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Abstract 

In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, 
for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typi-
cally simplified to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based 
on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact 
that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The 
nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deforma-
tion (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyper-
elastic contact between a hemisphere and a rigid plane are compared with those obtained using the finite element 
method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical 
methods, the proposed method achieves a higher calculation efficiency while ensuring a certain calculation accuracy 
(i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). 
For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, 
as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates 
between complicated 3D rough surfaces are calculated. Despite a certain error, the simplified numerical method 
yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used 
as fast solutions in engineering applications.
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1  Introdution
In theoretical research pertaining to sealing, the contact 
pressure and the area between the asperities of a seal-
ing pair must be calculated to obtain the leakage rate, 
which is the most effective parameter for characterizing 
the sealing performance of sealing systems [1–5]. For 
axisymmetric sealing structures, the contact between 

sealing pairs is typically simplified to a two-dimensional 
(2D) problem. However, in specific cases, such as those 
pertaining to the anisotropy of the sealing surface tex-
ture, the contact problem is difficult to simplify and must 
solved using a three-dimensional (3D) model. Metal/rub-
ber and metal/plastic pairs are typically used in sealing 
systems. The deformation of rubber or plastic is primarily 
considered because of their smaller elastic modulus than 
that of metal. Unlike linear elastic contact, rubber is a 
hyperelastic material whose uniaxial compressive stress–
strain curve is nonlinear. Plastic deformation occurs 
when the contact pressure is extremely high. Therefore, 
it is necessary to consider whether the contact problem 
is a 2D or 3D problem, and whether the contact involved 
is linear or nonlinear elastic contact for different sealing 
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systems; subsequently, an appropriate contact model 
should be selected to perform calculation.

Existing contact models can be classified into three 
categories: statistical models (such as the GW model 
[6] and improved models based on the GW model [7, 
8]), fractal models [9, 10] and deterministic models. For 
statistical and fractal models, the description of a rough 
surface is simplified using statistical and fractal param-
eters, respectively. In addition, the calculation for both 
models are performed by assuming a simplified interac-
tion between asperities, or by disregarding it altogether. 
Compared with the first two models mentioned above, 
the deterministic model is based on the deterministic 
description of a rough surface. More accurate pressure 
distributions and deformation results can be obtained 
using this model. Deterministic models can be classified 
into analytical and numerical models. For the analytical 
model, the Hertz theory can be used to solve the contact 
area and average contact pressure of the ball-plane elastic 
contact. Westerggard [11] derived a complete solution in 
a closed form for the elastic contact of a one-dimensional 
(1D) sinusoidal surface with a flat surface. Subsequently, 
Johnson [12] extended Westerggard’s results to a 2D 
sinusoidal surface with a flat surface. Zhu [13] proposed 
an elastic-plastic model for line contact structures based 
on the yield mechanism. In terms of numerical simula-
tion, the finite element method (FEM) can be used to 
analyze the contact behavior between solids of different 
materials [14–16]. However, for complicated rough sur-
face contact, particularly in 3D problems, a refined mesh 
is required for the FEM; this would result in a long cal-
culation time or non-convergence. Another approach is 
the semi-analytical method. Polonsky [17] proposed a 
numerical method to solve rough surface contact prob-
lems using multilevel multi-summation and conjugate 
gradient techniques. Stanley [18] solved the elastic con-
tact between a rigid plane and a half-space using the 
fast Fourier transform (FFT) and analytical solutions 
from Westerggard [11] and Johnson [12]; it is notewor-
thy that the interaction between asperities was consid-
ered in the abovementioned method. Similarly, the FFT 
was used in the numerical methods proposed by John-
son [12] and Wang [19]. In addition to the linear elastic 
contact calculation, Jacq [20], Wang [21], Chen [22], and 
other researchers [23, 24] proposed numerical methods 
for elastoplastic contact. Moreover, other contact models 
that consider friction (tangential deformation) [25, 26] 
and heat [27, 28] have been developed.

For elastoplastic contact, the current semi-analytical 
methods [20–22] are primarily based on purely elastic 
contact considering plastic deformation, in which plas-
tic strain is calculated using the von Mises yield criterion 
and a specific hardening law. This method involves the 

calculation of the stress and strain of the bulk element, 
which can be used to analyze contact fatigue, damage, 
etc. However, for complicated 3D rough surface contact, 
a large number of 3D grid elements would result in a long 
calculation time. Therefore, a simplified method adapted 
to engineering applications must be devised. In addition, 
the hyperelastic contact problem is typically simplified to 
a linear elastic contact problem, which must be improved 
in terms of calculation accuracy.

