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Abstract 

Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning, which 
enables safe autonomous driving on public roads. In this paper, a safe motion planning approach is proposed based 
on the deep learning-based trajectory prediction method. To begin with, a trajectory prediction model is established 
based on the graph neural network (GNN) that is trained utilizing the INTERACTION dataset. Then, the validated 
trajectory prediction model is used to predict the future trajectories of surrounding road users, including pedestrians 
and vehicles. In addition, a GNN prediction model-enabled motion planner is developed based on the model predic-
tive control technique. Furthermore, two driving scenarios are extracted from the INTERACTION dataset to validate 
and evaluate the effectiveness of the proposed motion planning approach, i.e., merging and roundabout sce-
narios. The results demonstrate that the proposed method can lower the risk and improve driving safety compared 
with the baseline method.
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1  Introduction
Currently, autonomous vehicles are attracting more and 
more attention from both industry and academics due 
to their potential to improve traffic efficiency and safety 
[1]. However, the real-world traffic situation is particu-
larly complex, and the safety issue remains a barrier to 
the development of autonomous vehicles [2]. In par-
ticular, safely navigating in complicated situations, such 
as roundabouts, is challenging for autonomous driving. 
If an autonomous vehicle attempts to move through a 
roundabout, it first ought to accurately anticipate the 
future trajectory of the road users nearby (e.g., vehicles 
and pedestrians) [3–5]. In this way, the autonomous vehi-
cle can make safe motion planning and prevent potential 

collisions with surrounding road users. Therefore, the 
trajectory prediction of the surrounding road users and 
motion planning are the two critical issues of autono-
mous driving [6–8]. Currently, most of the studies have 
studied both separately. Nevertheless, from a holistic per-
spective, the functions of the two are closely integrated, 
making it necessary to study them together.

Trajectory prediction is paramount to planning 
motions in the presence of other road users. However, 
this is a particularly difficult task because the motion 
of road users is multi-modal and relies on other actors. 
Over the past few decades, numerous algorithms have 
been proposed and developed in the field of trajectory 
prediction. Presently, motion prediction approaches 
can roughly be divided into three categories, namely, 
physics-based [9, 10], maneuver-based [11], and inter-
action-aware methods [12–14]. Physics-based trajectory 
prediction method identifies each traffic participant on 
the road as an independent individual and predicts its 
trajectory using its kinematic or dynamic features. The 
bulk of this type of prediction approach disregards inter-
actions with other road users and traffic regulations, so 

*Correspondence:
Xiaolin Tang
tangxl0923@cqu.edu.cn
1 Western China Science City Innovation Center of Intelligent 
and Connected Vehicle, Chongqing 400044, China
2 College of Mechanical and Vehicle Engineering, Chongqing University, 
Chongqing 400044, China
3 School of Civil Engineering, Tsinghua University, Beijing 100084, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-023-00968-5&domain=pdf
http://orcid.org/0000-0001-5709-291X


Page 2 of 13Chu et al. Chinese Journal of Mechanical Engineering            (2024) 37:6 

