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Abstract 

Magnetically coupled rodless cylinders are widely used in the coordinate positioning of mechanical arms, electro-
static paintings, and other industrial applications. However, they exhibit strong nonlinear characteristics, which lead 
to low servo control accuracy. In this study, a mass-flow equation through the valve port was derived to improve 
the control performance, considering the characteristics of the dynamics and throttle-hole flow. Subsequently, a fric-
tion model combining static, viscous, and Coulomb friction with a zero-velocity interval was proposed. In addition, 
energy and dynamic models were set for the experimental investigation of the magnetically coupled rodless cylin-
der. A nonlinear mathematical model for the position of the magnetically coupled rodless cylinder was proposed. 
An incremental PID controller was designed for the magnetically coupled rodless cylinder to control this system, 
and the PID parameters were adjusted online using RBF neural network. The response results of the PID parameters 
based on the RBF neural network were compared with those of the traditional incremental PID control, which proved 
the superiority of the optimization control algorithm of the incremental PID parameters based on the RBF neural 
network servo control system. The experimental results of this model were compared with the simulation results. The 
average error between the established model and the actual system was 0.005175054 (m), which was approximately 
2.588% of the total travel length, demonstrating the accuracy of the theoretical model.

Keywords Magnetically coupled rodless cylinder, Nonlinear model, Position control, Radial basis function neural 
network (RBF-NN), Neural network (NN)

1 Introduction
In an automatic control system, the output of the pneu-
matic servo system can be changed based on the input 
of the target signal. It consists of an air compressor, elec-
tric pneumatic control components, pneumatic actua-
tors, and sensors. Based on different controlled variables, 
pneumatic servo control systems can be classified into 

speed, position, force, and position–force composite con-
trol systems.

In cases in which the precision of the pneumatic posi-
tion servo control is not high, traditional point-to-point 
control can satisfy general engineering requirements. 
However, improved pneumatic position servo control 
technology is required for high-precision pneumatic 
position servo control. The reasons that affect the preci-
sion of pneumatic position servo control are as follows. 
The pneumatic system exhibits nonlinear characteristics 
and model uncertainty. If the mathematical model of a 
pneumatic nonlinear dynamic system is linearized near 
the ideal working position, the kinematic and dynamic 
analysis of the system will lose practical significance 
when the motion state of the system model significantly 
deviates from the ideal working point. This type of lin-
earized system structure is extremely simple, and the 
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control precision of the system cannot attain the ideal 
control effect. Therefore, it is necessary to establish a 
more accurate nonlinear mathematical model for nonlin-
ear problems of pneumatic servo systems [1, 2].

The control approach also influences the precision 
of pneumatic position servo control. The Selection of 
an appropriate control strategy can compensate for the 
motion error of the model and ensure more accurate 
and efficient position control of the pneumatic servo 
system [3]. Different types of pneumatic servo sys-
tems require appropriate control algorithms to achieve 
improved performance. Therefore, in recent years, schol-
ars have actively conducted research in this area and 
achieved good results. Bai [4] investigated the position 
servo control system of an oscillating cylinder, reduced 
the instability caused by nonlinear factors using pro-
portional-integral-derivative (PID) control and a pneu-
matic-assisted limit control algorithm, and improved 
the position control accuracy. Ren et  al. [5] developed 
an adaptive sliding-mode control method for a pneu-
matic position-servo control system. An adaptive slid-
ing mode controller was designed using a backstepping 
method. Its advantage is that it exhibits a good tracking 
effect when no pressure sensors are used, and the param-
eters of the dynamic model and the variation range of the 
model parameters are unknown. Li et al. [6] proposed a 
hybrid controller comprising a fuzzy-PID controller and 
a neural network pre-compensator (NNPC) to overcome 
the nonlinearity and uncertainty caused by air compress-
ibility and temperature variations in the motion control 
of a pneumatic execution system. The simulation results 
showed that the tracking effect of the nonlinear fuzzy-
PID controller and NNPC combined control was supe-
rior. Hsu et  al. [7] designed a hybrid fuzzy repetitive 
control method based on an existing PID closed-loop 
control system and added a feedforward compensator 
and zero-phase error-tracking controller to the system. 
The proposed hybrid control method has a faster conver-
gence rate and lower steady-state error than other con-
trol methods. Huang et al. [8] proposed a self-adaptation 
fuzzy controller to regulate the up-and-down movement 
of a four-legged pneumatic actuator that exhibited pneu-
matic characteristics of compressibility, nonlinear delay, 
and difficulty in establishing a mathematical model of the 
heavy-duty pneumatic actuator.

This intelligent control strategy, which combines the 
adaptive rule, fuzzy control algorithm, and sliding-mode 
control algorithm, has adjustment control parameters 
and an online learning ability to deal with time-varying 
and nonlinear uncertainty coupling behavior systems.