Based on the study of Stanley et  al. [18], a numerical 
method suitable for elastoplastic and hyperelastic fric-
tionless contact that can be used to solve 2D and 3D 
contact problems is proposed herein. The compressive 
stress–strain curve of a material with linear hardening or 
a hyperelastic material such as rubber is simplified to a 
combination of two linear segments with different slopes, 
and the solution of the residual deformation is simplified 
as well. The nonlinear elastic contact problem is con-
verted into a linear elastic contact problem considering 
residual deformation (or the equivalent residual deforma-
tion). Results from numerical simulations for elastic, elas-
toplastic, and hyperelastic contact between a hemisphere 
and a rigid plane are compared with those obtained using 
the FEM to verify the accuracy of the numerical method. 
For nonlinear elastic contact, the numerical method 
yields a better approximation result than the linear elas-
tic contact approximation. Finally, a numerical method 
is used to calculate the contact between complicated 3D 
rough surfaces.

2  Methods
2.1  Existing Numerical Method for Linear Elastic Contact
Based on a study by Stanley [18], an improved method 
to calculate elastoplastic and hyperelastic contact is pro-
posed herein. To facilitate the understanding of the fol-
lowing sections, the main idea of Stanley’s study is briefly 
introduced in this section. Readers can perform detailed 
calculations by referring to the original literature.

Based on the results of Westerggard [11] and John-
son [12], when a 1D (or 2D) sinusoidal surface and a 
rigid plane are in complete contact, a linear relation-
ship exists between the sinusoidal pressure variation and 
displacement. For any dimensionless pressure distribu-
tion p*=p/E* (where p is the actual pressure, and E* is 
the equivalent elastic modulus), p* can be expressed as 
a superposition of the trigonometric series. Therefore, 
the expression between deformation u and p* for a dis-
crete representation can be expressed using the FFT, as 
follows:

(1)u
(

p∗
)

= FFT−1
(

w.× FFT
(

p∗
))

.
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For 2D contact problems, 1D FFT and 1D inverse fast 
Fourier transform  (FFT−1) are used; both p* and the 
numerical factor w are vectors. For 3D contact problems, 
2D FFT and 2D  FFT−1 are used, and both p* and w are 
matrices; w can be derived from the analytical formula-
tions proposed by Westerggard and Johnson.

The final problem is to obtain p* and u when the two 
surfaces are pressed together. Based on minimizing the 
total complementary energy, the final pressure distribu-
tion p* and u must satisfy Eq. (2) in the constraint region 
expressed in Eq. (3), where f is the total complementary 
energy, gi the gap between the rigid plane and the unde-
formed surface, n the number of discrete points, and 
ptarget the average pressure. Based on the relationship 
between u and p* shown in Eq. (1), the problem involv-
ing two variables shown in Eq. (2) is converted into a 
problem with only one variable: In Stanley’s study, the 
gradient descent method was used to iteratively solve the 
distributions of p* and u. The details are available in Ref. 
[18].

2.2  Solution of Residual Strain for Nonlinear Elastic 
Contact

Figure  1 shows the uniaxial compressive stress–strain 
curve of a material with linear hardening. The slopes of 
the two linear segments are E and E’ (E > E’). For a unit 
in a uniaxial compression state, when the stress is greater 
than the initial yield stress (σn), the unit undergoes plastic 
deformation. The corresponding strains of the two linear 

(2)min f =
1

2

∑n

i=1
p∗i ui+

∑n

i=1
p∗i gi,

(3)
p∗i ≥ 0, 1 ≤ i ≤ n ,
1
n

∑n
i=1 p

∗
i = ptarget.

segments are ε and ε’, respectively. The elastic strain is εe, 
and the plastic strain is εr (residual strain). Therefore,

For units with multidirectional stresses, σ refers to the 
von Mises stress of the unit. As shown in Eq. (4), for a 
unit that undergoes plastic deformation (σ > σn, p > pn, 
pn is the critical yield pressure), the strain solution under 
stress σ is equivalent to applying residual strain εr to the 
unit, and the linear elastic contact (elastic modulus E) is 
used to solve the strain under stress σ. For the elastoplas-
tic contact of the entire rough surface, the solutions for 
the pressure and deformation can be equivalent to the 
solution for a linear elastic contact problem considering 
residual deformation.