the prediction performance is not ideal [15]. Besides, the 
maneuver-based is to make a choice of policy and make 
predictions based on this policy, but this approach also 
ignores the interaction features between other road users 
[16, 17]. Recent studies display that the interaction-aware 
method which incorporates the interactive knowledge 
of driving behavior and performs better than the previ-
ous two methods has become a highly popular trajectory 
prediction method [18]. To forecast an agent’s trajectory 
accurately, most interaction-aware approaches employ 
deep learning techniques. Recurrent Neural Networks 
(RNN) and Graph Neural Networks (GNN) are the two 
commonly used trajectory prediction neural networks. 
In Ref. [19], to encapsulate the dynamics of agents and 
represent interaction by transferring information among 
the agents with a predefined distance, a social long short-
term memory (LSTM) model, i.e., a conventional RNN-
based prediction model was presented. Nonetheless, no 
consideration was given to the spatial interaction of the 
surrounding agents. To solve this issue, another work 
[12], the convolutional social pooling technique was pro-
posed. In detail, convolutional neural networks (CNN) 
are used to extract the interaction information between 
vehicles on the highway. However, for complex scenarios 
such as a roundabout, this method cannot accurately 
grasp the behavior interaction features of agents, and 
thus, the prediction performance is bad. In contrast to 
LSTM, GNN is suited for modeling interaction due to 
its unique nature. In Ref. [13], A GNN-RNN-based tra-
jectory prediction method is proposed, where vehicles’ 
dynamics features are extracted from their historical 
tracks using RNN, and the inter-vehicular interaction is 
represented by a directed graph and encoded using the 
graph attention networks. However, it focuses on single-
agent trajectory prediction and only focuses on vehicles, 
without considering other types of agents such as pedes-
trians. To tackle this issue, an improved scheme called 
GRIP++ where both fixed and dynamic graphs are uti-
lized for trajectory predictions of different types of traffic 
agents including vehicles and pedestrians [16]. Further-
more, a heterogeneous graph attention network is built 
for multi-agent trajectory prediction, which can deal with 
the heterogeneity of the target agents and traffic partici-
pants involved [18]. Given the effectiveness of GNN in 
the task of trajectory prediction, GNN will be used in this 
paper to provide prediction results for downstream plan-
ners. Note that the focus of this paper is not to improve 
forecasting accuracy, but to study how to integrate pre-
diction results with the motion planner better.

On the other hand, the motion planning technique, 
as previously discussed, is another key for autonomous 
vehicles to accomplish autonomous driving tasks, which 
poses a significant impact on driving safety. Heuristic 

path planning algorithms include the A * algorithm [20], 
the Dijkstra algorithm [21], and others [22]. This type of 
algorithm attempts to find a path between a set of nodes 
by computing the lowest cost evaluation value from each 
node to the destination. Because these nodes are discon-
tinuous, they must be smoothed further before being 
used in practice. To achieve a smooth and dynamic fea-
sible trajectory, optimization-based approaches such as 
model predictive control (MPC) [23, 24], and artificial 
potential field (PF) [25, 26] are commonly utilized. At 
present, optimization-based methods are widely applied 
for motion planning, especially the MPC technique. 
The reason is that this method could explicitly define 
the collision and dynamics constraints, which converts 
the motion planning task into the optimal control issue. 
While these techniques have been successfully utilized in 
autonomous driving demonstrations, motion planning 
issues remain challenging in highly interactive environ-
ments such as roundabouts and merging scenarios. Pre-
vious studies often assume other road users maintain 
constant velocity or follow given trajectories, which can 
be accurately accessed by autonomous vehicles. However, 
this assumption can hardly be held. In practice, the future 
behavior of other road users is generally required to be 
obtained by prediction models. It can be found that it is 
particularly important to combine prediction results and 
the motion planner appropriately. In addition, learning-
based approaches, such as reinforcement learning and 
imitation learning [27–29], are widely used to solve the 
motion planning problem. However, the downside of 
these techniques is that it is notoriously difficult to ensure 
safety. Thus, this paper will adopt an optimization-based 
method, i.e., MPC, to design the motion planner since it 
is well-suited for processing the output information of 
the trajectory prediction model.

Currently, integrating neural network predictors with 
planners has gradually attracted attention. For exam-
ple, a mathematical control framework based on MPC 
encompassing an RNN architecture was proposed [30]. 
Similarly, an MPC-based motion planning algorithm that 
incorporates a GNN predictor was built to achieve coop-
eration-aware lane change [31]. Recently, Ref. [32] pre-
sented an interaction-aware planner that utilizes a neural 
network-based predictor and analytically integrates it 
with MPC. However, these works mainly focus on how 
to improve lane change efficiency through interaction-
aware prediction, and only consider vehicles, without 
considering pedestrians, etc. This paper tries to inves-
tigate whether neural network-based predictors could 
improve planning safety with real traffic data valida-
tion. The main contributions and the technical advance-
ments are summarized as follows. A GNN network is 
established and trained for the trajectory prediction 
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of road users including vehicles and pedestrians on the 
INTERACTION dataset [33]. Then, hard collision avoid-
ance constraints are designed based on the prediction 
results. More importantly, an MPC-based motion plan-
ning method that takes into account the collision avoid-
ance constraints of surrounding road users is proposed. 
Finally, two driving scenarios, merging and roundabout 
scenarios are extracted and reconstructed from the 
INTERACTION dataset for validation and evaluation of 
the proposed method.

