Delau-
nay triangulation.

3.2 � Fast Matching of Feature Points and Dense 3D 
Reconstruction of Material Piles Based on QORB–
MAPM Algorithm

To achieve a fast estimation of the loader’s shovel load 
volume, this paper presents a novel dense stereo match-
ing algorithm, namely, QORB–MAPM, by integrating 
the QORB algorithm and MAPM. This algorithm is com-
bined with the principle of binocular stereo imaging to 
realize the fast matching of feature points and dense 3D 
reconstruction of material piles. Figure 2 shows the flow-
chart of this method, which involves three stages.

Step1: Fast matching of feature points based on the 
QORB algorithm. The QORB algorithm is used instead 
of the traditional ORB algorithm for feature point 
detection and matching to improve feature detec-
tion uniformity, solving the issue that feature points 
detected by the traditional ORB algorithm tend to be 
too clustered or even overlapped in areas with obvi-
ous features and are too sparse or even holes in areas 
without obvious features. Then, feature matching and 

Figure 1  Overall framework
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correction are performed through feature matching 
selection based on the RANSAC algorithm and fea-
ture point mapping based on the homography matrix 
to obtain more sparse matching feature points that 
improve the accuracy of 3D reconstruction of material 
piles and volume estimation of shovel loads.

Step2: Reconstruction of sparse 3D point cloud 
based on binocular stereo imaging principle. Based 
on the binocular stereo imaging principle, a sparse 
3D point cloud and triangle mapping are generated by 
combining camera calibration parameters and match-
ing sparse feature points to provide prior information 
for building MAPM.

Step3: Dense disparity estimation based on MAPM. 
The dense disparity map of the material pile is esti-
mated by building a MAPM using the obtained sparse 
3D point cloud and triangle mapping as prior infor-
mation, which ensures the accuracy of disparity esti-
mation, reduces the range of disparity search, and 
effectively improves the computational efficiency of 
3D reconstruction and volume estimation of material 
piles.

The detailed approach of each stage is discussed as 
follows.

3.2.1 � Fast Matching of Feature Points of Material Piles Based 
on QORB Algorithm

By calculating the gray difference between the feature 
point and the surrounding pixels and comparing it with 
the predetermined threshold, the traditional ORB algo-
rithm employs the oFAST algorithm to choose the most 

prominent pixel in the image as the feature point. The 
feature point detection procedure of traditional ORB are 
as follows:

Step 1: Construct an image pyramid according to the 
specified number of layers and scale factor.

Step 2: Calculate the number of feature points that 
need to be detected in each image layer according to the 
specified number of feature points and pyramid layers. 
The number of feature points Ni of the ith image layer is 
calculated as follows:

where, n, q and N  represent the number of layers of the 
image pyramid constructed, the scale factor between lay-
ers of the image pyramid, and the total number of feature 
points detected, respectively.

Step 3: Use oFAST to detect feature points from ith 
image layer, sort them in descending order according to 
response values, and select the top Ni feature points are 
taken as the feature points extracted in the ith image layer.

Step 4: Use rBRIEF to create descriptors of feature 
points in each layer of image.

For the surface features of the material pile with irregu-
lar surface morphology and no texture, the feature points 
detected by the traditional ORB algorithm are tend to be 
too clustered or even overlapped in areas with obvious 
features and are too sparse or even holes in areas without 
obvious features, which is not conducive to the 3D recon-
struction of the earthwork material piles. Artal et al. [37, 
38] used a quadtree algorithm to manage the detected 
feature points, which improved the uniformity of ORB 
algorithm feature point detection. However, this method 
is prone to excessive splitting of quadtree nodes because 
a quadtree has an unlimited depth, which increases the 
computational burden. Therefore, in this study, a novel 
algorithm is proposed, namely QORB, in which different 
node split depths are set according to the feature points 
allocated at different pyramid levels to prevent exces-
sive node splitting, reduce redundant feature calcula-
tions, improve the uniformity of feature point detection, 
and ensure calculation efficiency. Compared to tradi-
tional ORB algorithm, Step 3 is improved in QORB algo-
rithm, as shown in Figure 3, Step 3 in QORB algorithm is 
described as follows:

Step 3.1: Divide the ith layer image into regular grids, 
with the size of each grid cell being 30 × 30 pixels, and 
use oFAST to extract feature points from each grid cell 
image block. Assuming that Ni is the number of desired 
feature points allocated to the current pyramid image 
layer, Dmax ( 4Dmax ≥ Ni ) is set as the maximum depth of 
the image layer. Consider the image layer as the initial 

(1)Ni =
N · (1− q)

1− qn
· qi−1

, i ≥ 1,

Figure 2  Flowchart of the proposed QORB–MAPM algorithm 
for dense stereo matching and 3D reconstruction of material piles
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node in the quadtree splitting process, which creates a 
fundamental quadtree structure. Assume that the current 
pyramid image layer’s splitting depth is D , if D < Dmax , 
then complete Step 3.2.

Step 3.2: Assume that NkP is the total number of fea-
ture points included in the node. If NkP = 0 , then the 
node is deleted. If NkP = 1 , then the node is not split. If 
NkP > 1 , then the node is divided into 4 child nodes.

Step 3.3: Repeat Step 3.2 until the required number 
of feature points is reached by the number of nodes, at 
which time the splitting stops.