The uniaxial compressive stress–strain curve of a 
hyperelastic material such as rubber can be simplified 
to a combination of two linear segments with different 
slopes, as shown in Figure 2 (E < E’). The corresponding 
strains of the two linear segments are ε and ε’, respec-
tively. Similar to the elastoplastic contact problem, the 
strain of the unit is equal to the sum of the equivalent 
elastic strain εe and the equivalent residual strain εer (εer 
is negative), as shown in Eq. (5). For the hyperelastic 
contact of the entire rough surface, the solutions for the 
pressure and deformation can be equivalent to the solu-
tion for the linear elastic contact problem (elastic modu-
lus E) considering the equivalent residual deformation.

2.3  Proposed Numerical Method
Based on the analysis above, it is clear that in terms of 
the solution for residual deformation, if the interaction 
between units is disregarded, then all units under pres-
sure can be simplified to a uniaxial compression state. 

(4)εr = ε + ε′ − εe =
σn

E
+

σ − σn

E′
−

σ

E
.

(5)εe+εer = ε + ε′.

Figure 1 Uniaxial compressive stress–strain curve with linear 
hardening

Figure 2 Approximate uniaxial compressive stress–strain curve 
of hyperelastic material
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Therefore, the residual deformation solution is simplified. 
Both the elastoplastic contact and hyperelastic contact 
problems can be equivalent to the linear elastic contact 
problem considering residual deformation (or the equiva-
lent residual deformation), i.e., the piecewise linear elastic 
contact problem; as such, the solution algorithms are simi-
lar, as shown in Figure 3. For the solution of the elastoplas-
tic contact, the pressure distribution p and deformation 
ue can be obtained by calculating the linear elastic contact 
using the elastic modulus E. According to the critical pres-
sure pn, the p at each unit is decomposed into pe and pp, as 
shown in Eq. (6). For pe and pp, linear elastic contact with 
elastic moduli E and E’ are calculated, respectively. Subse-
quently, the corresponding deformations u and u’ and the 
residual deformation ur2 are calculated, as shown in Eq. (7). 
Next, it is determined whether the residual deformation 
converges with max|ur2−ur1| / max|ur2| ≤ er (where er is 
the specification error) or ur2=0 (no plastic deformation in 
this case). If convergence does not occur, then the residual 
deformation ur1 is modified to ur1 = ur1 + k0 (ur2 − ur1) 
[20], and the surface topography z is updated. The process 
is repeated until the residual deformation converges. The 
solution process for the hyperelastic contact is similar.

(6)
pe =

{

p, 0 ≤ p ≤ pn,
pn, p > pn,

pp=

{

0, 0 ≤ p ≤ pn,
p− pn, p > pn,

(7)

ue = FFT−1
(

w.× FFT
(

p∗
))

,

u = FFT−1
(

w.× FFT
(

p∗e
))

,

u′ = FFT−1

(

E

E′
× w.× FFT

(

p∗p

)

)

,

ur2 = u+ u′ − ue.

2.4  Comparison with Existing Method
Using Jacq’s study [20] as an example of existing 
numerical methods, the simplified method for elasto-
plastic contact proposed herein is compared with the 
existing method, as shown in Figure 4. The main differ-
ence between the two methods is the method of solv-
ing the residual displacement (step 3). In the existing 
method, the contact pressure distribution is first solved 
via a linear elastic contact calculation (step 1). Subse-
quently, the plastic strain distribution of the bulk ele-
ments is solved using the contact pressure distribution 
(step 2). Finally, the residual deformation is obtained 
using the plastic strain distribution (step 3). The solution 
for the plastic strain (step 2) involves an iterative process: 
the pressure stress distribution of bulk elements is solved 
based on the contact pressure distribution; subsequently, 
the von Mises stress distribution is obtained. The plastic 
strain distribution of bulk elements is calculated using 
the linear hardening law, and the residual stress distribu-
tion is obtained. A new stress distribution for the bulk 
elements is obtained by the superposition of the pres-
sure and residual stresses. Subsequently, the von Mises 
stresses and plastic strains are solved again. The loop 
(P-loop) is repeated until the plastic strain converges. For 
the simplified method, the solution for the residual defor-
mation can be simplified (steps 6 to 3) using Eqs. (6) and 
(7) when the interaction between units is disregarded.