The rest of this paper is organized as follows. Section 2 
presents the overall architecture of the motion planning 
framework with the GNN-based trajectory prediction 
model. Section  3 demonstrates the specific process of 
GNN-based motion prediction. Section  4 provides the 
design for the MPC-based motion planning approach. 
The INTERACTION dataset is used to evaluate the pro-
posed motion prediction model, and two cases are car-
ried out to verify the proposed motion planning method 
in Section 5. The conclusion and future work are given in 
Section 6.

2 � Motion Planning Framework with Graph Neural 
Network‑Based Prediction Model

Figure  1 demonstrates the conceptual framework of 
motion planning with the GNN-based trajectory predic-
tion model in this paper. The framework is mainly com-
posed of two layers, including the trajectory prediction 
part, and the motion planning part that plans motion 
based on the predicted future trajectories of the sur-
rounding road users. Firstly, to accurately capture the 
interaction features among road users, the GNN is uti-
lized in this work. In detail, each road user is modeled as 
a node in the graph. The historical dynamic information 

of road users, i.e., position, velocity, and heading angle 
are processed by the RNN encoder, which is also used 
as the node features. The interaction features are rep-
resented as edge attributes among nodes. Then, the 
dynamic features and interaction features are fed to the 
LSTM decoder to generate the final prediction trajectory. 
To achieve safe motion planning, the MPC technology is 
utilized to handle the predicted trajectory. Specifically, 
collision avoidance constraints are designed based on 
the future trajectory of surrounding road users. In addi-
tion, the traffic rules including speed limits, and road 
boundary limits are also considered. More importantly, 
the target driving path, target speed, and control efforts 
are processed in the objective function. In this way, the 
motion planning issue could be converted into an opti-
mization problem with multiple constraints. Finally, two 
challenging cases, including roundabout and merging 
scenarios are extracted from the realistic driving logs, i.e., 
the INTERACTION dataset.

3 � Graph Neural Network‑Based Trajectory 
Prediction Model

The driving environment is dynamic, and it is crucial 
for autonomous vehicles to accurately predict the future 
motion of nearby road users. This section aims to estab-
lish a prediction model that could simultaneously fore-
cast the future trajectory of surrounding road users near 
the ego vehicle (the ego vehicle is referred to as the con-
trolled autonomous vehicle).

According to Refs. [16, 18], the GNN is suitable to 
model and process the interaction among road users. 
Each road user is modeled as a node in the GNN. A 
directed graph is usually represented by G = (V ,E) , 
where V = {v1, v2, · · ·, vn} is the set of n nodes (assume 

Figure 1  The motion planning framework with graph neural network-based prediction model
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that there are n road users that need to be predicted), and 
E ⊂ V × V  is the set of directed edges. Each node con-
tains its node feature, and each directed edge contains an 
edge feature.

The input to the prediction model is X t , which is com-
posed of the trajectory history of all predicted road users 
in the target region.

where X t is a collection of historical state informa-
tion for all road users; hit = [Sit−th

, Sit−th+1, · · ·, S
i
t ] rep-

resents the historical states of the road user i at time t ; 
Sit = [xit , y

i
t ,ϕ

i
t , v

i
t ] contains positions x , y , heading angle 

ϕ , and velocity v of the road user i , and th represents the 
observation horizon.

The output of the prediction model is the future posi-
tion of all agents, which is denoted as

where Y t is the set of future state information of all 
agents; f i = [(xit+1, y

i
t+1), (x

i
t+2, y

i
t+2), · · ·, (x

i
t+tf

, yit+tf
)] 

is the future trajectory of road user i ; tf  means prediction 
horizon.

The details of the implementation are listed below. To 
begin with, the historical states of each road user need to 
be processed to extract the dynamic features. Currently, 
the RNN is commonly utilized to process the sequence 
information, which is utilized to encode the historical 
information of each road user.

where rit is the extracted dynamic feature of the road user 
i at the time t . The dynamic feature rit also serves as the 
node i ’s features, which are denoted as

Therefore, the node feature has been obtained via Eq. 
(4), i.e., each road user’s dynamic feature.