Step 3.4: If NkP > 1 , the feature point with the largest 
Harris response value in each node is selected as the cur-
rent feature point to obtain Nset feature points.

The procedure of feature points extraction and fast 
matching of material piles based on QORB algorithm 
is shown in Figure  4. First, the image pyramid is con-
structed for the material pile image, the regular grid is 
generated for the current image layer, and the oFAST 
algorithm is used for feature point detection. The 
improved quadtree algorithm is performed for the 
management of extracted feature points to improve the 
uniformity of feature point detection, reduce the influ-
ence of the characteristics of the material piles without 
obvious features and no surface texture, and improve 
the accuracy of 3D reconstruction and shovel loading 
volume estimation of the material piles. The rBRIEF 
algorithm is then used to calculate the binary descrip-
tors of the feature points.

Second, after the binary descriptor of each feature 
point is obtained, a matching threshold is set (the ratio 

of the two nearest neighbor distances is less than 0.7), 
and the Hamming distance is used to judge the feature 
points one by one. When the similarity of the corre-
sponding feature points on the two images meets the 
conditions, the matching point with the highest simi-
larity is selected. Calculate the homography matrix H 
according to the matching feature points, and assume 
that the projection points of a point P in the 3D space 
on the left and right images are respectively p1(u1, v1) 
and p2(u2, v2) . The formula is as follows:

where K  is the camera internal parameter, R is the cam-
era rotation matrix, t is the camera translation column 
vector, and (n, d) represents the coordinates of a plane 
in the world coordinate system. Eq. (2) can be further 
expanded to obtain Eq. (3). When there are four pairs of 
matching feature points, the homography matrix H can 
be calculated by linear transformation according to Eq. 
(3).

(2)p2 = Hp1 = K

(

R − t ·
nT

d

)

K−1p1,

(3)





u2
v2
1



 = H





u1
v1
1



 =





h11 h12 h13
h21 h22 h23
h31 h32 h33









u1
v1
1



.

Figure 3  Feature point detection procedure of the Step 3 in QORB 
algorithm

Figure 4  Fast matching and correction of feature points based 
on QORB algorithm
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Finally, RANSAC algorithm is used to filter matching 
feature points to obtain correct matching and incorrect 
matching. The left image feature points in the incorrect 
matching are calculated by homography matrix H to 
obtain the corresponding right image mapping points. 
The calculated results are used as the corrected right 
image feature points and replace the right image feature 
points in the incorrect matching to obtain more sparse 
matching feature points.

3.2.2 � Principle of Binocular Stereo Imaging and Sparse 3D 
Reconstruction

Camera calibration and image correction for the bin-
ocular camera should be performed first to reconstruct 
a 3D point cloud from the images. Camera calibration 
was used to determine the internal and external param-
eters of the camera. The internal camera parameters, 
such as the projection position coordinates (u0, v0) and 
focal length f  of the camera lens optical axis in the pixel 
coordinate system, are related to the optical properties 
of the camera. The mapping relationship between spatial 
points and pixel points may be constructed using inter-
nal parameters, which enables any 3D coordinates under 
the camera coordinate system to be mapped to the pixel 
coordinate system. The external parameters of the cam-
era include a rotation matrix R and translation matrix 
T  , through which the transformation between the cam-
era coordinate system and world coordinate system can 
be performed. The transformation relationship between 
the left and right camera coordinate systems can be 
established once the camera calibration parameters have 
been determined. The imaging planes of the left and right 
cameras can be transformed into the same plane accord-
ing to the transformation relationship. Finally, sparse 3D 
point cloud reconstruction was performed utilizing the 
obtained camera calibration parameters and the cor-
rected left and right images in accordance with the bin-
ocular camera stereo imaging principle, as illustrated in 
Figure 5.

Assume that P(Xc,Yc,Zc) is a point in 3D space. In 
the pinhole camera model, coordinate transformation 
is required to finally become a pixel p(u, v) on the 2D 
image. Transform point P(XC ,YC ,ZC) from the world 
coordinate system to point p(x, y) of the camera coordi-
nate system through the external parameters of the cam-
era according to Eq. (4). According to Eq. (5), p(x, y) is 
transformed from the camera coordinate system to point 
p(u, v) of the pixel coordinate system through the camera 
internal parameter matrix.

For simultaneous Eq. (4) and Eq. (5), Eq. (6) can be 
obtained as

where fx = f /dx and fy = f /dy indicate that the focal 
length f  of the camera is transformed into a pixel meas-
urement in x and y directions, respectively. B represents 
the baseline length of the binocular camera. Therefore, 
the parallax of the matching points and sparse 3D point 
cloud can be calculated according to Eq. (6).

The generated sparse 3D point cloud was first triangu-
lated using Delaunay triangulation to achieve dense 3D 
reconstruction of the material piles, and the triangulation 
mapping parameter µi

(

o
(l)
n

)

 was computed using Eq. (7).

where n represents a triangular serial number containing 
the pixel point o(l)n = (un, vn) . The triangle plane param-
eters ( ai, bi, ci ) can be obtained by solving the linear 
equation for the three vertices of each triangle. Triangu-
lar mapping provides an accurate initial disparity value 
for the subsequent construction of the probability model, 
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Figure 5  Principle of binocular stereo imaging
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which reduces the disparity search range of the residual 
pixels of the input image and significantly improves com-
putational efficiency.