Combined with the above problems, the physical 
structure and mechanical properties of the proportional 
directional control valve and magnetically coupled rod-
less cylinder were analyzed. In addition, the quality of 
the proportional direction valve flow model, magneti-
cally coupled rodless cylinder-type friction model, energy 
model, and dynamic model for the magnetically coupled 
rodless cylinder were established. Therefore, a theoreti-
cal model of a magnetically coupled nonlinear rodless 
cylinder position servo system was developed based on 
these models. Finally, the theoretical and experimental 
models were compared and analyzed using an incremen-
tal PID control algorithm. The average error between the 
established model and actual system was 0.005175054 
(m), which was approximately 2.588% of the total travel. 
The accuracy of the comparison between the radial basis 
function (RBF)-tuning incremental PID and incremen-
tal PID control algorithms was established in the simu-
lation model. The results showed that the RBF-tuning 
incremental PID control algorithm improved the posi-
tion control accuracy of the pneumatic system more than 
the incremental PID control algorithm in the simulation 
model.

2  Characteristic Analysis of Proportional 
Directional Control Valve

The main components of the proportional directional 
control valve were the electromagnetic control and 
reversing parts. The MPYE-5-M5-010-B proportional 
directional control valve developed by Festo consisted of 
a shell, valve spool, valve spool coil, and control plate. The 
working principle is that when the input voltage ranges 
from 0 to 10 V, the displacement of the valve spool is 
approximately linear with the input voltage [9]. A Pana-
sonic HG-C1050 laser displacement sensor was used for 
the experiment, and the results indicated that the valve 
spool displacement of the proportional directional con-
trol valve was approximately 2.2 mm on average.

2.1  Derivation of Mass Flow Equation of Proportional 
Directional Control Valve

The gas flow principle of a valve-controlled cylindrical 
system is shown in Figure 1. Ports 4 and 2 of the propor-
tional directional control valves are connected to both 
ends of the magnetically coupled rodless cylinder.

The left and right cavities of the cylinder are assumed 
to be Cavities A and B, respectively. Ṁa and Ṁb are the 
mass flow rates of gas in two cavities of the cylinder, 
Pa and Pb are the gas pressures of two cavities of the 
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cylinder, Va and Vb are the volumes of two cavities of the 
cylinder, and Ta and Tb are the temperatures of the two 
cavities of the cylinder. m is the mass of the load, y is the 
displacement of piston movement in the cylinder, and Pe 
and Ps are the atmospheric pressure and air-supply pres-
sure, respectively [10].

The following assumptions were made to simplify the 
mathematical model of the valve-controlled cylinder sys-
tem [11].

1. The air used in the system is an ideal gas.
2. The gas flow in the proportional directional control 

valve and cylinder is considered to occur in an isen-
tropic adiabatic state.

3. The pressure and temperature of the gas in the same 
cavity are equal everywhere.

4. During the back-and-forth movement of the piston 
in the cylinder, the gas in the two chambers and out-
side did not undergo heat exchange (adiabatic pro-
cess).

5. The pressure and temperature of the air supply are 
unaffected by the external environment and remain 
constant.

When the valve spool of the proportional directional 
control valve moves to the right (forward), as shown in 
Figure 2, the left side of port 1 becomes the throttle hole, 

and the right side becomes the gap. Regardless of the left-
most and right-most throttles of the valve, ports 5 and 3 
become the gap and throttle holes, respectively. After the 
supply gas enters port 1, most of the gas flows through 
port 1 to the left side of the valve-body chamber. The 
gas flowing into the left cavity flows into cavity A of the 
cylinder through port 4, and a small portion of the gas is 
discharged from the gap at port 5.

The mass flow of gas Ṁ4 through port 4 is assumed to 
be equal to the mass flow of gas Ṁa into chamber A of 
the cylinder. Thus, the difference between the mass flow 
rates of gas Ṁ1a flowing into port 1 and gas Ṁ5 flowing 
into the atmosphere from port 5 is the mass flow rate of 
the gas Ṁa in Chamber A of the cylinder.

Similarly, assuming the mass flow rate of the gas Ṁb 
in Chamber B of the cylinder, the following relationship 
is valid:

Because the opening area of the proportional direc-
tional control valve port is nonlinear with respect to the 
control voltage, it cannot be measured directly using 
effective measurement tools. According to the method 
proposed in Ref. [4], the volume flow of gas through 
the valve port is measured, and the volume flow is sub-
stituted into Eq. (3) to obtain the effective area of the 
valve opening:

where S is the effective area of the valve opening ( mm2 ), 
Pu is the absolute pressure upstream of the valve body 

(1)Ṁa = Ṁ4 = Ṁ1a − Ṁ5.

(2)Ṁb = Ṁ2 = Ṁ3 − Ṁ1b.

(3)S =
qv

0.124Pu

√
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( Pa ), T1 is the temperature upstream of the valve body 
( K ), and qv is the volume flow through the valve port 
( L/min).

The experimental platform was set up, as shown in 
Figure 3.

The inlet and outlet on the right side of the propor-
tional directional control valve were plugged, and the 
air supply pressure was set to 0.5 MPa. The control volt-
age was adjusted from 0 to 10 V and from 10 to 0 V as 
a cycle voltage. The volume flows through proportional 

directional control valve port 4 at different control volt-
ages were measured.