The edge features are defined as follows. An edge from 
node j to node i means that the node i ’s behavior is influ-
enced by the node j and the edge feature is the relative 
measurement of the node j to node i , e.g., position, veloc-
ity v , and yaw angle ϕ . A set of edge attributes is denoted 
by:

The output of the GNN layer is a new set of node 
features:

(1)X t = [h1t ,h
2
t , · · ·,h

n
t ],

(2)Y t = [f 1, f 2, · · ·, f n],

(3)h̃
i
= RNNhist(h

i
t),

(4)H t = [h̃
1
, h̃

2
, · · ·, h̃

n
].

(5)Et = {eij|i, j ∈ [1, n]},

(6)eij = [x
j
t , y

j
t ,ϕ

j
t , v

j
t ] − [xit , y

i
t ,ϕ

i
t , v

i
t ].

Currently, there are two variants of GNN, namely, 
the graph convolutional network (GCN) model and the 
graph attention network (GAT) model [17]. The GAT 
model, which is based on attention mechanisms, can 
consider the degree of influence of different road users 
on the predicted one. According to Ref. [18], the atten-
tion score of the node j to node i can be calculated as:

where �a is a single-layer feed-forward neural network; 
LeakyRelu is the activation function; Ni means the 
neighbors of the node i . Thus, the feature of the node i 
is updated by calculating a weighted sum of edge-inte-
grated node features over its surroundings.

where σ is the sigmoid function, and the symbol || means 
the concatenation operator, FC is the fully connected 
layer.

Finally, the LSTM-based decoder is utilized to predict 
the final future trajectory of the road user i by consider-
ing individual dynamics h̃

i
 and its interaction with other 

road users hi , i.e.,

4 � GNN Prediction Model Enabled Motion Planner 
Based on MPC

4.1 � Vehicle Kinematics Model
To depict the motion of the controlled autonomous 
vehicle, i.e., ego vehicle, a kinematic bicycle model 
(front-wheel-only) is employed while considering the 
computing cost and modeling accuracy. The kinematic 
equations are formulated as follows [34]:

where β is the slip angle; lf  and lr denote the distance 
from the front and rear axles of the vehicle to the center 
of gravity, respectively; x and y mean the positions; v 

(7)H = [h
1
,h

2
, · · ·,h

n
] = GNN(H t ,Et).

(8)αij =
exp(LeakyRelu(�aT[h̃

i

t ||eij||h̃
j

t ]))
∑

k∈Ni
exp(LeakyRelu(�aT[h̃

i

t ||eij||h̃
k

t ]))
,

(9)h
i
= σ

(∑

j∈Ni

αijFC([eij||h̃
j

t ])

)

,

(10)f i = LSTMfut([h̃
i
||h

i
]).

(11)






ẋ = v cos(ϕ + β),

ẏ = v sin(ϕ + β),

ϕ̇ =
v

lr
sin β ,

v̇ = a,

β = arctan

�
lr

lf + lr
tan δ

�

,



Page 5 of 13Chu et al. Chinese Journal of Mechanical Engineering            (2024) 37:6 	

indicates the speed along the vehicle body direction; ϕ is 
the heading angle. Set the state variable x = [x, y,ϕ, v]T 
and control input u = [a, δ]T , a is the acceleration, and δ 
is the steering angle. Thus, the vehicle model depicted in 
Eq. (11) can be briefly denoted ẋ = z(x,u) for the subse-
quent discussion.

4.2 � Collision Avoidance Constraints Design Considering 
Different Road User’s Type

When operating on public roads, the autonomous vehicle 
must avoid collisions with other road users. In this paper, 
two main types of road users are considered, namely, vehi-
cles and pedestrians. For different types of road users, we 
need to design different constraints. Therefore, we need 
to self-adapt the constraints according to their types. For 
example, pedestrians are the type of road users with low 
walking speeds, but high behavioral uncertainty.

