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Abstract 

Ultrasonic testing (UT) is increasingly combined with machine learning (ML) techniques for intelligently identify-
ing damage. Extracting significant features from UT data is essential for efficient defect characterization. Moreover, 
the hidden physics behind ML is unexplained, reducing the generalization capability and versatility of ML methods 
in UT. In this paper, a generally applicable ML framework based on the model interpretation strategy is proposed 
to improve the detection accuracy and computational efficiency of UT. Firstly, multi-domain features are extracted 
from the UT signals with signal processing techniques to construct an initial feature space. Subsequently, a feature 
selection method based on model interpretable strategy (FS-MIS) is innovatively developed by integrating Shapley 
additive explanation (SHAP), filter method, embedded method and wrapper method. The most effective ML model 
and the optimal feature subset with better correlation to the target defects are determined self-adaptively. The pro-
posed framework is validated by identifying and locating side-drilled holes (SDHs) with 0.5λ central distance and dif-
ferent depths. An ultrasonic array probe is adopted to acquire FMC datasets from several aluminum alloy specimens 
containing two SDHs by experiments. The optimal feature subset selected by FS-MIS is set as the input of the cho-
sen ML model to train and predict the times of arrival (ToAs) of the scattered waves emitted by adjacent SDHs. The 
experimental results demonstrate that the relative errors of the predicted ToAs are all below 3.67% with an average 
error of 0.25%, significantly improving the time resolution of UT signals. On this basis, the predicted ToAs are assigned 
to the corresponding original signals for decoupling overlapped pulse-echoes and reconstructing high-resolution 
FMC datasets. The imaging resolution is enhanced to 0.5λ by implementing the total focusing method (TFM). The rela-
tive errors of hole depths and central distance are no more than 0.51% and 3.57%, respectively. Finally, the superior 
performance of the proposed FS-MIS is validated by comparing it with initial feature space and conventional dimen-
sionality reduction techniques.
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1 Introduction
Recently, the demand for defect characterization and 
damage identification in materials/structures has been 
growing in various industrial applications, such as aero-
space, nuclear, oil and gas, to ensure high performance 
and safety [1]. To this end, ultrasonic nondestructive 
testing (UT) is widely used owing to low cost, low power 
consumption and no change to materials/structures [2]. 
The scattered/diffracted/reflected waves are employed by 
UT to detect and characterize unknown defects by signal 
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processing [3–5] and imaging processing techniques [6–
8]. With the development of computer science and arti-
ficial intelligence, data-driven machine learning (ML) 
techniques have been adopted in UT area to facilitate 
signal interpretation [9, 10]. ML provides a powerful tool 
to find and establish the complicated nonlinear relation-
ship between observed UT data and physical properties 
of the probed structures owing to its advantages in high 
speed and strong fitting ability [11]. Compared to manual 
interpretation, ML eliminates the influence of subjec-
tive factors and realizes the intelligent identification of 
defects [12–14]. For instance, Yuan et al. [15] proposed a 
neural network model to identify echoes from defects in 
B-scans of train wheels and the accuracy of defect recog-
nition was improved to 92%. It should be noted that the 
performance of ML techniques is primarily dependent 
on the features extracted from UT data [16]. Original UT 
data contain a number of invalid and redundant features. 
Applying raw UT data directly in defect characterization 
increases the complexity and computational time of ML 
models [12, 16]. Therefore, the extraction and selection of 
defect features with meaningful information are crucial 
for improving defect characterization accuracy and com-
putational efficiency [17].

Current researches on UT combined with ML typi-
cally focus on the extraction of sensitive features from 
the time domain, frequency domain and time-frequency 
domain by statistical techniques [10], Fourier transform 
[18], wavelet transform [19] or empirical mode decom-
position (EMD) [20]. Then, the appropriate ML model, 
such as support vector machine (SVR) [21], artificial 
neural network (ANN) [22] or extreme learning machine 
(ELM) [23], is established by using these features to pre-
dict defect parameters. On this basis, feature selection 
methods preserve important information and remove 
redundant features without changing the physical mean-
ing of original feature set, reducing the overfitting of the 
prediction model.