A comparison of the calculation efficiency is shown in 
Tables 1, 2. For the simplified method, the average loop 
number of step 1 (E-loop) was approximately 10, which 
is similar to Jacq’s method. Because the iterative solu-
tion of plastic strain was not involved, it can be assumed 
that the number of P-loops was 1. Furthermore, the total 
P-loop number was only 10 for each loading step, which 
is significantly less than 300 in Jacq’s method. In addition, 
as shown in Table 2, the effort to perform one E-loop of 
the two methods was similar, where m is the iteration 
number for one E-loop, and  Ns is the number of discrete 

Figure 3 Algorithm of nonlinear elastic contact

Figure 4 Solution process comparison between Jacq’s method 
and simplified method
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points on the rough surface. For the simplified method, 
the effort to perform one P-loop increases as  2NslnNs. 
However, Jacq’s method requires the calculations of pres-
sure and residual stresses; therefore, the effort to perform 
one P-loop increases as  Nvz(Ns+Nvs)ln(Ns+Nvs) and  Nvz

2 
 Nvsln  Nvs (where  Nvz is the number of points in the plas-
tic volume at a certain depth, and  Nvs is the number of 
points in the plastic volume per depth), which increases 
the calculation time. In summary, both the number of 
iterations and the calculation effort of each iteration of 
the simplified method are significantly less than those of 
Jacq’s method; therefore, the calculation efficiency can be 
improved significantly.

However, because the calculation of the residual dis-
placement is based on a certain simplification, the cal-
culation accuracy is reduced to a certain extent, whereas 
the calculation efficiency is improved. For an initial aver-
age pressure distribution p0, the pressure distribution p 
can be calculated via linear elastic contact calculation, 
and the actual stress state of any element is shown in 
Figure 5(a); the von Mises stress of the element is σVM1. 
Based on Eq. (6), p is decomposed into pe and pp. The 
corresponding stress states of the element under pe and 

pp are shown in Figure  5(b) and (c), respectively; the 
corresponding von Mises stresses are σVM2 and σVM3, 
respectively. In fact, if the interaction between the units 
is considered, the pressure decomposition based on Eq. 
(6) will result in a von Mises stress error Δe1 and a resid-
ual displacement error Δe2, as shown in Eqs. (8) and (9), 
respectively. The value of the error is associated with the 
actual stress state of the elements.

3  Results and Discussion
3.1  Verification
In this study, the contact pressure and contact area of 
the elastic contact, elastoplastic contact, and hyperelas-
tic contact between the hemisphere and rigid plane were 
calculated using the numerical method. The results were 
compared with those obtained using the FEM and the 
Hertz analytical solutions to verify the accuracy of the 
algorithm. The radius (R) of the hemisphere was 0.5 mm.

3.1.1  Linear Elastic Contact
According to the Hertz theory, when a load F = 4p0ER2 
= p0EA0 is applied between a ball of radius R and a rigid 
plane, the equivalent elastic modulus E*, maximum 
deformation of the ball ω, contact area A, and maximum 
contact pressure Pmax can be expressed as shown in Eq. 
(10) [29]:

Figure 6(a) shows the results of elastic contact between 
the hemisphere (E = 210 GPa; Poisson’s ratio ν = 0.3) and 
the rigid plane calculated using the Hertz theory and the 
FEM (using ABAQUS software), where Pmax/E--FEM, 
Pmax/E--Hertz, CA--FEM, and CA--Hertz represent 
Pmax/E and CA calculated using FEM and Hertz theory, 
respectively; error--Pmax and error--CA are relative error 
of two methods. As shown, as the load increased, the 
dimensionless contact area CA = A/A0, and the maxi-
mum contact pressure Pmax increased gradually. When 
the load was small, the result calculated using the Hertz 
theory was similar to that obtained using the FEM, 
thereby verifying the accuracy of the FEM calculation 

(8)σVM1 = σn +�σVM = σVM2 + σVM3 +�e1,

(9)ur = u(pe)+ u(pp)− u(p)+�e2.

(10)

E∗
=

E

1− ν2
,

ω=
(

3p0E/E
∗
)
2
3R,

A = πRω,

Pmax =
2E∗

π

(ω

R

)0.5

.

Table 1 Iteration number comparison between Jacq’s method 
and simplified method

Average loop 
number for E 
loop (step 1)

Average loop 
number for P 
loop

Total P-loop 
number for each 
loading step

Jacq’s method 
[21]

10 80-5 (step 2) 300

Simplified 
method

10 1 (step 6) 10

Table 2 Calculation effort comparison between Jacq’s method 
and simplified method

One E-loop (step 1) One P-loop (step 2)

Jacq’s 
method

mNslnNs Pressure stress Residual stress

Nvz(Ns+Nvs)ln(Ns+Nvs) Nvz
2  Nvsln  Nvs

Simplified 
method

mNslnNs 2NslnNs (step 6)