3.2.3 � Maximum a Posteriori Probability Model (MAPM) 
and Dense Disparity Estimation

The maximum a posteriori probability model (MAP) 
is constructed to estimate the optimal disparity of the 
residual pixel points in accordance with the obtained 
sparse 3D point clouds and triangular mapping in order 
to achieve the reconstruction of dense 3D point clouds. 
Figure  6 illustrates the fundamental principle, whereas 
Eq. (8) represents the probability estimation model.

where S = (s1, s2, · · · · · · , sM) represents the sparse 3D 
point cloud constructed previously; each point is rep-
resented as sm = (um, vm, dm) ; dm is the parallax corre-
sponding to the point ( um, vm ). o(r)1 , · · · , o

(r)
N  represent all 

the pixels in the right image that have the same horizon-
tal polar line as point o(l)n  . If the disparity dn of a point o(l)n  
in the left image is regarded as a random variable to be 
solved, the posterior probability can be expressed as the 
product of a prior probability and likelihood probability, 
as shown in Eq. (9).

Assume that the prior probability is proportional to the 
Gaussian distribution, as shown in Eq. (10).

(8)̂dn = argmax P
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)

 represents a triangle mapping consisting 
of a sparse 3D point cloud S containing pixels 
o
(l)
n = (un, vn) . The likelihood probability can be 

expressed as a Laplace distribution, as shown in Eq. (11).

where, D(l)
n  and D(r)

n  represent the feature description 
vectors of the nth pixel in the left image and the nth pixel 
in the right image, respectively. The if condition in Eq. (11) 
ensures that this constraint is satisfied because the corre-
sponding points of the left and right images must appear 
on the same horizontal polar line, because the left and right 
images obtained by the binocular camera have been recti-
fied in advance. Therefore, the likelihood probability model 
derived from Eq. (11) is given by Eq. (12).

It is worth noting that the disparity range of the remain-
ing pixel points is limited to 
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process of disparity estimation, which ensures the preci-
sion of disparity estimation, reduces the range of disparity 
search, effectively improves the calculation efficiency, and 
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Figure 6  Probability estimation model

Figure 7  Point cloud registration and segmentation considering 
the boundary restriction of shovel loading
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provides strong support for the dense 3D reconstruction of 
earthwork material piles and the accurate estimation of 
shovel volume.

3.3 � Point Cloud Segmentation and Volume Estimation 
Considering Boundary Constraints

3.3.1 � Point Cloud Registration and Segmentation
Constructing a dense 3D point cloud model on the surface 
of the material piles, both before and after shoveling, is 
required to calculate the shoveled volume. The actual shov-
eling 3D point cloud model was generated by matching 
and segmenting the point cloud models before and after 
shoveling, and the volume was calculated using the point 
cloud model, as illustrated in Figure 7. Binocular images of 
the material pile surface taken before and after shoveling as 
well as the corresponding 3D point cloud model’s position 
and attitude change arbitrarily during the actual earthwork 
operation of engineering vehicles. This affects the accuracy 
of the subsequent point cloud processing and shoveling 
volume calculation. Therefore, the point cloud after shov-
eling is aligned with the reference point cloud model before 
shoveling using a set of suitable point cloud change param-
eters, such as translation, rotation, and yaw, determined 
using the ICP point cloud registration algorithm.

For example, with an image resolution of 1920×1080, 
there can be up to 1 million 3D point clouds on the sur-
face of material piles in a single reconstruction owing to 
the large amounts of dense point cloud data that have 
been reconstructed. The voxel-mesh method is used to 
first realize point cloud down-sampling before registra-
tion to improve computing efficiency while maintain-
ing calculation accuracy. Following downsampling, the 
point cloud is roughly segmented in a certain area where 
the boundary of the shovel loading area is extended out-
ward. Rough segmentation can improve the calculation 
efficiency, reduce the impact of the non-shovel loading 
area, and improve the accuracy of the volume estimation. 
The ICP algorithm is used to register the 3D point cloud 
model of the material pile surface after rough segmenta-
tion. The ICP algorithm is described as follows: 1) Find 
the point in the target point cloud closest to each point 
in the source point cloud. 2) The root mean square of the 
point-to-point or point-to-plane distance metric is mini-
mized to determine the transformation parameters. 3) 
Transform the point cloud according to the transforma-
tion parameters. 4) Repeat until the matching require-
ments are satisfied. After ICP algorithm registration, the 
position and pose of the 3D point cloud on the surface 
of the material piles before and after shoveling are highly 
consistent.

After rough segmentation, the point cloud contains 
not only the effective shovel loading area but also many 
unrelated areas. Therefore, it is necessary to further 

fine-segment the registered point cloud to obtain the 
point cloud model of the actual shovel loading area. The 
point cloud was segmented according to the boundary 
constraints of the shovel loading area during the point 
cloud segmentation process to optimize the segmenta-
tion of the effective shovel loading area. The 3D point 
cloud model on the surface of the material piles before 
shoveling after segmentation is represented by the blue 
point cloud in the figure, whereas the model on the sur-
face of the material piles after shoveling after segmen-
tation is represented by the red point cloud. The space 
volume enclosed by the two models was the shoveling 
volume to be estimated.