Ma et  al. [24] developed a back propagation neural 
network optimizing Gaussian process regression (BP-
GPR) algorithm to predict the porosity of thermal barrier 
coating. The features extracted from ultrasonic reflec-
tion coefficient amplitude spectrum were optimized by 
combining BP neural network and high determination 
coefficient rule. The predictive accuracy of BP-GPR was 
32% and 48% higher than that predicted only by BP neu-
ral network or GPR algorithm, respectively. Bai et  al. 
[25] extracted the scattering matrix from array data to 
characterize the sizes and orientation angles of small 
defects. A dimensionality reduction approach based on 
locality preserving projection was proposed to separate 
the scattering matrices of unfavorably oriented defects. 
In addition, the filter method [26], embedded method 

[27] and wrapper method [28] used in the field of fault 
diagnosis are typically implemented according to the 
divergence or correlation of features to optimize feature 
space. Nazir et al. [29] monitored the tool conditions of 
ultrasonic metal welding via sensor fusion and ML. The 
filter method, embedded method and wrapper method 
were employed to select ten sensitive features from the 
initial feature space containing 97 features. The classifica-
tion accuracies of tool conditions for training and testing 
datasets were both close to 100%. Besides, dimensionality 
reduction techniques, such as principal component anal-
ysis (PCA) [30] and factor analysis (FA) [31], can also be 
used for feature selection by fusing the high-dimensional 
feature set to the significant lower-dimensional features 
[16]. Lv et al. [32] adopted the noncontact laser ultrasonic 
technique and the identified ML algorithm to quantify 
the widths and depths of subsurface defects simultane-
ously. PCA was applied to reduce mutually correlated 
features and improve detection accuracy. The highest 
recognition rate of subsurface defects was 98.48%.

However, the applications of ML methods in UT still 
face some challenges, e.g., the hidden physics behind 
ML and the unexplained contribution of each feature 
[11]. The intrinsic black-box character of ML models 
induces the reduction of the generalization performance 
and applicability [33, 34], and the lack of knowledge is a 
barrier to the deployment of ML in UT area. The higher 
the interpretability of an ML model, the easier it is for 
someone to comprehend certain decisions or predic-
tions made, and the interpretability is strongly reliant on 
the contribution of each feature [35]. For example, Xu 
et al. [34] proposed an explainable ensemble tree model 
to identify pipeline leakage scenarios. The optimized fea-
ture space of each pipe leakage state was summarized 
and analyzed by Shapley additive explanation (SHAP). 
While retaining the advantages of ML, the method over-
comes the problem that the correlation between the 
results brought by black-box character and the feature 
space cannot be analyzed. Consequently, to obtain an 
interpretable ML model, various signal processing tech-
niques should be applied to extract multi-domain fea-
tures for comprehensively mining the useful information 
and intrinsic properties from UT data. Then, the sensi-
tive features in the initial feature space are selected by 
establishing the relation of features and predicted results 
based on the model interpretation strategy to eliminate 
the deficiencies, such as dependence on expert experi-
ences and poor universal applicability of features.

In this paper, a generally applicable ML framework 
based on model interpretation strategy is proposed by 
combining the UT methods, signal processing techniques 
and ML algorithms for improving defect characterization 
accuracy and computational efficiency. The outline of this 
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paper is organized as follows. Section 2 gives an overview 
of the proposed ML framework. In Section 3, two illus-
trative examples are given to show the effectiveness of 
the proposed framework by identifying and locating the 
side-drilled holes (SDHs) with subwavelength spacing. In 
Section 4, some comparisons are conducted to highlight 
the superiority of the proposed feature selection method. 
Conclusions are drawn in the final section.

2  Generally Applicable ML Framework
The input pulse used in UT is transmitted into the mate-
rial under test, and the presence of material discontinui-
ties or defects gives rise to scattered/diffracted/reflected 
signals [36]. On this basis, the identification and charac-
terization of defects are carried out by appropriate signal 
processing techniques. ML has the ability to obtain the 
complicated relationship between observed data and 
physical properties of the probed structure by adaptive 
learning and training, as shown in Figure 1, having been 
widely used in UT area. ML maps inputs (or features) to 
outputs (or target variables) during training to produce a 
model that accurately predicts the outputs of previously 
unseen input data [37]. However, the implementation 
process requires expertise to extract and select appro-
priate features from UT data as model inputs, deter-
mine the ML algorithm and find a suitable set of model 
hyperparameters.

The environmental noises accompanying measured 
UT signals obstruct damage diagnosis. The acquired sig-
nals are preprocessed firstly by filtering, smoothing and 
normalization to suppress noise. However, original UT 
signals contain invalid and redundant information. To 
reduce the complexity of ML models, various signal pro-
cessing techniques are conducted on the preprocessed 
signals to deeply mine and extract the effective multi-
domain features (e.g., time-domain, frequency-domain 
and time-frequency domain features). Every raw UT sig-
nal is transformed into a set of features with physical and 
statistical meaning related to the target defect, and an 
initial high-dimensional feature space is constructed.