First of all, a set of circles are utilized to approxi-
mate the occupied region of the ego vehicle, i.e., 
Oego(xt) = Ui∈{1,2,···n}Oi , xt = [x, y,ϕ, v]T is the ego vehi-
cle’ states at the time t , and Oi means the area of the circle 
with a given radius rego . The number of required circles 
and their radius should be selected according to the shape 
parameters of the ego vehicle, and refer to Refs. [35, 36] 
for details (in this paper, n = 3 ). Similarly, for the other 
road users, we use the equation of an ellipse to describe 
the area they occupy. The key parameters, including the 
semi-major axis and the semi-minor axis, will be adjusted 
based on the road users’ shape parameters and their 
types. In addition, the orientation of road users should 
also be considered. The rotation matrix (the counter-
clockwise rotation angle is positive) is represented as:

Specifically, if a road user i ’s state at the time t is 
x
si
t = [xsi , ysi ,ϕsi ]T , the collision avoidance constraints 

can be denoted as:

where xt means the ego vehicle’s states at the time t , 
including x and y ; xsit = [xsi , ysi ,ϕsi ]T is the road user i ’s 
state at the time t , where xsi , ysi are the positions; ϕsi is the 
heading angle; R is the rotation matrix; asi and bsi are the 
length and width of the vehicle i ; T0 is the time headway 
factor; ε is a smaller positive value; ∀t ∈ [0, · · ·, tf ] and 
∀i ∈ [1, · · ·, n] . Other road users’ positions on the horizon 

(12)R(ϕ) =

[
cosϕ sin ϕ

− sin ϕ cosϕ

]

.

(13)






cons
si
t (xt , x

si
t ) =

�
x − xsi

y− ysi

�T
R(ϕsi)T

�
1
µ2 0

0 1
η2

�

R(ϕsi)

�
x − xsi

y− ysi

�

> 1,

µ = asi + vT0 + rego + ε, η = bsi + rego + ε,

[0, tf ] are given by the prediction model via Eq. (10), and 
the heading angle ϕsi can be obtained by differentiation 
operations. Furthermore, considering that pedestrians 
have high behavioral uncertainty, it would be better to 
use the circle to describe the area they occupy. Therefore, 
if the road user’s type is pedestrian, set asi = bsi.

4.3 � Traffic Rules Constraints and Actuator Saturation 
Constraints

Traffic Rules Constraints: In general, autonomous vehi-
cles need to obey traffic rules on public roads, such as 
speed limits. The speed constraint is set as

where vmin and vmax represent the minimal and maxi-
mum allowed vehicle speeds, respectively.

In addition, autonomous vehicles must not deviate 
from road boundaries, i.e., off-road. To make sure the 
vehicle stays inside the lines of the road, the limit on the 
lateral offset distance from the reference path (i.e., con-
tour error) of the autonomous vehicle is imposed, i.e.,

where W road
left  and W road

right indicate the boundaries of the 
road.

Actuator Saturation Constraints: The input variables 
should be restricted to consider the actuator saturation.

where amin and amax represent the minimal and maxi-
mum allowed acceleration that the vehicle can reach. δmin 
and δmax are the minimal and maximum steering angles, 
respectively.

4.4 � MPC‑Based Motion Planner Design
Objective function: we assume that there is a high-level 
planner that gives a reference velocity vref  and reference 
path. Because, a route planner, usually, exists for autono-
mous driving systems to give a reasonable global driving 
path and optimal driving speed based on the current traf-
fic flow. Then, the objective function is defined as follows 
to allow the autonomous vehicle to track the reference 
velocity while following the reference path:

where ect  and elt represent contour error and lag error, 
respectively. The contour error gauges the ego vehicle’s 

(14)vmin ≤ v ≤ vmax,

(15)−W road
left ≤ ect (xt) ≤ W road

right ,

(16)

Umin =

[
amin

δmin

]

≤ u =

[
at
δt

]

≤

[
amax

δmax

]

= Umax,

(17)

J (xt ,ut , �t) =
∥
∥ect (xt , �t)

∥
∥
qc
+

∥
∥
∥elt(xt , �t)

∥
∥
∥
ql
+

∥
∥vref − vt

∥
∥
qv
+ �at�qa + �δt�qδ ,
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lateral departure from the reference path, whereas the lag 
error quantifies the longitudinal displacement of the ego 
vehicle from the reference path, and for details, refer to 
Ref. [35]. In addition, �t represents the ego vehicle’s cur-
rent progress on the reference path. qc, ql , qv , qa, qδ are 
the weight factors. At each stage, the MPC planner calcu-
lates the optimal control command to minimize the cur-
rent cost.