3.3.2 � Volume Estimation
A point cloud model of the shovel loading area was 
obtained after the point cloud registration and segmen-
tation. To estimate the volume of shoveled materials, the 
Alpha-shape algorithm of Delaunay triangulation was 
used for calculation. The shovel loading area point cloud 
model was first Delaunay triangulated, and the point 
cloud contour envelope was created using parametric 
fitting of the point cloud. After performing Delaunay tri-
angulation on the point cloud model in the shovel load-
ing area, the contour envelope was created by parametric 
fitting of the point cloud. The alpha-radius parameter 
value, which is used to regulate the fineness of the pro-
duced contour, enables the customization of the envelope 
surface around the point set. The created contour enve-
lope becomes convex when the parameter value is too 
large. If the parameter value is too small, it will result in 
an overestimation of the shovel volume, and the contour 
envelope may have holes. Therefore, in the estimation of 
actual shovel load volume, with the increase of shovel 
load volume, the parameter value should be adjusted rea-
sonably to generate a complete envelope of point cloud 
contour.

Figure 8  Loader and measuring tool for experiment
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4 � Experiment Results and Discussions
To verify the effectiveness of this research method for 
estimating the shovel load volume, we conducted a 
shovel load volume measurement experiment based on 
an XG931K loader (rated volume of the loader bucket is 
1.8 m3 ). The vision sensor was fixed on top of the loader 
cab to obtain better image information of the material 
piles. At the same time, in order to verify the accuracy 
of the volume estimation method in this study, a measur-
ing tool is used to measure the actual shoveled volume, as 
shown in Figure 8. In this study, 8 shoveling experiments 
on loose soil were carried out at the terrain experimen-
tal site of a well-known construction machinery manu-
facturer. During the experiment, images of the material 
piles in various shoveling processes were acquired, and 
3D reconstruction and shovel load volume estimation of 
the material piles were performed. Table 1 lists the sys-
tem and development platforms used in this experiment.

4.1 � 3D Reconstruction of Material Piles
According to this research method, it is necessary to 
reconstruct the surface model of material piles before 
estimating the shovel load volume. To verify the effective-
ness of the dense stereo matching and 3D reconstruction 
method of the material piles proposed in this study based 
on QORB–MAPM algorithm, some image sets of the 
material piles were selected from the 8 shoveling tests, 
which were before shoveling, after two shovels, after four 
shovels, and after 6 shovels, as shown in Figure 9. In addi-
tion, in the experimental process, we also compared 3 
current methods that have good performance and similar 
characteristics to this research method: the block match-
ing method (BM), semi-global block matching method 
(SGBM) and traditional ORB-based dense matching and 
3D reconstruction method (ORB–MAPM). To evalu-
ate the performance of this research method in detail, in 
addition to the difference in feature point detection and 

matching, a comparison of traditional ORB and QORB 
algorithm ensures the consistency of other parts, such as 
feature matching and dense 3D reconstruction. For the 
sake of generality, this experiment used the VC++ lan-
guage and the mainstream open-source computer vision 
library (OpenCV) for algorithm development.

First, feature points were detected. In this process, 
the traditional ORB algorithm and QORB algorithm in 
this study used oFAST to detect feature points. In this 
study, the improved ORB algorithm first divides the 2D 
space of each pyramid image into image blocks using 
the improved quadtree algorithm and then employs 
the oFAST algorithm to detect feature points for each 
image block. During the experiment, the number of fea-
ture points to be detected was set to 5000. The effects of 
feature point detection using the different methods are 
shown in Figure  10. It can be seen from the figure that 
the feature points extracted by the traditional ORB algo-
rithms are too concentrated and overlapped in some 
areas with prominent edges and are too sparse or even 
appear as empty holes in areas with insignificant edges, 
resulting in the loss of local image feature information. 
The feature points extracted using the QORB algorithm 
combined with the improved quadtree algorithm in this 
study were more evenly distributed. The surface of the 
earthwork material piles with irregular surface morphol-
ogy and no texture can more fully reflect the shape char-
acteristics of the material piles, which is conducive to 
their 3D reconstruction of the material piles.

After feature point detection, feature point description 
and matching are required. In the feature point descrip-
tion, the traditional ORB algorithm and the QORB algo-
rithm in this study use binary descriptors, therefore, the 
matching similarity is calculated using the Hamming 
distance to preliminarily select the matching points with 
the highest similarity. In the process of feature point 
matching, there may be incorrect matches of keypoints 
matched through specific similarity measurement rela-
tionships and corresponding search strategies. Therefore, 
the RANSAC algorithm was further introduced to purify 
feature points to filter out correct matches and incorrect 
matches. According to this research method, the hom-
ography matrix H is calculated for the filtered matching 
feature points. The left image feature points in the incor-
rect matching are calculated through the homography 
matrix H to obtain the corresponding right image map-
ping points. The right image mapping point can be taken 
as the corrected right image feature point to replace the 
right image feature point in the incorrect matching to 
obtain the final sparse matching feature points. The more 
sparse matching feature points can be obtained through 
feature point filtering based on the RANSAC algorithm 
and feature point mapping based on the homography 

Table 1  Development platform

Items Specification

ZED2 Sensor Video resolutions: 1920 × 1080

Frame rate: 30 frames/s

Interface: USB 3.0

Base line: 12 cm

Computer 64-bit Win10 platform 3.30 
GHz processor and 32 GB 
memory

Program language VC++ and Matlab

OpenCV library Version: 3.4.1

Point cloud library Version: 1.8.1
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matrix H to improve the accuracy of 3D reconstruction 
and shovel load volume estimation of the material piles. 
The matching effects of the two methods are shown in 
Figure 11. Only the correctly matched feature point pairs 
are shown in the figure, as indicated by the green line. It 
can be seen from the figure that compared with the tradi-
tional ORB algorithms, the feature matching and correc-
tion method based on QORB algorithm in this study can 
obtain more correct matching feature point pairs, and the 
matching point pairs are more evenly distributed.