Next, a feature selection method based on model inter-
pretable strategy (FS-MIS) is proposed to self-adaptively 
obtain the optimal feature subset with more physically 
interpretable. Filter method and embedded method [38] 

are used to perform feature preselection from the initial 
feature space by considering two aspects: (1) whether 
the feature diverges or converges; and (2) the correlation 
between the feature and the target. Moreover, the opti-
mal ML model depends on the issue to be addressed and 
is determined by evaluating the predictive capability of 
several commonly used models in complex and nonlinear 
problems. Support vector regression (SVR) is a powerful 
learning model to minimize structural risk with better 
generalization capability based on statistical theory [21]. 
Gradient boosted regression (GBR) is an ensemble learn-
ing algorithm that promotes a series of weak learners to 
strong learners through iterative calculations [39]. As an 
extended variant of the bagging mode in ensemble learn-
ing, random forest regression (RFR) introduces random 
attribute selection in the training process of the decision 
tree to implement with powerful performance in predic-
tion and regression [39]. The extreme gradient boosting 
(XG-Boost) model uses a second-order Taylor expan-
sion to extend the loss function and add a regularization 
term, having the advantages of low computational com-
plexity, fast running speed and high accuracy [40]. Back-
propagation neural network (BPNN) is a multi-layer 
feedforward neural network based on the error back 
propagation algorithm [41]. By continuously adjusting 
the weight values of the network, the final network out-
puts are as close as possible to the expected outputs to 
achieve the purpose of training. The hyperparameters of 
the aforementioned ML models are determined by grid 
search [42].

Two statistical indexes, mean squared error (MSE) and 
determination coefficient (R2), are introduced to evaluate 
the model performance. The smaller MSE and the larger 
R2 indicate better reliability and predictive accuracy.

where m represents the number of samples; Ti and Hi are 
respectively the expected and predicted values, and T  
and H  are the averages of expected and predicted values, 
respectively.

It is difficult to understand the model decisions and the 
influences of features due to the intrinsic black-box char-
acter of ML models [2]. Therefore, SHAP [43] is incor-
porated to explore the importance of each feature on 
the predicted results and self-adaptively sort out highly 
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,

Figure 1 Schematic diagram of UT combined with ML
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sensitive features with more defect information, fur-
ther reducing the dimension of feature space. SHAP is 
a model interpreter, a concept in game theory [33]. The 
SHAP value φP of feature P is the average of its marginal 
contributions across all possible permutations and com-
binations considered [33].

where F(V) corresponds to the output of the ML model 
to be explained using a set V of features, and n is the 
complete set of all features.

Noteworthy, features that appear irrelevant to the tar-
get singly may become highly relevant by taking with oth-
ers [28]. The impact of feature combination should also 
be considered. Hence, the wrapper method is utilized 
to assess the potential feature subsets [38, 44]. Multiple 
combinations of the available features are tested, and the 
feature subset presenting the best performance is finally 
chosen [38]. In this paper, the optimal feature subset is 
determined by comparing the predictive performance of 
the feature subsets obtained by sequential forward selec-
tion (SFS) [45] and sequential backward selection (SBS) 
[46].

Finally, the ML model trained by the feature subset 
selected with FS-MIS is determined whether it is opti-
mal according to the predictive accuracy. If the outputs 
deviate greatly from the expected values, the initial fea-
tures will be re-extracted. Repeat the above processes 
until the most effective ML model and the optimal fea-
ture subset highly correlated to the target characteristics 
are acquired. Overall, Figure  2 shows the proposed ML 
framework, which can be applied to different UT scenar-
ios for locating and characterizing defects quantitatively.

3  Experiments
3.1  Specimens and Experimental Details
To evaluate the superior performance of the proposed 
framework, the experiments were conducted on six 
180 mm × 95 mm × 15 mm 6061 aluminum alloy speci-
mens containing adjacent SDHs. The longitudinal wave 
velocity was 6300 m/s, and the corresponding wavelength 
λ in aluminum alloy was about 2.8  mm at 2.25  MHz 
inspection frequency. As schematically illustrated in Fig-
ure  3a, the central distances of the SDHs in specimens 
are 1.40 mm (0.5λ) ~ 2.80 mm (1.0λ) with a step of 0.28 
mm (0.1λ), and the diameter and central depth of the 
SDHs are 1.0 mm and 50 mm, respectively.

The full matrix capture (FMC) technique is introduced 
to capture all the possible independent information from 
the array elements and provide plenty of flexibility for 
post-processing [47]. For an array with N elements, N2 

(3)

φP =
1

|n|!