With a prediction horizon tf  , the motion planning 
problem is constructed as a receding horizon trajectory 
optimization problem. The optimization issue is finally 
established as follows:

where �t is the control frequency; Umin and Umax are the 
lower and upper bounds of the control variables, corre-
sponding to Eq. (16). So far, the motion planning problem 
has been transformed into the optimal control problem 
in the predictive time domain. The optimal problem is 
solved by the FORCESPRO solver [37]

5 � Experiment Results and Discussion
Three cases are constructed based on the INTERAC-
TION dataset for validation and evaluation. The ADE@3s 
of the prediction algorithm for the roundabout and 
merging scenario is 0.278 m and 0.320 m, respectively. In 
addition, collision avoidance with surrounding vehicles in 
the merging scenario, collision avoidance with surround-
ing pedestrians in the roundabout scenario, and collision 
avoidance with surrounding vehicles in the roundabout 
scenario are constructed.

5.1 � Experiment Settings
During the experiment, to reproduce the original traffic 
scene in the dataset as much as possible, one of the vehi-
cles in the selected scene is replaced to test the effective-
ness of the proposed motion planner. The original driving 
path of the replaced vehicle in this scene segment is used 
as the reference path of the autonomous vehicle, and the 
maximum driving speed of the replaced vehicle is used as 
the target driving speed. Note that this is fundamentally 
different from the trajectory tracking control issue. The 
proposed planner does not need to track the speed tra-
jectory of the vehicle being replaced. Instead, the planner 

(18)

u∗
0:tf −1 = min

u0:tf −1

∑tf −1

t=1
J (xt ,ut , �t),

s.t., xt+1 = z(xt ,ut),

�t+1 = �t + vt�t, ∀t ∈ [0, · · ·, tf ],

−W road
left ≤ ect (xt) ≤ W road

right ,

cons
si
t (xt , x

si
t ) > 1, ∀i ∈ [1, · · ·, n],

vmin ≤ v ≤ vmax,

Umin ≤ u ≤ Umax,

needs to achieve obstacle avoidance by controlling accel-
eration and steering angle based on the prediction results 
of the prediction model. The autonomous vehicle is 
allowed to deviate from the reference trajectory within a 
certain range.

To evaluate the performance of the proposed method, 
the following metric is utilized, i.e., driving safety. In 
detail, a driving safety metric that determines whether 
the ego vehicle is safe is obtained by detecting whether 
the optimal solution to the optimization problem (18) 
can be solved correctly at each time. This can be achieved 
via the solver, i.e., the exit_flag of the FORCESPRO solver 
at each time step. The reason is that collision avoidance is 
processed as a hard constraint in the optimization (18). 
In other words, if the optimal solution can be found, 
then it means that this constraint can be satisfied. Table 1 
summarizes the parameters of the autonomous vehicle 
and the controller. In addition, the proposed method, 
called GNN-MPC is also compared to the MPC with 
the constant-velocity prediction model (Referred to as 
CV-MPC).

5.2 � Case 1: Collision Avoidance with Surrounding Vehicles 
in the Merging Scenario

Figures 2 and 3 show a merging scenario in which the ego 
vehicle needs to safely cross a road that changes from 
two-lane to one-lane. This case is extracted from the 
INTERACTION dataset, i.e., the DR_USA_Roundabout_
FT-vehicle _track_14 file. In this case, vehicle #19 in the 
DR_USA_Roundabout_FT-vehicle _track_14 file is 
replaced by the motion planners utilized in the paper. 
Specifically, its driving path is set as the reference path 
for the planners. And the planners need to predict the 
future trajectories of surrounding road users to decide 
the acceleration and steering angle. The desired driving 
velocity is set as 8 m/s (i.e., vref = 8 m/s) in this case, and 
the distance that the ego vehicle can deviate from the ref-
erence path is set to 0.5 m (i.e., W road

left = W road
right = 0.5 m).