The obtained correctly matched feature points are 
then further generated into a sparse 3D point cloud 
in accordance with the camera calibration param-
eters and binocular camera stereo imaging principle. 
A dense 3D point cloud of material piles may be con-
structed by building a probability model in accordance 
with the obtained sparse 3D point cloud and triangular 
mapping. To verify the effectiveness of the 3D recon-
struction of material piles based on QORB–MAPM 
algorithm proposed in this study, we compared it 
with three different methods: BM, SGBM, and ORB–
MAPM. The 3D point clouds of the material piles 
reconstructed by different methods are shown in Fig-
ure  12. The figure shows how the ORB–MAPM, and 
QORB–MAPM methods in this study were able to 
reconstruct dense 3D point clouds that closely rep-
resent the actual material pile morphology on all test 
images. However, there were several noise points and 
holes in the 3D point cloud created by the BM and 
SGBM algorithms. This is because the pixel intensi-
ties are compared by BM and SGBM to calculate the 
generation value between the corresponding matching 
points. This pixel block-based descriptor performs has 
weak description performance, which increases the 
error in matching corresponding points and reduces 
the effectiveness of dense 3D reconstruction. However, 

in the dense 3D reconstruction method based on the 
MAPM proposed in this study, the triangular mesh 
calculated from matched support points as a priori 
information provides an accurate initial depth value 
for dense 3D reconstruction. Compared with pixel-
block-based dense reconstruction methods, such as 
BM and SGBM, this method improves the robustness 
of the 3D point cloud. In addition, the 3D point clouds 
reconstructed by the ORB–MAPM algorithms have 
some point cloud holes and missing edge point clouds. 
Compared to this algorithm, the QORB–MAPM algo-
rithm in this study retains more abundant material 
piles information, and the reconstructed 3D material 
piles point cloud model is more accurate.

The local features of the morphology of the mate-
rial piles vary dramatically while the operation task 
proceeds in the actual application of earthwork, which 
raises expectations for the real-time reconstruction 
of the material piles and earthwork volume estima-
tion. Therefore, we consider 5 groups of images before 
shoveling as an example to compare the average calcu-
lation time of different methods for the 3D reconstruc-
tion of material piles, as shown in Table  2. Figure  12 
and Table  2 show that while the 3D material piles 
reconstructed by the BM algorithm include significant 
noise points, their computation time is the shortest. 
In contrast, the SGBM algorithm not only performs 
poorly in terms of 3D point cloud reconstruction, but 
also takes the longest time to complete. It is challeng-
ing to use these two methods in actual earthwork. 
Compared with the traditional ORB–MAPM method, 

Figure 9  Left camera images under different shovel loading 
conditions, (a) Image I (before shoveling), (b) Image II (after 2 shovels) 
, (c) Image III (after 4 shovels), (d) Image IV (after 6 shovels)

Figure 10  Comparison of different algorithms for feature point 
detection: (a) Image I (before shoveling), (b) Image II (after 2 shovels) , 
(c) Image III (after 4 shovels), (d) Image IV (after 6 shovels)
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the calculation time of the QORB–MAPM method in 
this study was slightly increased, but the reconstructed 

3D point cloud was more accurate, and the overall per-
formance was better.

4.2 � Volume Estimation of Material Piles
The 3D point cloud model of the material piles before 
and after shovel loading is not consistent because of the 
movement and changes in the loader’s position and atti-
tude during the operation process. Therefore, the ICP 
algorithm is used to register the 3D point cloud model of 
the material pile surface before and after the shovel load-
ing. Before the point cloud model registration, the dense 
point cloud was first down-sampled using the voxel-mesh 
method, and then the point cloud was roughly segmented 
at the boundary of the shovel loading area, extending 
outward to a certain range, as shown in Figure 13(a). This 
reduces the computational burden in the point cloud reg-
istration process and increases the computational effi-
ciency of the algorithm. The blue and red point clouds in 
the image represent the 3D point clouds on the surface 
of the material piles before and after shoveling, respec-
tively. It can be clearly seen from the figure that, owing 

Figure 11  Comparison of feature matching of different algorithms: 
(a) Image I (before shoveling), (b) Image II (after 2 shovels) , (c) Image 
III (after 4 shovels), (d) Image IV (after 6 shovels)

Figure 12  Comparison of dense 3D reconstruction of different algorithms: (a) Image I (before shoveling), (b) Image II (after 2 shovels) , (c) Image III 
(after 4 shovels), (d) Image IV (after 6 shovels)
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to the movement and change of the loader, there is a 
large difference in the position and attitude of the point 
cloud models built before and after shoveling. The point 
cloud registered using the ICP algorithm is shown in Fig-
ure 13(b). The figure clearly shows that the position and 
pose of the 3D point cloud on the surface of the mate-
rial piles before and after shoveling, registered by the ICP 
algorithm, are highly consistent. Finally, the point cloud 
model was finely segmented after registration according 
to the boundary of the shoveling area to retain the point 
cloud of the shoveling area, as shown in Figure 13(c).