∑

V⊆n\{P}

|V |!(|n| − |V | − 1)![F(V ∪ {P})− F(V )],

signals are obtained by FMC. Figure 3a shows the ultra-
sonic path from the ith element (with coordinates (xi, 
0)) to the jth element (with coordinates (xj, 0)) through 
a potential scatterer located at coordinates (xref, zref), 
and yij(t) denotes the corresponding A-scan signal. The 
Eddyfi M2M PANTHER and a linear array probe (64 ele-
ments, 0.6 mm pitch and 2.25 MHz central frequency) 
are employed to acquire FMC data with 100 MHz sam-
pling frequency from the top and bottom surfaces of each 
specimen, as shown in Figure  3b. Therefore, the actual 
to-be-measured SDH depths included 45 mm and 50 
mm. To reduce data redundancy, only the A-scan signals 
transmitted and received by the left 32 elements were 
considered according to the symmetry and reciprocity 
of the inspection model. Therefore, 12288 time-domain 
signals corresponding to 12 FMC datasets were obtained 
from experiments.

The representative time traces of the scattered waves 
are plotted in Figure 4a, where the pulses from two SDHs 
are overlapped due to the low time resolution [3]. The 
time resolution depends on the spatial pulse length (SPL) 
of the probing signal, and the theoretical resolution limit 
in UT is equal to half the SPL [48]. The SPL in this study 
was about 1.08 μs, so the resolution limit was 0.54 μs. 
Taking the SDHs with 0.5λ central distance in 45 mm and 
50 mm depths as examples, the pulse-echoes in 2048 sig-
nals were strongly coupled, since the calculated interval 
of the times of arrival (ToAs) of scattered waves ranged 
from 0.0048 to 0.19 μs. It is desirable to improve the time 
resolution of each A-scan signal in the FMC datasets for 
accurately locating the SDHs.

Moreover, post-processing imaging techniques, such as 
the total focusing method (TFM), can be performed on 
the FMC data to obtain high-resolution ultrasonic images 
[49]. TFM is a delay-and-sum beamforming algorithm, in 
which the array signals are synthetically focused on each 
point in the region of interest [50].

As shown in Figure 3a, the delay law is calculated based 
on the ray path from each array element to point Q, and 
the corresponding intensity I(xref, zref) is given by

where tij represents the travel time from the ith element 
through focus point Q to the jth element.

The TFM images of the SDHs with 0.5λ central distance 
in 45 mm and 50 mm depths are presented in Figure 4b. 
It is challenging to distinguish and locate the SDHs with 
subwavelength spacing due to the diffraction limit [51]. 
Focusing on the above two basic issues in UT, the pro-
posed ML framework based on model interpretation 
strategy is applied to ultrasonic signal analysis and image 

(4)I
(

xref , zref
)

=

N
∑

i=1

N
∑

j=1

yij(tij(xref , zref )),
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processing to simultaneously improve the time and imag-
ing resolutions and verify the performance.

3.2  Construction of Feature Space
Considering that the key to improving time and imaging 
resolutions is to decouple the overlapped pulse-echoes 
from two closely spaced scatterers [49], the outputs of 
the ML model adopted the corresponding ToAs t1 and t2. 
As given by Eq. (5), the predicted ToAs of the scattered 
waves are assigned to the corresponding original signal to 
decouple the overlapped pulse-echoes. If and only if t = t1 
or t2, the signal amplitude is 1; otherwise, the amplitudes 
are all equal to 0. The schematic diagrams of the raw and 
decoupled time-domain signals are shown in Figure 5.

The initial feature space was established by extract-
ing 82 features from each A-scan signal in the FMC 
datasets based on various signal processing techniques. 
There were 21 statistical features associated with signal 
amplitude and time information extracted in the time 
domain, including peak value, ToA of peak value, root-
mean-square, peak-to-peak value, variance and skew-
ness [52], etc. Shannon entropy [53] is a measurement of 
uncertainty and depicts the distribution and variation of 
UT signals. The entropy at given scales of the UT signal 
from SDHs always varies with central distance and can be 

(5)ŷij(t) =

{

1, t = t1 and t2,

0, t �= t1 or t2.

Figure 2 Machine learning framework based on model interpretation strategy for improving UT
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considered as another important feature for defect char-
acterization [54].

Frequency domain analysis extracts the features advan-
tageous in defect identification [16]. For example, the 
intervals between the extreme values in the frequency 
spectrum are related to the path/time difference of the 
scattered waves from adjacent defects [5]. A total of 22 
features were extracted from the frequency spectrum 

obtained by fast Fourier transform (FFT), such as maxi-
mum amplitude, mean square frequency, −  6 dB band-
width, resonant frequency, gravity frequency and 
frequency variance [10], etc. In addition, autoregressive 
(AR) spectrum extrapolation has the ability to extend 
the effective frequency band and compress time-domain 
pulse width to improve time resolution [55]. To this end, 
AR spectrum extrapolation was implemented on each 
A-scan signal. The AR parameters were determined by 
knowledge-based methods [49], and the AR coefficients 
were extracted as frequency-domain features [56, 57].