Similarly, the left inlet and outlet of the valve were 
blocked, and the volume flow rate of valve port 2 was 
measured using the same cycle voltage. The entire 
experiment was repeated three times, and the results of 
each experiment were added and averaged. The results 
are presented in Figure 4.

The data were then substituted into Eq. (3), and the 
mathematical expression of the fitting curve of the 
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Figure 3 Experimental platform: (a) Structural representation, (b) Laboratory equipment
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relationship between the effective area of valve port 1 
and the control voltage is as follows:

The relationship between the effective opening area 
and voltage was plotted, as shown in Figure 5.

According to Wu [12] and Bai [4], the mass flow 
equations of the gas flowing through the throttle hole 
are expressed by Eqs. (5) and (6):

(4)

S =
0.4881

√
Temp

Ps
∗(5.7036 ∗ volt + 12.7755 ∗ volt2

−2.2893 ∗ volt3 + 0.0820 ∗ volt4) .

where R is the gas constant with a value of 
8.31432× 103 N·m/(kg·K), b is the critical pressure ratio 
with a value of b = 0.528 , Tb is the temperature of Cavity 
B, Ts is the air supply temperature, and κ is the isentropic 
index with a value of κ = 1.4 . Because of the environ-
mental influence, correction parameter C is introduced 
to modify the equation, whose values can be obtained 
from experimental data.

2.2  Flow Analysis of Small‑hole Mass Flow of Proportional 
Directional Control Valve

The state of gas flow in the gap of the proportional 
directional control valve is similar to that between the 
two parallel panels. Figure  6 shows the gas flow near 
port 5 when the valve spool of the proportional direc-
tional control valve is moved to the right.

Based on the differential equation of pressure [13] of 
gas flowing between parallel plates, Eq. (7) is expressed 
as follows:

where dP is the pressure of gas element in the clear-
ance, µ is the viscosity coefficient of the gas with a value 
of 0.0000183 Pa · s , u is the velocity of gas element in 
x-direction, L0 is the initial length of the clearance with 
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port under cycle voltage
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a value of 0.002 m, xv is the displacement of the valve 
spool, and h0 is the distance between the sleeve and the 
shoulder of the spool valve.

The boundary conditions are as follows:

By combining Eqs. (7) and (8), the equation of veloc-
ity of the gas flow in the gap is expressed as follows.

The mass flow of gas at port 5 is expressed by Eq. (11):

where ρe is the density of the gas.
Because the clearance size of the parallel plate is fixed 

in x-direction, the gas pressure of the clearance gradu-
ally increases with an increase in x-axis. From Eqs. (7) 
and (9), Eq. (12) is derived:

Based on the equation of state of gas under ideal con-
ditions [14], Eq. (13) is derived:

From Eqs. (10)–(13), the mathematical expression for 
the mass flow rate of gas flowing through port 5 can be 
obtained as follows:

Similarly, the mathematical expression for M1b is 
defined by Eq. (15):

(8)
{

If z = 0, then u = 0,

If z = h0, then u = 0,

(9)
{

If x = 0, then p = pe,

If x = L0 + xv, then p = pa.

(10)u = −
1

2µ

dP

dx
z(z − h0).

(11)Ṁ5 = ρe

∫ h0

0
u · πdsdz.

(12)
dP

dx
=

Pa − Pe

L0 + xv
.

(13)Pe = ρeRTa.

(14)

Ṁ5 =
Pe

RTa

∫ h0

0
−

1

2µ
·
Pa − Pe

L0 + xv
· z(z − h0) · πdsdz

= πdsh
3
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=
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3Pe(Pa − Pe)
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.

(15)Ṁ1b =
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3Pb(Ps − Pb)

96µ(L0 + xv)RTs
.

2.3  Derivation of Mass Flow Equation for Reverse 
Movement of Spool

Figure 7 shows the process of moving the spool of the 
proportional directional control valve backward (to the 
left).

Similarly, the mass flow equation for each port gas is 
expressed as follows:

The mass flow equations of the gas flowing through 
the throttle hole are as follows:

where Tb is the temperature of cavity B.
The mass flow equations of the gas flowing through the 

gap are as follows:
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where Ṁ′ is the mass flow of each port of the valve in 
reverse.

3  Characteristic Analysis of Magnetically Coupled 
Rodless Cylinder

3.1  Friction Analysis of Magnetically Coupled Rodless 
Cylinder

Among the numerous existing static friction models, the 
most widely used are the Coulomb friction, viscous fric-
tion + Coulomb friction, static friction + Coulomb + vis-
cous friction, and Stribeck friction (exponential) models 
[15].

From a simple and practical perspective, the Coulomb 
friction + viscous friction + static friction model with a 
zero-velocity interval was used to describe the friction of 
the magnetically coupled rodless cylinder [4] analyzed in 
this study.