To verify the effectiveness of the proposed method in 
estimating the shoveling volume, the 3D point cloud of 
the material piles before shoveling was used as the refer-
ence point cloud model in this experiment, and the 3D 
point cloud of the material piles after each shoveling was 
used as the registration point cloud model in 8 shoveling 
tests. The point cloud model of the shoveling area was 
obtained through point cloud registration and segmenta-
tion. Finally, the Alpha-shape algorithm of Delaunay tri-
angulation in the MATLAB toolbox was used to calculate 
the shoveling volume. The alpha-radius parameter values 
for each of the 8 shoveling tests during the experiment 
were set to 0.36, 0.36, 0.36, 0.32, 0.32, 0.38, 0.38, and 0.38, 
respectively. Each shoveling test consisted of 5 trials, and 
the shoveling volume was measured using the measur-
ing tool shown in Figure  8. The segmented point cloud 
model and corresponding volume calculation results of 
the shoveling area after 8 shoveling tests are shown in 
Figure 14(a) and (b), respectively. The experimental val-
ues are listed in Table 3. It can be seen from the table that 
the maximum relative error and standard deviation of the 
estimated volume of the 8 shoveling tests are 10.19 % and 
0.2395 m3 , respectively. A relatively large error occurs 
after the first and second shoveling, which is due to the 
small amount of shoveling that makes the change of 
material piles in the shoveling area insignificant, resulting 

in inaccurate point cloud model segmentation. In gen-
eral, the shovel loading volume estimation method pro-
posed in this study is highly accurate and can meet the 
requirements of accurate estimation of shovel loading 
volume in practical earthwork applications.

The volume estimation methods based on BM (BM 
VE), SGBM (SGBM VE), and ORB–MAPM (ORB–
MAPM VE), which have good performance and similar 
characteristics to the proposed method, were compared 
and verified to further verify the effectiveness of the 
volume estimation method based on QORB–MAPM 
(QORB–MAPM VE) in this study. 4 methods were 
used to estimate the volume of 8 shoveling tests, with 5 
shoveling trials conducted for each test. The average of 
the 5 volume estimates was calculated and compared 
with the actual value (represented by the magenta solid 
line) measured by the measuring tool, as shown in Fig-
ure  15. The figure shows that as the shovel loading vol-
ume increases, the volume estimation values from the 
different methods follow the same trend of change as 
the actual values. This strongly confirms the reliability 
of the volume estimation method for the loader’s shovel 
load based on the 3D reconstruction of the material piles 
proposed in this study. The test results are presented in 
Table 4. The maximum relative error and standard devia-
tion of the estimated results of the 4 methods are as fol-
lows: BM VE (20.53% and 0.2511 m3), SGBM VE (14.31% 
and 0.6526 m3), ORB–MAPM VE (17.07% and 0.4768 
m3), and QORB–MAPM VE (10.19% and 0.2395 m3). 
Therefore, the QORB–MAPM VE volume estimation 
method proposed in this study has higher estimation 
accuracy.

In practical earthwork applications, the bucket fill 
factor, which is an important parameter for evaluating 
the performance and operating efficiency of earthwork 
machinery, is often estimated using the ratio of the vol-
ume of materials in a single bucket to the rated volume of 
the bucket. Using the 8 shoveling test images from above, 
one can indirectly estimate the volume of materials 
loaded into the bucket in a single shovel by constructing a 
three-dimensional point cloud model of the material piles 

Table 2  Calculation time of each picture used for 3D 
reconstruction of material piles ( ms)

Note: The calculation time consumed for Feature match in the BM and SGBM 
algorithms includes the total time required for Keypoint detection, Descriptor 
computation, and Feature match.

Items BM SGBM ORB–MAPM QORB–MAPM

Keypoint detec-
tion

–– –– 1036.2 1544.41

Descriptor com-
putation

–– –– 351.61 430.60

Feature match 10537.65 84748.45 2223.63 2350.94

Dense 3D recon-
struction

4694.55 6213.15 5994.16 5941.05

Total 15232.2 90961.6 9605.6 10267.0

Figure 13  Point cloud registration and segmentation (the 
coordinate axis represents the camera position, where red, green 
and blue represent the x axis, y axis and z axis respectively)
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before and after a single shovel. The volume of 8 shoveling 
tests was estimated throughout the test using 4 different 
methods, and 5 trials were performed for each shoveling 
test. As illustrated in Figure 16, the average value of the 
5 volume estimations was calculated and compared with 
the actual value (represented by the magenta solid line) 
measured by the measuring tool. It can be seen from the 
figure that the estimation results of the different methods 

are quite different. The volume estimation results of the 
QORB–MAPM VE method in this study were consistent 
with the actual values. The detailed results are presented 
in Table  5. It can be seen from the table that the maxi-
mum relative error and standard deviation of the esti-
mated results of the 4 methods are: BM VE (61.42 % and 
0.2515 m3 ), SGBM VE (43.68 % and 0.6463 m3 ), ORB–
MAPM VE (33.82 % and 0.4959 m3 ) and QORB–MAPM 

Figure 14  Point cloud segmentation and volume estimation in shovel loading area
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VE (15.08 % and 0.2705 m3 ) proposed in this study. 
Therefore, the QORB–MAPM VE volume estimation 

method in this study also has a higher estimation accu-
racy in bucket fill factor estimation and has important 
engineering application value.