Figure 5 Stress state of element under different pressure 
distributions
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within the range of small loads. Moreover, the relative 
error between the two methods increased gradually as 
the load increased. The contact area calculated using 
the Hertz theory was larger than that obtained using the 
FEM, whereas the maximum contact pressure result was 
the opposite. Based on the derivation process of the Hertz 
theory, it was discovered that the calculated contact area 
was larger than the actual value, whereas the maximum 
contact pressure was smaller than actual value, which is 
consistent with the results above. In addition, the Hertz 
theory is only suitable for small loads and deformations. 
When the deformation is large, the calculation error 
becomes extremely large and hence the Hertz theory 
cannot be applied. For example, when the dimensionless 
load p0 = F/A0E = 0.0003, the maximum deformation of 
the ball is ω≈0.0042 mm = 0.0084R, the radius of contact 
area is approximately 0.0465 mm = 0.093R, and ω2/a2 ≈ 
0.008 ≪ 1; therefore, the calculation error is negligible, 
and the Hertz theory is applicable. When p0 = 0.1, ω ≈ 
0.16 mm = 0.32R, a ≈ 0.3 mm = 0.6R, and ω2/a2 ≈ 0.28, 
the calculation error is not negligible. To further verify 
the accuracy of the FEM under a large load (p0 = 0.1), the 

mesh was refined from the original 17908 elements to 
60282. It was discovered that the maximum contact pres-
sure increased from 0.5298E to 0.5319E, and the contact 
area increased from 0.2884A0 to 0.2896A0, and the rela-
tive errors for both were less than 0.5%. Therefore, the 
calculated values using the FEM were regarded as accu-
rate for the entire load range.

Because Stanley’s method [18] is applicable to com-
plete contact, w must be modified to w’ = k × w, based 
on the FEM results. The modified results are presented 
in Figure  6(b), where k is correction coefficient; error-
-Pmax and error--CA are relative errors of numerical 
method and FEM, respectively. As shown, the value of 
k remained stable over the entire load range of approxi-
mately 0.135. Furthermore, elastic contact with an elas-
tic modulus of 0.5E and 2E was obtained using the FEM. 
The results show that, regardless of the elastic modulus, 
the calculation results under the same p0 were the same, 
indicating that the coefficient k is applicable to the lin-
ear elastic contact calculation of materials with different 
elastic moduli. The CA and Pmax were calculated using 
the numerical method, and their relative errors com-
pared with the FEM results under different loads p0 were 
calculated as well, as shown in Figure 6(b). In the entire 
load range, the relative error of Pmax increased with the 
load, and all error values were less than 10%. The rela-
tive error of the CA first decreased and then increased 
as the load increased. For the numerical simulation, the 
CA is the ratio of the number of elements in the con-
tact area (approximately circular) to the total number of 
elements. Compared with a large load, when the load is 
smaller, the same error for the number of elements in the 
contact area will result in a larger relative error for the 
CA. In addition, the total number of elements (64 × 64 
in this section) and the presence of a planar area around 
the hemisphere (as shown in the inset of Figure 6(b)) will 
affect the relative error of the CA.

3.1.2  Elastoplastic Contact
In this study, the numerical method was used to calcu-
late the elastoplastic contact between a hemisphere and 
a rigid plane. The results were compared with the linear 
elastic and elastoplastic results calculated using the FEM, 
as shown in Figure 7. In Figure 7, Pmax,E,FEM, Pmax,EP,FEM, 
and Pmax,EP,S represent Pmax/E of elastic contact by FEM, 
elastoplastic contact by FEM, and elastoplastic contact 
by numerical method. Representation for CA is denoted 
similarly. Pmax,S,FEM,  CAS,FEM are relative error of elasto-
plastic contact for numerical method and FEM, respec-
tively. The uniaxial compressive stress–strain curve of 
the material exhibits linear hardening, an elastic modulus 
E = 210 GPa, E′ = 0.5E = 105 GPa, and an initial yield 
stress σn = 235 MPa = 0.0011E. The yield stress σY and 

Figure 6 Results of elastic contact
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plastic strain εp of the material can be expressed using 
Eq. (11) [21], and the material properties for the FEM can 
be defined accordingly. Based on the CEB model [29], an 
initial yield occurs when p > KH = K∙a∙σn = 0.6 × 2.8 × 
235 MPa = 394.8 MPa = 0.0019E. Therefore, Eq. (12) was 
used to define the critical pressure pn in the numerical 
method. If the von Mises stress is greater than the yield 
stress σn in the FEM, or the maximum contact pressure 
Pmax is greater than the critical yield pressure pn in the 
numerical method, then the material will yield:

As shown in Figure  7, if plastic deformation is con-
sidered, then Pmax decreases, and CA increases under 
the same load. Compared with the linear elastic con-
tact results, the elastoplastic contact results of Pmax and 
CA calculated using the numerical method were simi-
lar to those of the FEM results. Yielding occurred over 
the entire load range, and the plastic deformation area 
increased with the load. The error of the elastoplastic 
contact caused by the numerical method was due to the 
calculation of the linear elastic contact and the solution 
for the residual deformation. When the load p0 ranged 
between 0.0003 and 0.1, the relative error of the contact 
area was small, and the relative error of the maximum 
contact pressure was less than 15%.

