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Abstract 

There are lots of researches on fixture layout optimization for large thin-walled parts. Current researches focus 
on the positioning problem, i.e., optimizing the positions of a constant number of fixtures. However, how to deter-
mine the number of fixtures is ignored. In most cases, the number of fixtures located on large thin-walled parts 
is determined based on engineering experience, which leads to huge fixture number and extra waste. Therefore, this 
paper constructs an optimization model to minimize the number of fixtures. The constraints are set in the optimiza-
tion model to ensure that the part deformation is within the surface profile tolerance. In addition, the assembly gap 
between two parts is also controlled. To conduct the optimization, this paper develops an improved particle swarm 
optimization (IPSO) algorithm by integrating the shrinkage factor and adaptive inertia weight. In the algorithm, 
particles are encoded according to the fixture position. Each dimension of the particle is assigned to a sub-region 
by constraining the optional position range of each fixture to improve the optimization efficiency. Finally, a case study 
on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meet-
ing the assembly quality requirements. This research proposes a method to optimize the number of fixtures, which 
can reduce the number of fixtures and achieve deformation control at the same time.

Keywords Assembly quality, Large thin-walled parts, Fixture layout, PSO, FEM

1 Introduction
Large thin-walled parts are commonly-used components 
in aircraft manufacturing, ship building, and other indus-
trial fields. They are usually assembled to construct outer 
shells, such as ship hulls and fuselage, which provide 
necessary space for passengers and cargoes. This kind of 
parts have large in-plane dimensions including the length 
and width (3 m−10 m), while the thickness of the part is 
very small (1 mm−10 mm), which leads to its low out-
of-plane stiffness. Due to its low out-of-plane stiffness, 
deformation under the action of gravity is easy to occur. 
Its deformation will affect the final assembly quality, 

which will reduce the surface quality as well as the ser-
vice life of products.

To suppress the part deformation in the assembly pro-
cess, an "N-2-1" locating principle came into being [1]. 
According to the principle, N (N > 3) fixtures are placed 
on the main datum plane to reduce the deformation 
(shown in Figure  1). The research shows that this prin-
ciple not only restricts the degree of freedom of large 
thin-walled parts, but also reduces their deformation. 
However, when arranging fixtures on the basis of “N-2-1” 
locating principle, how to arrange N fixtures reasonably 
has become a key problem for engineers. Therefore, lots 
of researches on the optimal design of fixture layout have 
been done.

Most researches on fixture layout optimization design 
are carried out under the situation that the number of 
fixtures is known. Researchers combine the finite ele-
ment model with optimization algorithms to optimize 
fixture layout. Cai et al. [1] divided the plate into meshes 
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with the finite element method (FEM). The deformation 
at the grid nodes was used to express the deformation of 
the plate. Then they applied the nonlinear programming 
algorithm to obtain the optimal fixture layout to reduce 
the overall deformation. Ahmad et al. [2–4] proposed to 
use the overall strain energy to represent the deformation 
of the part. They used the FEM to calculate the strain 
energy, and then used different optimization methods to 
conduct optimization. Bi et  al. [5] used the partial least 
squares regression method to carry out optimization. Wu 
et al. [6] combined genetic algorithm (GA) with FEM to 
get an appropriate layout of the auxiliary support of the 
blade in order to suppress its deformation. ANSYS and 
ABAQUS are commonly-used finite element analysis 
(FEA) software. Liao and Wang [7] combined ANSYS 
and MATLAB to build the finite element model, and then 
used the mode purchasing sampling method to search 
for the appropriate fixture layout. Hajimiri et al. [8] used 
ABAQUS for FEA and calculated part deformation. They 
optimized fixture layout and clamping sequence by GA. 
Xiong et al. [9] and Yang et al. [10] used Python to mod-
ify the parameters of the finite element model, so as to 
calculate the part deformation under different fixture 
layouts. Different heuristic algorithms were utilized for 
optimization.

In addition to calculating the deformation directly in 
the FEA software, some researchers also chose to derive 
the stiffness matrix and modify it to calculate the defor-
mation. Such behavior can be summarized as building 
a finite element solver. Du et al. [11] adopted the direct 
stiffness method (DSM) to obtain the deformation of 
each node. They modified the stiffness matrix according 
to modification rules proposed by Wu et al. [12], and then 
obtained the deformation according to Hooke’s law. Liu 
and Hu [13] adopted the method of influence coefficients 
(MIC) to deal with the stiffness matrix. Camuz et al. [14] 
used MIC to obtain the plastic distribution of all nodes 
on the sheet metal. The method they proposed can effi-
ciently improve the accuracy of deformation prediction.