Its mathematical description is as follows:

where Fp is the driving force generated by the pressure of 
the two chambers of the cylinder ( N ), Ff is the friction 
( N ), Fdf is the Coulomb friction ( N ), Fsfmax is the max-
imum static frictional force ( N ), v is the speed ( m/s ), β 

(22)

Ff =















Fdf · sgn(v)+ βv, |v| > Dv ,

Fp · sgn(v), |v| ≤ Dv and FP < Fsfmax,

Fsfmaxsgn(Fp) · sgn(v), |v| ≤ Dv and Fp ≥ Fsfmax,

is the coefficient of viscous friction ( N/(m · s) ), Dv is the 
zero-speed range boundary value ( m/s).

Its model is depicted in Figure 8.
When the magnetically coupled rodless cylinder per-

forms a slow and uniformly linear motion, the piston in 
the magnetically coupled rodless cylinder is only sub-
jected to frictional force and gas pressure in the two cavi-
ties of the cylinder; therefore, the frictional force can be 
calculated using Newton’s second law:

where Aa and Ab are the Piston areas of cavities A and 
B of the magnetically coupled rodless cylinder ( m2 ), 
respectively.

Because the cylinder exhibits a creeping effect in the 
low-speed section, it can be considered that the creeping 
of the cylinder is a process in which the pressure slowly 

(23)Ff = AaPa − AbPb,

β

dfF
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Figure 8 Friction model of Coulomb friction + viscous friction + 
static friction with zero-velocity interval
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increases to the maximum static frictional force, slides, 
and then stops when the pressure decreases to a spe-
cific value owing to the expansion of the cylinder cavity. 
Assuming that cavity A of the cylinder is supplied with 
air and cavity B is open to connect with atmospheric 
pressure, displacement and pressure occur, as shown in 
Figure  9. When the gas enters cavity A, the cylindrical 
core does not move until the pressure is sufficiently high 
to cause the core to slide suddenly, and the movement is 
captured by the sensors. Because of the sliding, cavity A 
will have a larger volume, which is directed toward low-
ering the pressure until the cylinder core stops sliding, 
and the pressure in cavity A will start increasing.

By adopting the end of each section of the cylinder 
crawling as the starting point and the beginning of the 
crawling as the end point, the change in the cylinder 
pressure at the beginning and end of each crawl can be 
obtained. As shown in Figure  10, the maximum static 
frictional force acted at 0.065 MPa, and the minimum 
sliding frictional force acted at 0.045 MPa.

It is necessary to slide the cylinder core at a stable pres-
sure to analyze the relationship between the velocity and 
friction of the cylinder. When the cavity pressure was 
set between 0.05 and 0.10 MPa using the PID control 
method, the real-time pressure and displacement were 

recorded by the sensors. Figure 11 shows the pressure–
displacement–time curves.

After linear fitting of the real-time pressure and dis-
placement data, the pressure–speed data were obtained, 
as listed in Table 1.

In summary, the parameters of the Coulomb friction + 
viscous friction + static friction model with a zero-veloc-
ity interval was obtained, as listed in Table 2.

The fitting curve of the frictional force is shown in Fig-
ure  12. The dotted box indicates the area of the static-
friction model with a zero-velocity interval.

3.2  Establishment of Energy Equation of Magnetically 
Coupled Rodless Cylinder

Cavity A of the magnetically coupled rodless cylinder was 
used as an example to analyze the pressure in the cylinder 
cavity [16]. In the quasiequilibrium state of an ideal gas, 
the pressure, temperature, and density of the gas in the 
cylinder satisfy the following mathematical relationship:
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Figure 11 Pressure–displacement–time curve of cylinder

Table 1 Pressure–speed data of cylinder

Pressure (MPa) Speed (m/s)

0.0536 0.1524

0.0602 0.2555

0.0698 0.382

0.0764 0.4537

0.0865 0.5363

0.0957 0.6075

Table 2 Friction parameters

Symbol Value

A (mm2) 490.87

Fdf (N) 2.6298

β (N/(m · s)) 4.4898

Fsfmax (N) 3.1891

Dv (m/s) 0.12
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Figure 12 Fitting curve of frictional force for magnetically coupled 
rodless cylinder
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By substituting ρa = Ma/Va into Eq. (24), the equation 
of state of the gas in the cavity can be derived as follows:

where ρa is the density of gas in cavity A ( kg/m3 ), and Ma 
is the mass of gas in cavity A ( kg).

We assume that the gas in the cylinder chamber is 
always in thermodynamic equilibrium. In other words, 
when the cylinder is charged and deflated, the state 
parameters of the gas in the cylinder cavity change over 
time. According to the first law of thermodynamics, the 
energy equation of cavity A of the magnetically coupled 
rodless cylinder is expressed as follows:

where dQa is the heat exchanged between the gas in the 
cavity and the outside (J); hi is the energy that flows 1 kg 
gas by the gas source into the cavity (J/kg); dMia is the 
mass of gas entering cavity A (kg); dUa is the change in 
the internal energy of all gases in the cavity (J), and ho is 
the energy removed by the discharge of 1 kg gas from the 
gas leisure chamber (J/kg); dWa is the work performed by 
all the gases in the chamber (J), and dMoa is the mass of 
the gas in cavity A at the same time (kg).