In the numerical calculation for the elastoplastic con-
tact, the total number of elements was 64 × 64 = 4096, 
and the specification error er (as shown in Figure 3) was 
0.03. To understand the effects of the number of grids 
and the value of er on the calculation results, the calcu-
lation time and calculation error of Pmax for different er 
values (0.01, 0.03, 0.05, 0.1) and different grid numbers 

(11)σY = σn +
E′

1− E′/E
εp,

(12)pn = KH = 1.68σn.

(16 × 16, 32 × 32, 64 × 64, 128 × 128) were analyzed, as 
presented in Figure 8. As shown in Figure 8(a), within the 
load range, the calculation time was 1–9  min, and the 
calculation error ranged between 9.5% and 14.5%, and 
both decreased as the load increased. At the same grid 
number and same load, the calculation time decreased 
slightly, whereas the calculation error increased slightly 
as er increased. In terms of the effect of the grid number, 
as shown in Figure 8(b), at the same er and the same load, 
the calculation time increased with the grid number, and 
the time span was large. The calculation time did not 
exceed 1 min when the grid number was 16 × 16. When 
the grid number was 32 × 32, the calculation time was 
0–2.5 min. When the grid number was 64 × 64, the cal-
culation time was 2–8 min. When the grid number was 
128 × 128, the calculation time was 8–47 min. However, 
except for the larger calculation error with a grid number 
of 16 × 16, the calculation errors corresponding to the 

Figure 7 Results of elastoplastic contact obtained using numerical 
method

Figure 8 Calculation results under different er values and different 
grid numbers



Page 8 of 14Guo et al. Chinese Journal of Mechanical Engineering          (2023) 36:131 

other three sets of grid numbers were similar. Therefore, 
considering the calculation time and calculation error, a 
grid number of 32 × 32 or 64 × 64 appeared to be a better 
option.

3.1.3  Hyperelastic Contact
The contact behavior between the hyperelastic hemi-
sphere and the rigid plane was calculated. In the FEM, 
the constitutive model of rubber must be defined based 
on the compressive stress–strain curve of the material, as 
presented in Figure 9(a). As shown, among the five fitted 
constitutive models, the  Ogden3 model yielded the best 
fitting result; therefore, it was selected to define the mate-
rial properties in the FEM. For numerical simulation, the 
original stress–strain curve must be simplified to a com-
bination comprising two linear segments. As shown in 
Figure 9(b), three simplified results were obtained: FC1, 
FC2, and FC3. The parameters of each fitted curve are 
shown in Table. As shown, four values were obtained 
for elastic moduli E and E′, whereas three values were 
obtained for the critical stress.

The hyperelastic contact calculation under differ-
ent loads (0.001–50  N) was performed using the FEM. 
As shown in Figure  9(b), two elastic moduli, E1 = 
3.1251 MPa and E2 = 32.4054 MPa, were selected as the 
elastic modulus of the linear elastic contact to approxi-
mate the hyperelastic contact (ν = 0.49), as presented in 
Figure 10. In Figure 10, Elastic E1 and Elastic E2 represent 
linear elastic contact results using FEM with elastic mod-
ulus E1 and E2, respectively. HE-FEM represents results 
of hyperelastic contact calculation using FEM. As shown, 
the approximation results can be artificially segmented 
into three regions. When the load was small, the linear 
elastic contact result with a lower elastic modulus E1 was 
similar to the hyperelastic contact result (area A). When 
the load was large, the linear elastic contact calculation 
with a higher elastic modulus E2 yielded a better approxi-
mation result (area C). Between the two regions (area 
B), the approximation errors of the linear elastic contact 
with both elastic moduli were relatively large. For the 
approximation via linear elastic contact calculation, the 
selection of the elastic modulus E and the approximation 
result are associated with the load and material proper-
ties, which are yet to be elucidated currently, particularly 
for complicated rough surfaces. Therefore, the numerical 
method used in this study was utilized to approximate 
the hyperelastic contact.

In reference to Figure  10, load values of 0.01, 1, 
and 5  N were selected for areas A, B, and C, respec-
tively. For the three fitted curves FC1, FC2, and FC3, 
nonlinear elastic contact calculation was performed 
using the numerical method under the selected three 
loads (the critical pressure pn is calculated using Eq. 