In time-frequency domain analysis, wavelet packet 
transform (WPT) with ‘DB5’ mother wavelet and 4 depo-
sition layers was used to decompose each A-scan signal 
into 16 frequency band signals. The Shannon entropy of 
each frequency band and the energy ratio in total energy 
were extracted as the time-frequency domain features, 
resulting in a total of 32 features. Furthermore, as an 
adaptive time-frequency analysis method, EMD [58] was 
introduced to decompose UT signals into a finite number 
of stationary intrinsic mode functions (IMFs). The larg-
est eigenvalue of the covariance matrix constructed by 
all IMFs (except the residual IMF) [20], along with the 
normalized energy and energy moment of the first three 
IMFs, are adopted as the time-frequency features.

3.3  Selection of Features and Regression Model
Feature selection has significant influences on the predic-
tive accuracy of ML models. Determining suitable fea-
tures can reduce the complexity and overfitting, alleviate 
the effect of the curse of dimensionality and improve the 
generalization capability and interpretability [26]. In this 
paper, FS-MIS was proposed by integrating SHAP, fil-
ter method, embedded method and wrapper method to 
reduce the dimension of initial feature space and make 
feature selection more physically interpretable. The opti-
mal ML model was determined simultaneously in this 
process, and the sensitive features with minimum redun-
dancy and maximum relevance to target defects were 
selected self-adaptively.

Figure 3 Schematic diagram of aluminum alloy specimens 
and experimental equipment: a schematic diagram of aluminum 
alloy specimens; b experimental equipment

Figure 4 Typical experimental A-scan signals and TFM images 
for the SDHs with 0.5λ central distance and different depths: a A-scan 
signals; b TFM images

Figure 5 Schematic diagrams of the raw and decoupled 
time-domain signals: a raw signal yij(t), b decoupled signal ŷij(t)
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Firstly, the filter method was implemented to select 
features. The features whose variances dissatisfied the 
threshold of 0.05 were removed, and 66 features were 
retained, since the feature with low variance is not ben-
eficial to the discrimination of different samples [29].

Mutual information (MI) was used to measure the lin-
ear or nonlinear relationship between each feature and 
ToAs. The irrelevant features with the maximal informa-
tion coefficient (MIC) equal to 0 were removed from the 
feature space.

where p(a) and p(b) are respectively the probability of 
input a and output b, and p(a, b) is the joint distribution 
probability of a and b.

Embedded method integrates the feature selection and 
the training of the learner, which are completed in the 
same optimization process. A total of 20 important fea-
tures higher than the average weight were determined by 
random forest method [59], as shown in Table 1.

A total of 12288 A-scan signals (12 FMC datasets) were 
acquired by experiments and randomly divided into 80% 
training data and 20% testing data. SVR, GBR, RFR, XG-
boost and BPNN were adopted to establish regression 
models. The hyper-parameters of each model were found 
by grid search. Ten-fold cross-validated-average MSE and 
R2 were calculated to evaluate the accuracy of the above 
models. As shown in Figure 6, the BPNN model has the 
best overall performance with the lowest MSE and high-
est R2, since it has a strong ability for data mining and 
solving inverse problems with highly nonlinear correla-
tions [10] and the mapping between input and output 

(6)

MIC: I(A;B) =

∫ ∫

p(a, b) lg

(

p(a, b)

p(a)p(b)

)

dadb,

data can be obtained by adaptive training with sufficient 
samples. Consequently, BPNN was chosen as the optimal 
ML model in the following parts.

In addition, strong correlations may exist among the 20 
selected features. If one feature provides enough informa-
tion, the other highly relevant features no longer provide 
additional contributions. Pearson correlation coefficient 
was calculated to select relevant features for overcom-
ing the influence of multicollinearity. Figure  7a shows 
the correlation degree between features. The grids with 
crossed horizontal and vertical coordinates represent the 
Pearson correlation coefficient scores. The darker color 
indicates a higher correlation degree between the two 
features. The 20 features were divided into six groups of 
relevant features (the absolute value of Pearson correla-
tion coefficient > 0.9) and five independent features (P10, 
P11, P12, P13 and P20). Subsequently, SHAP was incorpo-
rated to analyze the importance of each feature on the 
outputs in BPNN model. Figure  7b depicts the stacks 
of the mean absolute SHAP values of each feature for 