Table 1  Parameters of autonomous vehicles and the planner

Parameter Value Parameter Value

th (s) 1 δmax (rad) 0.22π

tf  (s) 3 vmin (m/s) 0.00

lf  (m) 1.33 vmax (m/s) 30.00

lr (m) 1.81 qc 130

�t (s) 0.10 ql 130

amin (m/s2) −8.00 qv 4

amax (m/s2) 2.80 qa 6

δmin (rad) −0.22π qδ 100
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Three keyframes of the planned results outputted by 
CV-MPC and GNN-MPC planners are given in Figures 2 
and 3, respectively. From the results, it can be found 
that road user vehicle #18 and vehicle #21 are the most 
significant agents affecting the safe completion of the 

merging behavior of the ego vehicle. The CV-MPC and 
GNN-MPC both predict that vehicle #21 will yield the 
ego vehicle (the red vehicle in the figures). Therefore, 
they choose to insert the ego vehicle between vehicle 
#18 and vehicle #21 to complete the merging maneuver. 
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Figure 2  The motion planning results of CV-MPC for vehicle avoidance in Case 1, and (a–c) demonstrate three keyframes, i.e., timestep-1, timestep 
-18, timestep-24
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Figure 3  The motion planning results of GNN-MPC for vehicle avoidance in Case 1, and (a–c) demonstrate three keyframes, i.e., timestep-1, 
timestep -18, timestep-24
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The driving velocities of CV-MPC, GNN-MPC, and the 
human driver (i.e., the original velocity profile of the 
vehicle #19 in the dataset) are given in Figure  4. More 
importantly, the safety metric, namely, the exit_flag of 
the FORCESPRO solver is also shown. It can be discov-
ered that the exit_flag at each time step is normal for 
both planners. In other words, collision avoidance con-
straints can be satisfied. Furthermore, acceleration and 
steering angle are demonstrated in Figure 5, which means 
actuator saturation constraints are also met. In summary, 
these results show that both CV-MPC and GNN-MPC 
can handle this case successfully. Note that this case is 
primarily intended to verify the validity of the CV-MPC 
and GNN-MPC planners. In this case, the two key traf-
fic participants vehicle #18 and vehicle #21 perform 
straight-line driving, and both planners can make good 
predictions about their behavior.

5.3 � Case 2: Collision Avoidance with Vehicles 
and Pedestrians in the Roundabout Scenario

Roundabout is a complex scene for autonomous vehicles 
to make safe planning. When driving in the roundabout 
scenario, the future trajectory of surrounding road users 
needs to be accurately predicted. Figures  6, 7, 8 and 9 

demonstrate a more challenging case in which the ego 
vehicle needs to go through a roundabout while avoiding 
collision with other vehicles and pedestrians from the 
start point to the goal. This case is extracted from the 
INTERACTION-DR_USA_Roundabout_FT-vehicle_
tracks_30 file. In this case, vehicle #125 in the INTERAC-
TION-DR_USA_Roundabout_FT-vehicle_tracks_30 file 
is replaced by the motion planners utilized in the paper. 
Similarly, its driving path is set as the reference path for 
the planners. And the planners need to predict the future 
trajectories of surrounding road users to decide the accel-
eration and steering angle. The desired driving velocity is 
set as 5 m/s (i.e., vref = 5 m/s ) in this case, and the dis-
tance that the ego vehicle can deviate from the reference 
path is set to 0.5 m (i.e., W road

left = W road
right = 0.5 m).

In this case, when the ego vehicle (the red one) enters 
the roundabout, it first needs to avoid vehicle #114, 
and it needs to accurately predict the future trajectory 
of vehicle #102. Figures 6a and 7a show the prediction 
results of CV-MPC and GNN-MPC for vehicle #102 at 
timestep 10, respectively. It can be found that CV-MPC 
predicts vehicle #102 heading to exit #7, while GNN 
predicts vehicle #102 heading to exit #1. Actually, it 
can be discovered that vehicle #102 is heading to exit 

Step

)       ( deepS
m

/s

Ex
it_

fla
g

Figure 4  Comparison of driving velocity and safety performance in Case 1

)
(

noitarelecc
A

2
m

/s

St
ee

ri
ng

 a
ng

le
 ( 

   
   

)
ra

d

Step
Figure 5  Comparison of acceleration and steering angle in Case 1



Page 9 of 13Chu et al. Chinese Journal of Mechanical Engineering            (2024) 37:6 	

(a) (b) (c)