Assuming the cylinder is processing the adiabatic 
movement, and the cavity A is already discharged, the 
heat exchange with the outside of the cavity is zero. The 
mass of the gas entering dMia = 0 , the reduced mass 
of the gas in cavity A is the same as the mass of the gas 
discharged from cavity A; that is, dMoa = −dMa . The 
change in internal energy in cavity A is dUa; the work 
performed by the gas in cavity A is dWa , and the energy 
discharged by the gas in cavity A is hodMoa . Their expres-
sions are as follows:

where Toa is the temperature of cavity A of the cylinder 
when deflated. Based on Eq. (26),

Substitution of Eq. (25) into Eq. (28) gives Eq. (29):

After sorting out Eq. (29), Eq. (30) is obtained:

(24)
Pa

ρa
= RTa.

(25)TaMa =
PaVa

R
,

(26)dQa + hidMia = dUa + dWa + hodMoa,

(27)







dUa = d(uaMa) = cvd(ToaMa),

dWa = PadVa,

hodMoa = (cv + R)ToadMa,

(28)cvd(ToaMa)+ PadVa − (cv + R)ToadMa = 0.

(29)cvd

(

PaVa

R

)

+ PadVa − (cv + R)ToadMa= 0.

When cavity A of the cylinder is inflated, the internal 
gas in cavity A does not exchange heat with the out-
side. That is, dQa = 0 . The mass of the discharged gas 
is dMa = 0 , and the mass of the gas flowing into cav-
ity A is the same as the mass added to cavity A; that is, 
dMia = dMa . The change in the internal energy in cavity 
A is dUa , the work performed by the gas in cavity A is 
dWa , and the energy released by the gas entering cavity A 
is hidMia . Their respective expressions are as follows:

where Tia is the temperature in cavity A when cavity A 
enters the air.

According to Eqs. (25) and (26), the energy equation for 
cavity A during inflation is expressed as follows:

The gas temperature in the cavity is assumed to be the 
same as that in the atmosphere to simplify the mathemat-
ical model of the system. The energy equation for cavity 
A during filling and deflating can then be expressed by 
Eq. (32).

3.3  Derivation of Differential and Dynamic Equations 
of Pressure in Magnetically Coupled Rodless Cylinder

From Eq. (32), the mass flow equation of cylinder cavity 
A is derived as follows [17]:

Similarly, the mass flow equation of cylinder cavity B is 
derived as follows:

From Eqs. (1) and (2), the following expression is valid:

Considering the volumes of the two cavities in the cyl-
inder, Aa = Ab = A.

(30)κRToadMa = VadPa + κPadVa.

(31)







dUa = d(uaMa) = cvd(TiaMa),

dWa = PadVa,

hidMia = (cv + R)TiadMa,

(32)κRTiadMa = VadPa + κPadVa.

(33)
dMa

dt
=

Va

κTsR

dPa

dt
+

Pa

TsR

dVa

dt
.

(34)
dMb

dt
=

Vb

κTsR

dPb

dt
+

Pb

TsR

dVb

dt
.

(35)















dPa

dt
=

κRTs

Va

�

Ṁ1a − Ṁ5

�

−
κPa

Va

dVa

dt
,

dPb

dt
=

κRTs

Vb

�

Ṁ1b − Ṁ3

�

−
κPb

Vb

dVb

dt
.

(36)
{

Va = Va0 + A ∗ (0.1+ y),

Vb = Vb0 + A ∗ (0.1− y).
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According to Newton’s second law, the dynamic equa-
tion for a magnetically coupled rodless cylinder is 
expressed as follows:

where A is the effective area of the piston, and its value is 
490.87 mm2 ; m is the load quality; a is the acceleration of 
the cylinder running; Va0 is the remnant volume in cavity 
A, and its value is 7363 mm3 ; Vb0 is the remnant volume 
in cavity B, and its value is 7363 mm3.

4  Establishment of Experimental Platform
The working principle of the servo system of the magnet-
ically coupled nonlinear rodless cylinder position is illus-
trated in Figure 13.

The components of the magnetically coupled nonlin-
ear rodless cylinder position servo system are listed in 
Table 3.

The gas was first produced by an air compressor and 
passed through a pneumatic triplet (air filter [F], pres-
sure-reducing valve [R], and oil mist [L]), which puri-
fied and filtered the entering gas and reduced the rated 
pressure. Three pressure transmitters connected before 

(37)A(Pa − Pb) = ma+ Ff,

and after the proportional directional control valve were 
used to determine the gas pressures of the gas source and 
the two cavities of the magnetically coupled rodless cyl-
inder. The flow direction and size of the gas after pass-
ing through the proportional directional control valve 
changed with the displacement of the proportional direc-
tion control valve spool. When applying a 0–5 V digital 
voltage signal to the proportional directional control 
valve, the acquisition card converted the digital voltage 
signal into a 0–5 V analog voltage signal to the propor-
tional directional control valve, and the spool moved to 
the left. When a 5–10 V digital voltage signal was applied 
to the proportional direction control valve, the acquisi-
tion card transferred the digital voltage signal into a 
5–10 V analog voltage signal to the proportional direc-
tional control valve, and the spore moved to the right. 
The changes in the flow direction and size of the gas at 
the proportional directional control valve outlet changed 
the movement direction and speed of the piston in the 
cylinder. A linear displacement sensor was connected to 
the slider of the magnetically coupled rodless cylinder 
through an iron plate. The linear displacement sensor 
could be driven when the slider of the magnetically cou-
pled rodless cylinder moved.