(12)). The results of the pressure distribution along 
the radius of the contact area are shown in Figure 11. 
In Figure 11, “Hyperelastic--FEM” represents result of 
hyperelastic contact calculation in FEM. “FC1,” “FC2,” 
“FC3” represent results of non-linear elastic contact 
calculation with fitted curves FC1, FC2, and FC3 using 
numerical method, respectively. “Elastic-E1-FEM” and 
“Elastic-E2-FEM” represent results of elastic contact 
calculation with elastic moduli E1 and E2 using FEM, 
respectively. When the load was 0.01 N (Figure 11(a)), 
the maximum contact pressures of the three fitted 
curves calculated using the numerical method were 
smaller than the corresponding critical pressures; 
therefore, they were in the state of linear elastic con-
tact. Curve 2 corresponds to a linear elastic contact 
approximation with an elastic modulus of 0.6027 MPa, 
whereas curves 3, 4, and 5 were equivalent to a linear 

Figure 9 Fitting results of compressive stress–strain curve of material
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elastic contact approximation with an elastic modulus 
of 3.1251 MPa; curve 6 corresponds to a linear elas-
tic contact approximation with an elastic modulus 
of 32.4054 MPa. It was observed that under a small 
load, linear elastic contact with a lower elastic modu-
lus E1 and nonlinear elastic contact of the three fitted 
curves yielded good approximation results. When the 
load was 1 N (Figure 11(b)) or 5 N (Figure 11(c)), the 
three fitted curves were in the state of nonlinear elas-
tic contact. When the load was 1  N, compared with 
the large approximation error of linear elastic contact 
with either a lower elastic modulus E1 or a higher elas-
tic modulus E2, the three nonlinear elastic contact cal-
culations yielded better approximation results. When 
the load was 5  N (5  N was extremely large for linear 
elastic contact with elastic modulus E1 to converge in 
the FEM; therefore, it was not considered), the two 

Figure 10 Results of hyperelastic contact and approximation 
via linear elastic contact calculation using FEM

Figure 11 Pressure distribution along radius of contact area
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nonlinear elastic contacts of fitted curves FC2 and FC3 
fitted better. In conclusion, compared with the approx-
imation by linear elastic contact with a specific elastic 
modulus, the nonlinear elastic contact approximation 
offers calculation results of hyperelastic contact that 
can be better fitted within the load range in this study. 
Considering the calculation efficiency and approxima-
tion results, FC3 was the best among the three fitted 
curves. The calculation error of this numerical method 
originated primarily from the fitting results of the 
stress–strain curve, linear elastic contact calculation, 

and the solution of the equivalent residual deforma-
tion. In theory, to better fit the calculation results of 
hyperelastic contact, the original stress–strain curve 
can be simplified to a combination of multiple lin-
ear segments with a shape that resembles the original 
curve.

3.2  Contact Calculation of 3D Rough Surfaces
3.2.1  Machined Rough Surface
For the contact between the machined rough surface and 
the rigid plane (Figure 12(a)), the typical form of the cross 
section of the leak path formed at the interface contact 
was discovered to be a triangle with α≈4° [30]. As shown 
in Figure 12(b), the height of the initial undeformed cross 
section of the leak path was h0. Under an applied load F = 
p0E0 × l0, the contact area between the rough surface and 
the rigid plane was Ac. The cross section of the leak path 
was reduced proportionally, and the deformed height 
was reduced to h. Therefore, the relationship between h 
and Ac can be expressed as shown in Eq. (13), where CA 
denotes the dimensionless contact area. And the topog-
raphy and pressure distribution of deformed surface can 
be obtained by contact calculations, shown in Figure 11 
and Figure 13. Using the laminar flow of an incompress-
ible fluid as an example, the viscosity of the fluid is η. 
When the fluid pressure difference across the leak path 
is Δp, the leak rate of a single deformed leak path can 
be calculated using Eq. (15) [31], where qV is the volume 
flow rate:

(13)h = h0(1− Ac/2x0l0) = h0(1− CA),Figure 12 Contact between machined rough surface and rigid 
plane

Figure 13 Surface topography and pressure distribution with elastic contact (p0 = 0.5 MPa)
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As shown in Eqs. (9) and (10), to obtain the volume 
flow rate, the contact area Ac or dimensionless con-
tact area CA must be solved based on the applied load. 
Therefore, the numerical method was used to calculate 
the linear elastic, elastoplastic, and hyperelastic con-
tact between the machined rough surface (the relevant 
parameters are shown in Table  3) and the rigid plane. 
In this example, the height of the initial undeformed 
cross section of leak path h0 was 2 μm, the total num-
ber of elements was 64 × 64 = 4096, and the specifi-
cation error er was 0.03. The calculation results are 
presented in Figure 14. As shown, as the load increased, 
the contact area increased gradually. For the elastoplas-
tic contact, under the same load, the contact area was 
larger than that of the elastic contact and increased as 
E′ decreased. For the hyperelastic contact, compared 
with the elastic contact, the contact area reduced and 
increased as E’ decreased.