The average calculation times of the different methods 
from the 3 main stages of 3D reconstruction of mate-
rial piles, point cloud registration, and Alpha-shape 
algorithm volume calculation are compared, as shown 
in Table  6, and calculate the total time consumption. 
It can be observed from the table that the 3D recon-
struction of material piles and point cloud registration 
account for most of the total calculation time, and point 
cloud registration takes the longest time. The SGBM VE 
method requires the highest computation time, whereas 
the ORB–MAPM VE and QORB–MAPM VE methods 
used in this study require the least computation time. 
It is worth noting that in the earthwork operation pro-
cess, loaders, excavators, scrapers, and other earthwork 
machinery usually have a relatively determined opera-
tion mode. Taking loaders as an example, completing an 

Table 3  Volume estimation test results

Items Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8

Test 1 1.304 2.502 4.281 5.674 6.901 8.320 9.704 11.404

Test 2 1.276 2.512 4.229 5.412 6.810 8.322 9.980 11.441

Test 3 1.328 2.625 4.264 5.594 7.299 8.139 9.809 11.195

Test 4 1.407 2.562 4.211 5.561 7.400 8.361 9.812 11.424

Test 5 1.428 2.688 4.260 5.515 7.306 8.281 9.811 11.190

Alpha-radius 0.36 0.36 0.36 0.32 0.32 0.38 0.38 0.38

Average volume estimation ( m3) 1.349 2.578 4.249 5.551 7.143 8.285 9.823 11.331

Actual volume of single bucket ( m3) 1.45 1.42 1.40 1.43 1.35 1.35 1.42 1.40

Actual volume of shovel load(m3) 1.45 2.87 4.27 5.70 7.05 8.40 9.82 11.22

Relative error (%) −6.99 −10.19 −0.49 −2.61 1.32 −1.37 0.04 0.99

Standard deviation ( m3) 0.0589 0.0703 0.0254 0.0866 0.2395 0.0770 0.0886 0.1133

Figure 15  Comparison of volume estimation results of different 
methods

Table 4  Volume estimation test results of different methods

Methods Items Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8

BM VE Average volume estimation ( m3) 1.525 2.462 4.317 5.362 5.726 7.751 8.065 8.916

Relative error ( %) 5.15 −14.22 11.07 −5.92 −18.78 −7.73 −17.87 −20.53

Standard deviation ( m3) 0.0469 0.0942 0.1742 0.1234 0.2511 0.0851 0.2352 0.0676

SGBM VE Average volume estimation ( m3) 1.242 3.056 4.206 5.693 7.573 8.555 9.703 10.125

Relative error ( %) −14.31 6.48 −1.50 -0.13 7.41 1.84 −1.19 −9.76

Standard deviation ( m3) 0.0124 0.3087 0.1579 0.2127 0.2909 0.0853 0.6526 0.3202

ORB–MAPM VE Average volume estimation ( m3) 1.381 2.798 3.752 5.075 5.847 7.805 9.297 10.584

Relative error ( %) −4.76 −2.51 −12.14 −10.97 −17.07 −7.08 −5.32 −5.66

Standard deviation ( m3) 0.0497 0.1400 0.1802 0.4768 0.2833 0.2030 0.2752 0.3475

QORB–MAPM VE Average volume estimation ( m3) 1.349 2.578 4.249 5.551 7.143 8.285 9.823 11.331

Relative error ( %) −6.99 −10.19 −0.49 −2.61 1.32 −1.37 0.04 0.99

Standard deviation ( m3) 0.0589 0.0703 0.0254 0.0866 0.2395 0.0770 0.0886 0.1133
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operation cycle includes three main operational stages: 
shoveling, transportation, and unloading. According to 
many practical experiences and test statistics, it usually 
takes 40–50 s to complete an operational cycle. Therefore, 
the BM VE ORB–MAPM VE and the QORB–MAPM 
VE method in this study can satisfy the requirements of 
shovel loading volume estimation in real-time operation. 
In summary, considering the volume estimation accu-
racy and total calculation time, the QORB–MAPM VE 

method in this study has wider application prospects in 
earthwork shovel loading volume estimation.

5 � Conclusions and Prospects
To achieve fast and accurate measurement of the volume 
of earthmoving materials, a fast estimation method for a 
loader’s shovel load volume based on 3D reconstruction 
of material piles was proposed in this study. The main 
conclusions are as follows.