Table 1 Indexes and implications of 20 important features

Feature index Feature name Feature index Feature name

P1 Maximum amplitude of time-domain signal P11 The low frequency corresponding 
to the − 6 dB bandwidth of frequency 
spectrum

P2 ToA of maximum amplitude P12 The high frequency corresponding 
to the − 6 dB bandwidth of frequency 
spectrum

P3 Temporal kurtosis P13 Resonant frequency

P4 Minimum amplitude of time-domain signal P14 Spectral mean

P5 ToA of minimum amplitude P15 Spectral variance

P6 Temporal mean P16 Spectral skewness

P7 Crest factor P17 Spectral kurtosis

P8 Temporal margin index P18 Energy ratio of 1st wavelet sub-band

P9 Spectral peak value P19 Energy ratio of 2nd wavelet sub-band

P10 Center frequency P20 Energy ratio of 3rd wavelet sub-band

Figure 6 Performance metrics of different ML models
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two outputs (t1 and t2), and the higher sum indicates 
the greater impact during the prediction process [35]. 
It can be seen that the importance of features is differ-
ent. For each group of the relevant features, the features 
with higher SHAP values (P4, P5, P3, P6, P16 and P19) were 
selected and retained together with the other five inde-
pendent features, resulting in a total of 11 features.

To further reduce the redundancy of feature space, it is 
necessary to consider the contribution of feature combi-
nation. Two greedy wrapper methods (SFS and SBS) were 
adopted to select the optimal feature subset from the 11 
features. A total of 12288 A-scan signals were split into 
the training set and testing set at a ratio of 8:2, and the 
ten-fold cross-validated-average MSE and R2 were used 
to test the predictive accuracy of different feature subsets.

(1) SFS starts with an empty set and iteratively selects 
one feature at a time until no improvement in pre-
dictive accuracy can be achieved. As shown in Fig-
ure 8a, the feature set P1 = (P3, P4, P5, P6, P11, P12, 
P13, P19, P20) has the smallest MSE = 0.0050 and the 
largest R2 = 0.99197.

(2) SBS starts with the set of all features and progres-
sively eliminates the least promising one. This pro-
cess stops if the performance of the learning algo-
rithm drops below a given threshold. As shown in 
Figure 8b, the features set P2 = (P3, P4, P5, P6, P11, 
P13, P16, P19, P20) has the smallest MSE = 0.0049 and 
the largest R2 = 0.99198.

The two feature subsets determined by SFS and SBS 
both contained nine features, of which only one fea-
ture was different. Considering that the MSE and R2 
of P1 and P2 were almost the same, the feature sub-
set P2 with relatively good performance was selected 
as the optimal feature subset in this study. The results 

demonstrated that time-domain features, frequency-
domain features and the features obtained by wavelet 
decomposition were identified as the most significant 
features for predicting ToAs.

Figure 7 Results of feature selection by Pearson correlation and SHAP: (a) Pearson correlation coefficients, (b) mean absolute SHAP values of 14 
features for different outputs (t1 and t2)

Figure 8 Results of feature selection by different wrapper methods: 
(a) SFS, (b) SBS
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3.4  Experimental Results and Analysis
3.4.1  Enhancement of Time Resolution in UT
As mentioned in Section  3.1, 12288 A-scan signals (12 
FMC datasets) were acquired from the aluminum alloy 
specimens, where the central distances of SDHs were 
varied from 0.5λ to 1.0λ. Taking the 0.5λ central distance 
SDHs in 45 mm and 50 mm depths as examples, some 
typical UT signals captured by different transmitter-
receiver pairs are presented in Figures 9a, c, respectively. 
The pulse-echoes from SDHs are overlapped, and it is 
challenging to extract the ToA of the respective scattered 
wave. Nine features (P3, P4, P5, P6, P11, P13, P16, P19, P20) 
were extracted from each A-scan signal to construct the 
feature set used as the inputs of BPNN model. Mean-
while, the ToAs (t1 and t2) of the scattered waves from 
adjacent SDHs were set as the outputs. The 10240 signals 
collected from the SDHs with 0.6λ ~ 1.0λ central distance 
were employed to train the model for obtaining the opti-
mized weights and biases, while the remaining 2048 sig-
nals corresponding to 0.5λ central distance SDHs were 
used to test the model.

The calculated R2 and MSE are respectively equal to 
0.99 and 0.0055, indicating that the trained BPNN model 
has excellent predictive accuracy and generalization 
capability [21].

Figures 10a, b present the predicted ToAs of the test-
ing data. The discrete points are well located around the 
solid line with a slope of 1, indicating that the predicted 
values are approximately the same as the expected values. 