As presented in Eq. (15), qV is proportional to h4 when 
Δp, l0, and η remain constant; therefore, h4 was calcu-
lated to compare the relative value of the leakage rate, as 
shown in Figure 15. Contrary to the calculation result of 
the contact area, qV reduced, and the difference in qV for 
different materials increased with the load. For the elas-
toplastic contact, under the same load, the flow rate was 
less than that of the elastic contact and decreased with 
E’. For the hyperelastic contact, compared with the elastic 
contact, the flow rate increased and then decreased as E’ 
decreased.

3.2.2  Random Rough Surface
For an isotropic complicated rough surface, if the surface 
topography is known, then the leakage channel can be 
determined using the lattice leakage model [32], and the 
leakage rate can be calculated using Eq. (14). The topog-
raphy of the undeformed rough surface is shown in Fig-
ure 16, where the length and width of the rough surface 

(14)dqV =
z3�p

12ηl0
dx =

x3tan3α�p

12ηl0
dx,

(15)qV = 2

∫ h
tan α

0

x3 tan3 α�p

12ηl0
dx =

h4�p

24ηl0 tan α
.

are Δx and Δy, respectively. The undeformed profile is 
expressed as shown in Eq. (16), and the units of z was 
micrometers.

The contact area and leakage rate were calculated, 
and the results are shown in Figures  17, 18, respec-
tively. In this example, the total number of elements 
was 64 × 64 = 4096, and the specification error er was 
0.03. Similar to the calculation results presented in 
Section  3.2.1, for the same material, the contact area 
increased, and the leakage rate decreased as the load 
increased. The effects of different materials on the 
calculation results was the same as that presented in 

(16)z = cos(
πx

8
) cos(

πy

8
).

Table 3 Relevant parameters of different materials

E E′ ν Critical pressure pn

Elastic E0 ‒ 0.3 ‒
Elastoplastic (EP) E0 0.5E0 0.3 0.002E0

Hyperelastic (HE) E0 10 E0 0.49 0.4E0

Figure 14 Dimensionless contact area CA for different materials

Figure 15 Volume flow rate for different materials
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Section 3.2.1. However, for the elastoplastic contact in 
this example, when the contact area exceeded a certain 
value, no through leakage channel was present; there-
fore, the leakage rate decreased to 0.

Consider the calculation results of elastoplastic 
contact with E′ = 0.5E as an example, as shown in 
Figure  19. In the plan view of the leak channel (Fig-
ure 19(b1)–(b3)), blue indicates the contact field, green 
the through leak channel, and white the leak channel 
with no fluid passing through. When the applied load 
p0 was in the range of 0.5–2, the dimensionless contact 
area was less than 0.35, and a through leakage chan-
nel was present. When p0 exceeded 3, the contact area 
was extremely large, which hindered the formation of 
a through leakage channel; therefore, the leakage rate 
was 0.

4  Conclusions

(1) Based on the FFT, a numerical method suitable for 
elastoplastic and hyperelastic frictionless contact 
that can be used to solve 2D and 3D contact prob-
lems was proposed herein.

(2) For elastoplastic contact, the calculation efficiency 
improved at the expense of calculation accuracy 
when using the proposed method.

(3) For hyperelastic contact, the proposed method 
reduced the dependence of the approximation 
result on the load used in the linear elastic approxi-
mation. Therefore, the elastic modulus need not be 
selected based on the load, material properties, and 
other factors, as in the linear elastic contact approx-
imation.

(4) In some engineering applications, contact calcu-
lation between complicated rough surfaces and 
fluid–solid coupling is necessitated. In most pro-
cessing methods, the linear elastic contact result is 
used as the approximation result to reduce the cal-
culation time, which must be improved to achieve 
better calculation accuracy. The proposed method 
provides a balance for such problems; therefore, it is 
expected to be advantageous in engineering appli-
cations.

(5) To better fit the calculation results of the hyperelas-
tic contact, the original stress–strain curve can be 
simplified to a combination of multiple linear seg-
ments, and the approximation results can be fur-
ther discussed.

Figure 16 Topography of undeformed rough surface

Figure 17 Dimensionless contact area CA for different materials

Figure 18 Volume flow rate for different materials
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