Therefore, the linear displacement sensor could meas-
ure the moving distance of the slider in the cylinder in 
real time. The data acquisition card converted the dis-
placement analog voltage signal into a digital signal, 
which could be displayed on a computer. Figure 14 shows 
the construction diagram of the experimental platform.

The corresponding simulation model diagrams are 
shown in Figure  15. The model consisted of two parts. 
The valve portion received voltage and pressure signals 
and generated mass flow signals to the cylinder. The cyl-
inder portion received the mass flow signals and gener-
ated pressure, acceleration, speed, and distance signals.

Pressure
Transmitter

F.R.L UnitsAir
Compressor

Pneumatic connection

Electrical connection

Proportional Directional
Control Valve

Pressure
Transmitter

Pressure
Transmitter

1
2

3

4
5

Linear Displacement Sensor

Data
Acquisition

Card

DAC
ADC

ADC

ADC
ADC

0-5V

0-5V
0-5V
0-5V

0-10V

Figure 13 Working principle of servo system of magnetically 
coupled nonlinear rodless cylinder position

Table 3 Components of experimental platform

Component Model Parameter

Air compressor HX750A Maximum supply pressure 1.0 MPa

F.R.L units AF/L/U2000 Maximum working pressure 1.0 MPa

Proportional Directional control Valve FESTO MPYE-5-M5-010-B Maximum working pressure 1.0 MPa

Magnetically Coupled rodless Cylinder CY3R25-200 Maximum working pressure 0.7 MPa

Linear displacement Sensor KTC-200 Measuring range 200 mm, linear precision 
0.05%

Pressure transmitter MIK-P300 Measuring range −0.1~60 MPa

Data acquisition Card` NI PCIE-6353 16-bit counter, −10 V to 10 V output voltage

Personal computer B560-A Chip Board Standard configuration
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Figure 14 Experimental platform

Voltage Pressure
Calculate

Mass FlowValve Force
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Figure 15 Corresponding simulation model of valve-control cylinder system
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Figure 16 Structure of PID control system
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5  Pneumatic Servo Control System
5.1  Incremental PID Control Algorithm
PID control has always been the most widely used con-
trol algorithm [18] because it has simple control princi-
ples, strong adaptability, and robustness. Figure 16 shows 
the structure of the PID control system.

The control law of the incremental PID control system 
is expressed as follows:

where Kp is the proportional coefficient; Ki is the integral 
coefficient; Kd is the differential coefficient, and e(k) is 
the input and output error at the k moment.

A pneumatic circuit (Figure 14) was developed to verify 
the accuracy of the nonlinear mathematical model of the 
magnetically coupled rodless cylinder. The mathemati-
cal model of the magnetically coupled nonlinear rod-
less cylinder position servo system should be verified 
experimentally.

Because the application of the magnetically coupled 
rodless cylinder is mostly moved at a number of fixed 
points, given a cycle of 20 s, pulse width of 50%, height of 
0.18, delay of 2 s pulse signal, and downward bias of 0.09, 
its physical significance is to make the cylinder with the 
stroke the origin every 10 s at an upward or downward 
swing of 0.09 m. The air-source pressure was constant 
(0.5 MPa).

An incremental PID control was used as the con-
trol strategy for the system. Table  4 lists the optimized 
parameters.

The environmental correction parameter, C, was 
obtained to make the simulation model more realistic, 
and the dichotomy method was used for experimental 
correction.

The real-time error between the simulation model and 
the experimental platform when stable is shown in Fig-
ure 17. When C=0.6250 was used, the average error was 
0.005175054 (m), which was approximately 2.588% of the 
total travel distance when the parameters were corrected.

The optimal simulation curve and experimental results 
are shown in Figure  18. Input_Sig is the input signal, 
Exp_Sig is the real-time position of the experimental 
platform, Sim_Sig is the position output of the simulation 

(38)
�u(k) = Kp(e(k)− e(k − 1))+ Kie(k)+
Kd(e(k)− 2e(k − 1)+ e(k − 2)),

model, Exp_Voltage is the real-time voltage of the experi-
mental platform, and Sim_Vlotage is the output voltage 
of the simulation model.

The reasons for the error between the optimal simula-
tion curve and the experimental results are as follows.

(1) The simulation model was run from the middle of 
the cylinder, whereas the experimental model was 
run from the end.

(2) During the experimental process, the friction coef-
ficient was varied, and the positive and negative 
strokes were asymmetric, whereas a fixed friction 
coefficient was used in the modeling and simula-
tion. Therefore, a displacement error was observed.