The band lines in the figures show that about 98% of pre-
dicted values are within 1% deviation from the expected 
values. Figures 10c, d show the relative errors of the pre-
dicted ToAs, which are all below 3.67% with an average 
error of 0.25%. Such low errors suggest that the proposed 
ML framework based on model interpretation strat-
egy effectively separates the overlapped UT signals and 
improves the time resolution, i.e., t2 – t1.

3.4.2  Enhancement of Imaging Resolution in UT
The predicted ToAs presented in Section  3.4.1 were 
applied to reconstruct new FMC datasets containing 
decoupled signals for TFM imaging. As shown in Fig-
ure 11a, the SDHs with 0.5λ central distance at different 
depths are identified from the delay-and-sum images. 
The relative measurement errors of hole depths and 
central distances are no more than 0.51% and 3.57%, 
respectively.

Two key parameters, i.e., the peak to central inten-
sity difference (τ) and the array performance indicator 
(API) [60], were introduced to describe the TFM images 
quantitatively. The smaller τ and API values refer to bet-
ter imaging performance. Figure 11b presents the cross-
sections taken through the centers of the SDHs in TFM 
images with raw FMC datasets and reconstructed high-
resolution FMC datasets. The API values for the latter are 
reduced by 92.71% and 87.39% compared to those for the 
former. It is difficult to determine τ values from the origi-
nal TFM images. In contrast, the τ values for the TFM 
images with reconstructed FMC datasets are −17.32 
dB and −  16.42 dB, less than −  6 dB. The experimental 
results demonstrate that the proposed framework is suit-
able for determining the optimal ML model and feature 
subset, accurately predicting the ToAs of the scattered 

Figure 9 Raw and decoupled signals from different 
transmitter-receiver pairs for the SDHs with 0.5λ central distance 
and different depths: (a) Raw signals-45 mm, (b) Decoupled 
signals-45 mm, (c) Raw signals-50 mm, (d) Decoupled signals-50 mm

Figure 10 Comparison of actual value and predicted value: (a) t1, (b) 
t2; and relative error between actual value and predicted value: (c) t1, 
(d) t2
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waves from adjacent defects. The imaging resolution 
can be improved to subwavelength-scale by combining 
the proposed framework and TFM, breaking the diffrac-
tion limit and highlighting the target characteristics with 
accurate location.

4  Discussion
The proposed FS-MIS was validated by comparing it 
with four commonly used feature selection methods, 
including PCA, FA, kernel principal component analy-
sis (KPCA) and independent component analysis (ICA). 
PCA is a linear dimensionality reduction technique rep-
resenting the maximum variance in the data [30]. KPCA 
is a nonlinear PCA developed with the kernel method by 
transforming the input features into a high-dimensional 
space through the nonlinear mapping function and per-
forming PCA to achieve feature fusion and dimension 
reduction [61]. FA describes the variability among the 
original features in terms of fewer variable factors [31]. 
The original features are modeled as the linear combina-
tions of factors plus error. ICA is a statistical and com-
putational technique for revealing hidden information 
underlying feature set [31]. The original features in ICA 
are transformed into new features which are mutually 
statistically independent [62]. In a word, these four meth-
ods integrate the high-dimensional initial feature space to 
significant low-dimensional features.

The mentioned feature selection methods were used 
to reduce the dimensionality of the initial feature space. 
The first two eigenvalues in PCA exhibited the maximum 
cumulative proportion variation equal to 0.99 and were 
chosen for evaluation. The first five principal component 

features were obtained by KPCA with the polynomial 
kernel method. Ten factors were selected by FA accord-
ing to the variance percentage. FastICA algorithm was 
applied to ICA, and five independent components were 
extracted from the initial feature space. The feature sets 
determined by the aforementioned methods were used 
independently as the inputs to predict the ToAs in BPNN 
model. The dataset with 12288 A-scan signals was ran-
domly split into the training set and testing set at a ratio 
of 8:2. The ten-fold cross-validated-average MSE and R2 
were employed to test the predictive performance of each 
feature set. As shown in Figure 12, FS-MIS has the lowest 
MSE (0.0048) and the highest R2 (0.99), i.e., the best over-
all performance compared to other unsupervised tech-
niques (PCA, KPCA, FA and ICA). The unsupervised 
dimensionality reduction is implemented based on the 
features rather than the effect of each feature and feature 
combination on the targets. In contrast, the proposed FS-
MIS method has the capability to self-adaptively obtain 
the optimal feature subset by integrating SHAP, filter 
method, embedded method and wrapper method, quan-
titatively analyzing the contributions of each feature and 
feature combination.