(1)	 A feature point matching and correction method 
based on QORB algorithm was proposed to 
improve the uniformity of feature point detection 
and obtain more sparse matching feature points. 
And a dense stereo matching algorithm, namely, 
QORB–MAPM, was proposed by integrating the 
QORB algorithm and the maximum a posteriori 
probability model (MAPM) to achieve fast match-
ing and dense 3D reconstruction of feature points 
of material piles. Compared with BM, SGBM, and 
ORB–MAPM 3D reconstruction methods, the 
QORB–MAPM method proposed in this study has 
significant advantages in reconstruction accuracy 
and calculation efficiency, which provides strong 

Figure 16  Comparison of bucket fill factor estimation results 
of different methods

Table 5  Bucket fill factor estimation results of different methods

Methods Items Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8

BM VE Average volume estimation ( m3) 1.525 0.9375 1.8555 1.0455 0.3635 2.025 0.3145 0.8515

Relative error ( %) 4.15 −26.82 25.29 −21.38 −54.81 37.49 −61.42 −30.49

Standard deviation ( m3) 0.0469 0.1254 0.0949 0.2022 0.1578 0.2473 0.1738 0.2515

SGBM VE Average volume estimation ( m3) 1.242 1.814 1.150 1.487 1.880 0.982 1.148 0.614

Relative error ( %) −11.53 21.86 −13.90 3.17 29.44 −20.44 −15.12 −43.68

Standard deviation ( m3) 0.0123 0.2978 0.2736 0.2657 0.3344 0.2965 0.6463 0.2959

ORB–MAPM VE Average volume estimation ( m3) 1.381 1.417 0.954 1.323 0.772 1.959 1.492 1.287

Relative error ( %) −3.84 −0.17 −24.79 −5.96 −32.11 33.82 4.00 −6.27

Standard deviation ( m3) 0.0497 0.1681 0.2657 0.3118 0.4959 0.3889 0.3205 0.4381

QORB–MAPM VE Average volume estimation ( m3) 1.349 1.229 1.6719 1.302 1.5929 1.1419 1.539 1.5079

Relative error ( %) −5.63 −10.62 15.08 −7.11 13.45 −11.59 6.60 5.97

Standard deviation ( m3) 0.0589 0.0489 0.0712 0.0743 0.2385 0.2705 0.1122 0.1275

Table 6  Calculation time of volume estimation ( ms)

Calculation time (ms) BM VE SGBM VE ORB–MAPM VE QORB–MAPM VE

3D reconstruction of material piles 15232.2 90961.6 9605.6 10267.0

Point cloud registration (Iterations: 3) 18584.5 22635.2 23597.7 23343.0

Volume estimated by Alpha-shape algorithm 2340.3 2568.2 2567.7 2387.8

Total 36157.0 116165.0 35771.0 35997.8
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technical support for fast and accurate measure-
ment of the loader’s shovel load volume.

(2)	 A volume estimation method based on a 3D point 
cloud on the surface of material piles before and 
after shoveling was proposed to solve the problem 
that existing methods for volume measurement, 
such as total station-based methods, cannot meas-
ure the volume in real time, while the bucket-based 
method also has the disadvantage of poor universal-
ity. The proposed method includes 5 stages: point 
cloud down-sampling, point cloud rough segmenta-
tion, point cloud registration, point cloud fine seg-
mentation, and volume calculation. This method 
provides a new idea and method for measuring the 
loader’s shovel load volume.

(3)	 The volume estimation and bucket fill factor esti-
mation were tested using 8 shoveling experiments 
under loose soil conditions and were compared 
with BM VE, SGBM VE, and ORB–MAPM VE. The 
test results show that the maximum relative error 
and standard deviation of the 4 methods are BM 
VE (20.53% and 0.2511 m3 ), SGBM VE (14.31% and 
0.6526 m3 ), ORB–MAPM VE (17.07% and 0.4768 
m3 ), and QORB–MAPM VE (10.19% and 0.2395 
m3 ) respectively in volume estimation. In bucket 
fill factor estimation, the corresponding test results 
of the 4 methods are BM VE (61.42% and 0.2515 
m3 ), SGBM VE (43.68% and 0.6463 m3 ), ORB–
MAPM VE (33.82% and 0.4959 m3 ) and QORB–
MAPM VE (15.08% and 0.2705 m3 ). Therefore, the 
QORB–MAPM VE volume estimation method in 
this study has higher estimation accuracy and lower 
calculation time consumption in volume estimation 
and bucket fill factor estimation and provides reli-
able technical support for real-time evaluation of 
loader operation efficiency and unmanned autono-
mous operation. In addition, this research method 
is applicable to the estimation of the shovel load 
volume of other earthmoving machinery and has 
important theoretical research and engineering 
application value.

It should be pointed out that the research in this study 
needs to be further deepened and expanded.

(1)	 Owing to the limitation of test conditions, this 
study only takes the shovel loading test of loose 
soil as an example, considering the complexity of 
the actual operating environment of earthmoving 
machinery, such as the different softness of soil and 
the rolling and collapse of small granular soil, such 
as fine sand before and after shovel loading, which 

creates great difficulties in the registration and 
segmentation of three-dimensional point clouds. 
Shovel loading experiments in more challenging 
terrain environments will be performed later to ver-
ify the effectiveness of the proposed method.

(2)	 It can be seen from the calculation time of the shov-
eling volume estimation in this study that the point 
cloud registration takes the longest time. Therefore, 
the focus of future research will be to study point 
cloud registration algorithms with higher compu-
tational efficiency to meet the needs of real-time 
shoveling operations. In addition, there is room for 
improvement in algorithm program optimization.
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