(3) Gas leakage occurred in the gas path and cylinder.
(4) The air supply pressure was unstable.

5.2  Setting PID Control Algorithm Based on RBF Neural 
Network

Artificial neural networks are control algorithms that 
process information by mimicking animal neural net-
works. In 1943, psychologist Maculloch and math-
ematician Pitts first proposed a mathematical model of 
neurons [19]. Later, Powell [20] proposed the radial basis 
function in 1988, and Broomhead and Lowe applied 
the RBF to neural network design for the first time [21]. 
Compared with backpropagating (BP) neural networks, 
RBF neural networks have the advantage of high learning 
efficiency and are gradually replacing BP neural networks 
in certain fields. The hidden layer space in the RBF neu-
ral network is composed of the “basis” of the hidden layer 
units. The hidden layer transforms the low-dimensional 
vector input from the input layer to a high-dimensional 
space such that the linear nonseparable problems in the 

Table 4 Optimized parameters

Symbol Physical significance Value

Kp Proportional coefficient 8

Ki Integration coefficient 0.00001

Kd Differentiation coefficient 0.0001
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r(m

)

Time(s)

C=0.5000
C=0.6000
C=0.6125
C=0.6250
C=0.6500
C=0.6750
C=0.7000

Figure 17 Real-time error between simulation model 
and experimental platform
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low-dimensional space can be linearly separable in a 
high-dimensional space [22].

RBF neural network controller has three layers: input, 
hidden, and output. The input layer consists of nodes 
of the signal source, and its main function is to connect 
the outside world to the neural network. The number 
of nodes in the hidden layer is determined by a specific 
problem, and a nonlinear transformation can be per-
formed from the input layer to the hidden layer. The 
number of nodes in the output layer is also determined 
by the specific output requirements, which primarily 
apply a response to the activation signal of the output 
layer, as shown in Figure 19.

5.2.1  Composition of RBF Neural Network
RBF neural network mainly consists of the following two 
mappings.

The first is a nonlinear mapping from the input layer to 
the hidden layer, which mainly maps the N-dimensional 
data of the input layer to the m-dimensional space of 
the hidden layer to achieve mapping from X to hj . The 
mathematical expression for the radial basis vector is as 
follows:

where fj is the RBF, and j = 1, 2, 3, ...,m.
The selected radial basis function is a Gaussian func-

tion, expressed by Eq. (40):

where cj is the central point of the neuron in the hidden 
layer j, cj =

[

cj1, · · · , cjn
]

 , and b is the width vector of the 
Gaussian function, b = [b1, · · · , bm]

T.
The second mapping is linear from the hidden layer 

to the output layer, which sums and calculates the space 
vector of the m-dimension of the hidden layer with linear 
weighting and transmits it to the output layer for output. 
The expression for mapping hj to ym is as follows:

5.2.2  Parameter Modification of RBF Neural Network
In the control strategy of an RBF neural network, the 
center cj , width b,  and weight W  of the basis function 
must be adjusted. Before adjusting the parameters, the 
performance index function is defined as follows:

(39)hj = fj(x1, x2, ..., xn),

(40)f (X) = exp

(

−
∥

∥X − cj

∥

∥

2

b2j

)

, bj > 0, x ∈ R,

(41)ym =
m
∑

j

wjhj .
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Figure 18 (a) Comparison between experimental real-time position 
and simulation output results, (b) Comparison between experimental 
voltage and simulation voltage results
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Figure 19 Model of RBF neural network
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where y(k) is the input to the network at time k , and 
ym(k) is the network output at time k.

Based on the gradient descent method, the modified 
formula for the weight W  is as follows:

The modified formula for cji (k) is as follows:

The modified formula for bj(k) is as follows:

5.2.3  Adjusting PID Controller Parameters
The control error of the incremental PID controller is 
expressed as follows:

The input of the controller is defined as follows:

The output increment is defined by Eq. (53):

The training index of the RBF neural network is 
expressed as follows:

(42)J =
1

2
(y(k)− ym(k))

2,

(43)�ωj(k) = −
∂J

∂ωj(k − 1)
= (y(k)− ym(k))hj ,

(44)
wj(k) = wj(k − 1)+ η�wj(k)+
α(wj(k − 1)− wj(k − 2)).

(45)�cji = −
∂J

∂cj
= (y(k)− ym(k))wj

x − cji

b2j
,

(46)
cji(k) = cji(k − 1)+ η�cji+
α(cji(k − 1)− cji(k − 2)).

(47)�bj = −
∂J

∂bj
= (y(k)− ym(k))wjhj

∥

∥x − cj
∥

∥

2

b3j
,

(48)
bj(k) = bj(k − 1)+ η�bj+
α(bj(k − 1)− bj(k − 2)).

(49)e(k) = r(k)− y(k).

(50)xc1(k) = e(k)− e(k − 1),

(51)xc2(k) = e(k),

(52)xc3(k) = e(k)− 2e(k − 1)+ e(k − 2).

(53)u(k) = u(k − 1)+�u(k).