To demonstrate the advantages of FS-MIS method 
in improving computational efficiency, we compared 
the performance of the BPNN models trained with 
nine features selected by FS-MIS and all 82 initial fea-
tures. For the 12288 experimental signals in Section 3, 
10240 signals corresponding to the SDHs with 0.6λ ~ 
1.0λ central distances were employed for training the 
model, and the remaining 2048 signals corresponding 
to the SDHs with 0.5λ central distance were adopted 
to test the model. On this basis, 82 features extracted 
from each A-scan signal were used as the inputs to pre-
dict the ToAs. The statistical indexes R2 and MSE were 
equal to 0.99 and 0.0092, respectively. Compared to the 

Figure 11 TFM images of the SDHs with 0.5λ central distance 
at different depths based on the proposed framework: (a) TFM 
images, (b) Cross-sections taken through scatterers

Figure 12 Performance metrics of BPNN model with different 
feature selection methods
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evaluation results with nine features, the performance 
of the trained model with 82 features is still at a high 
level, and the predictive accuracy falls slightly. How-
ever, the training time is up to 167.25 s, while that of 
nine features is only 5.41 s. The results demonstrate 
that the proposed FS-MIS method is beneficial to 
improve computational efficiency with high predictive 
accuracy.

As given by Eq. (5), the predicted ToAs using 82 fea-
tures were also employed to decouple the overlapped 
pulse-echoes. Figure  13 shows the relative errors 
of the testing dataset between predicted ToAs and 
expected values, where the average error is 0.37% and 
is increased by 0.12% compared to Figures 10c, d. Sub-
sequently, the predicted ToAs were employed to recon-
struct high-resolution FMC datasets, and TFM imaging 
was conducted by delay-and-sum beamforming. As 
illustrated in Figure  14a, the SDHs with 0.5λ central 
distance in 45 mm and 50 mm depths are resolved, but 
the maximum measurement errors of hole depths and 
central distance were 0.71% and 59.59%, much larger 
than those observed in Figure 11a. Figure 14b presents 
τ values and API values of the TFM images obtained 
by different feature sets. Compared to the TFM images 
combined with 82 features, the τ and API values cor-
responding to nine features are reduced significantly. 
The experimental results demonstrate that the feature 
subset selected by FS-MIS excellently describes the 
intrinsic property of UT signals and accurately predicts 
the ToAs of the scattered waves from adjacent defects. 
The proposed ML framework based on model interpre-
tation strategy is beneficial to improving the accuracy 
of defect characterization and calculation efficiency to 

meet the requirements of nondestructive testing and 
evaluation. 

5  Conclusions and Further Work

(1) A generally applicable ML framework for UT 
based on model interpretation strategy is proposed 
to improve the accuracy and efficiency of defect 
characterization. Signal processing techniques are 
conducted to extract multi-domain features from 
the UT signals and construct typical feature space. 
FS-MIS method is developed to self-adaptively 
determine the optimal feature subset showing bet-
ter correlation with the target defects and make the 
feature selection more physically interpretable.

(2) The experimental results indicate that the proposed 
framework has the capability to decouple the over-
lapped pulse-echoes from the SDHs with 0.5λ cen-
tral distance and improve the time resolution of UT 
signals. The relative errors of the predicted ToAs 
are all below 3.67% with an average error of 0.25%. 
On this basis, the ultrasonic imaging resolution is 
enhanced to 0.5λ by combining TFM. The relative 
measurement errors of hole depths and central dis-
tance are no more than 0.51% and 3.57%, respec-
tively.

(3) FS-MIS is adopted to visualize the contributions 
of each feature and feature combination on targets 
by integrating the SHAP, filter method, embedded 
method and wrapper method. Compared to the 
initial feature space and the features determined by 

Figure 13 Comparison of actual value and predicted value trained 
by 82 features: (a) t1, (b) t2, and relative error between actual value 
and predicted value: (c) t1, (d) t2

Figure 14 TFM images of the SDHs with 0.5λ central distance based 
on all 82 features and the performance indicators of the TFM images 
combined with different feature sets: (a) TFM images, (b) Performance 
indicators
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conventional dimensionality reduction techniques, 
the feature subset selected by FS-MIS is beneficial 
to improving the predictive accuracy and computa-
tional efficiency of ML models.

(4) In future work, more diverse datasets corresponding 
to the defects with various sizes, shapes and loca-
tions will be incorporated for accurately detecting 
and characterizing unknown damage. In addition, 
we will also explore the comprehensive impact of 
structural noise originating from grain boundaries 
and structural features in multi-phase materials on 
the predictive performance of the ML framework.
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