Start Goal Veh-102

Veh-114

Veh-116

1

2

3

4

5

6

7

X(m)

)
m(

Y

Timestep-10

Start Goal

1

2

3

4

5

6

7

Veh-114

Veh-102

Veh-116

Timestep-18

X(m)
)

m(
Y Start Goal

1

2

3

4

5

6

7

Veh-114

Veh-102

Veh-116

Timestep-24

X(m)

)
m(

Y

Figure 6  The motion planning results of CV-MPC for vehicle avoidance in Case 2, and (a–c) demonstrate three keyframes, i.e., timestep-10, 
timestep-18, timestep-24
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#1. From Figure 6c, due to the prediction error, the ego 
vehicle controlled by the CV-MPC planner almost col-
lides with vehicle #102 at timestep 24. This is consistent 
with the results provided in Figure 10, where the solver 
cannot exit properly at timestep 20–32, i.e., the colli-
sion constraint cannot be satisfied. Instead, because 
GNN-MPC can accurately predict the future trajec-
tory of vehicle #102, it can plan a safe motion to avoid 
collisions.

Figures 8 and 9 show the planning result of avoiding 
pedestrians. In this scene, there are two pedestrians 
#14 and #15 in front of the ego vehicle. From Figure 8a, 
it can be found that CV-MPC predicts that the pedes-
trians will yield the ego vehicle at timestep 113, i.e., 
the ego vehicle can drive away from this area before 
the pedestrians reach the conflict point. However, by 
the time the ego vehicle reaches the conflict area, the 
pedestrians are approaching the conflict point, as 
shown in Figure 8b. Figures 8c and 10 demonstrate that 
the CV-MPC chooses to accelerate away, which puts 

the vehicle at risk of collision with pedestrians. For the 
GNN-MPC, as shown in Figures  9 and 10, it predicts 
the pedestrians will not yield the ego vehicle and selects 
to decelerate to avoid collision with them. Finally, the 
control inputs are given in Figure 11, which shows that 
the acceleration and steering angle can be limited to the 
desired range.

5.4 � Case 3: Collision Avoidance with Vehicles 
in the Roundabout Scenario

Figures 12 and 13 show another collision avoidance case 
with multiple surrounding vehicles in the roundabout 
scenario. This case is also extracted from the INTERAC-
TION-DR_USA_Roundabout_FT-vehicle_tracks_30 file. 
In this case, vehicle #119 in the DR_USA_Roundabout_
FT-vehicle_track_30 file is replaced by the motion plan-
ners utilized in the paper. Likewise, its driving path is set 
as the reference path for the planners. And the planners 
need to predict the future trajectories of surrounding 
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Figure 9  The motion planning results of GNN-MPC for pedestrian avoidance in Case 2, and (a–c) demonstrate three keyframes, i.e., timestep-113, 
timestep-128, timestep-136
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road users to decide the acceleration and steering angle. 
The desired driving velocity is set as 8 m/s (i.e., 
vref = 8 m/s ) in this case, and the distance that the ego 
vehicle can deviate from the reference path is set to 0.5 m 
(i.e., W road

left = W road
right = 0.5 m).

From Figure 12, it can be found that the CV-MPC fails 
in this case. The reason is that it predicts the future tra-
jectory of vehicle #135 deviates significantly from the 
actual trajectory. The planned results of GNN-MPC are 
given in Figure 13, which illustrate that it can accurately 
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Figure 11  Comparison of acceleration and steering angle in Case 2
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predict the future motion of key vehicle #135 and pass 
the roundabout safely. The safety metric, i.e., the exit_flag 
of the FORCESPRO solver and driving velocity is also 
shown in Figure  14. Finally, the control variables are 
given in Figure 15.

6 � Conclusions

(1)	 A trajectory prediction model based on the GNN 
was developed, which was utilized to forecast the 
future trajectories of nearby road users, such as 
pedestrians and vehicles.

(2)	 A GNN-enabled motion planner based on MPC 
was established. Two driving scenarios, i.e., merg-
ing and roundabout scenarios were taken from the 
INTERACTION dataset to validate and verify the 
efficacy of the proposed motion planning approach.

(3)	 The experiment results show that compared to 
the baseline technique, the proposed method can 
reduce risk and increase driving safety.
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