The gradient descent method [23, 24] was used to 
adjust the PID control parameters, as follows:

where ηp, ηi, ηd are the learning efficiencies of Kp,Ki,Kd , 
respectively, and represent the Jacobian information of 
magnetically coupled rodless cylinder. Its expression is as 
follows:

(54)E(k) =
1

2
e(k)2.

(55)
�Kp =− ηp

∂E

∂Kp
= −ηp

∂E

∂y

∂y

∂u

∂�u

∂Kp

=ηpe(k)
∂y

∂u
xc1(k),

(56)
�Ki =− ηi

∂E

∂Ki
= −ηi

∂E

∂y

∂y

∂u

∂u

∂Ki

=ηie(k)
∂y

∂u
xc2(k),

(57)
�Kd =− ηd

∂E

∂Kd
= −ηd

∂E

∂y

∂y

∂u

∂u

∂Kd

=ηde(k)
∂y

∂u
xc3(k),
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Figure 20 RBF PID control process

Table 5 Parameters of RBF PID control

Physical significance Symbol Value

Learning rate lr 0.1

Factor of momentum β 0.06

Number of neurons nn 6

Initial PID parameter Kp 8

Ki 0.00001

Kd 0.0001

PID parameter learning rate lr_Kp 0.08

lr_Ki 0.00001

lr_Kd 0.0001
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5.2.4  Positioning Experiment Based on RBF Neural Network 
Setting PID Controller

The overall control process is shown in Figure  20, and 
Table 5 lists the parameters.

The parameters were then modified, as shown in Fig-
ure  21. First, the program was initialized. Second, the 
nodes of each neuron and the neural network output 
were calculated. Third, the system output was used to 
recalculate the data of “c”, “b”, and “weight.” Finally, the 
“Jacobian” and Kp , Ki , Kd were calculated.

The PID control model was compared with the RBF-
tuning PID control model, and the input-output curves 
were plotted, as shown in Figure 22. The PID parameter 
correction curve is shown in Figure 23. The PID param-
eters changed with time.

The response error of the system is shown in Fig-
ure  24. After a period of online learning, the control 
system using the RBF-setting PID method became bet-
ter than the incremental PID control system in terms of 
approaching speed.

A sinusoidal signal was used to assess the perfor-
mance. The amplitude of the input signal was 0.09, and 
the period was 2 s/rad. The values of the parameters are 
listed in Table 6.

A comparison of the two control methods is shown in 
Figure 25.

(58)
∂y(k)

∂u(k)
≈

∂ym(k)

∂u(k)
=

m
∑

j=1

wjhj
cj − x1

b2j
.

Figure 26 presents the PID parameter correction curve 
for the sinusoidal signal. When a sinusoidal signal is used 
as the input signal, the RBF-tuning PID method becomes 
better than the incremental PID method in terms of 
approaching speed.

6  Conclusions and Further Work
In this paper, the proportional directional control valve 
and the magnetically coupled rodless cylinder were used 
as the research object to achieve the precise position-
ing of magnetically coupled rodless cylinder. In addition, 
the pneumatic position servo experimental platform was 
established. The following conclusions were drawn.

(1) The factors influencing the magnetically coupled 
nonlinear rodless cylinder position servo system 
were analyzed, and an experimental test platform 
was built to examine the characteristics and physi-
cal structure of the main components of the experi-
mental system.

(2) A theoretical model of the magnetically coupled 
nonlinear rodless cylinder position servo system 
was developed in MATLAB based on the theoreti-
cal and experimental data.

(3) An experimental platform for the magnetically cou-
pled nonlinear rodless cylinder position servo sys-
tem was constructed.

(4) Simulation and physical models were compared 
using incremental PID control, and the accuracy 
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Figure 21 Flowchart of change in RBF neural network parameters
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and validity of the mathematical models were veri-
fied. The mean error of 0.005175054 (m) is approxi-
mately 2.588% of the total stroke.

(5) An approach to control the motion of the magneti-
cally coupled rodless cylinder based on an RBF neu-
ral network to set the PID parameters was proposed 
to compare the experimental results with those of 
the incremental PID.

(6) The results show that the RBF neural network-tun-
ing PID method is better than the simple incremen-
tal PID control method in controlling the precision 
and response speed.

However, the heat exchange process between the gas in 
the cylinder and the external environment was neglected. 
There is room for improvement in this regard. Further 
work should include other control algorithms combined 
with an RBF neural network-tuning PID-control algorithm 
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Figure 22 Input–output comparison between RBF-PID and PID 
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Table 6 Parameters set for sinusoidal signal

Physical significance Symbol Value

Learning rate lr 0.2

Factor of momentum β 0.06

Number of neurons nn 6

Initial PID parameter Kp 30

Ki 0.00001

Kd 0.0001

PID parameter learning rate lr_Kp 0.4

lr_Ki 0.02

lr_Kd 0.02
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or the design of a new composite control method that will 
improve the accuracy of magnetically coupled nonlinear 
rodless cylinder position servo systems.
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Figure 26 PID parameter correction curve for sinusoidal signal
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