The above studies are carried out when the number of 
fixtures has been determined based on engineering expe-
rience. In most assembly process of large thin-walled 
parts, the N fixtures are uniformly fixed on the X-Y plane 
(illustrated in Figure 1), while the heights of the “N” loca-
tors in Z direction are adjusted by workers according to 
the profile of each part to be assembled. With the large 
in-plane dimensions, the current dense and uniform 
fixture layout makes the value of “N” a great number. It 
brings long fixture setup time, extra assembly workload, 
and high cost in assembly process. Therefore, to reduce 
extra cost and improve the assembly efficiency under the 
requirements of assembly accuracy, the number of fix-
tures needs to be optimized.

Li and Melkote [15] employed the sequential quad-
ratic programming technique to optimize the number 
of fixtures. They designed an iterative synthesis algo-
rithm. Simulation results showed that their approach 
improved the workpiece location accuracy significantly. 
Wang et al. [16] proposed an approach which combined 
FEM with nonlinear programming algorithms to get the 
appropriate position and number of the fixtures. To opti-
mize fixtures’ position and number, Liao [17] proposed a 
method based on GA. The deformation due to the grav-
ity effect was also minimized. The method was applied to 
an industrial case and the practicability of the approach 
was demonstrated. Yang et al. [18] constructed the grey 
model to link the maximum deformations of the parts to 
the number of fixtures. The number of fixtures was found 
under the allowable maximum deformation. Khodaban-
deh et al. [19] came up with a novel idea which combined 
the FEM and multi-objective ant colony algorithm. The 
number and position of clamps were both optimized. 
This method was proved to be effective by the fixture 
layout optimization for the automotive side reinforce-
ment. Aderiani et al. [20] utilized evolutionary optimiza-
tion algorithms and compliant variation simulation of the 
assembly. They intended to optimize several fixture lay-
out parameters simultaneously. Two cases from the auto-
motive industry were studied to prove that the presented 
method was effective.

Although researchers have done some research on the 
optimization of fixture number, these studies still have 
limitations. First, most studies only consider the fixture 
layout of one part, while the assembly process involves at 
least two parts. Therefore, it is necessary to consider the 
fixture layout optimization of two parts at the same time. 
Second, most of the studies aim to reduce the part overall 
deformation. However, in large thin-walled part assembly 
process, in addition to the part deformation itself, there 
is also the assembly gap between the two parts. As many 
thin-walled parts are assembled by seam welding, the size 
of assembly gap has a great impact on the welding quality 

Figure 1 “N-2-1” locating principle for large thin-walled part 
assembly
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in the assembly process. Therefore, it is of great signifi-
cance for improving the assembly quality to control the 
assembly gap size. Thirdly, the optimization of the num-
ber of fixtures was mostly carried out in the form of trial-
and-error in the past. Researchers increased or reduced 
the number of fixtures one by one in each stage, looked 
for the optimal fixture layout respectively, and finally 
got the smallest number of fixtures. This optimization 
method has cumbersome steps and low efficiency. There-
fore, an improved particle swarm optimization (IPSO) 
algorithm is proposed to optimize the number of fixtures 
for large thin-walled parts in this paper.

The optimization model is constructed in this paper. 
The DSM is used to calculate the part deformation and 
lay a foundation for the deformation and assembly gap 
control. Then, with the IPSO algorithm, the number of 
fixtures is optimized. Finally, taking ship curved panel 
assembly as a case, the feasibility of our method is proved. 
The arrangement of this paper is as follows: Section  2 
introduces the construction of the optimization model, 
and Section  3 introduces the optimization algorithm. 
The case study of ship curved plane assembly is discussed 
in Section  4. Finally, the conclusions are summarized in 
Section 5.

2  Formulation of Fixture Layout Optimization 
for Large Thin‑Walled Parts

According to the “N-2-1” locating principle, the layout 
scheme of “N” fixtures plays a critical role in reducing the 
part deformation in the assembly process. However, each 
additional fixture or adjustment of the fixture will pro-
duce additional costs. To reduce the waste and improve 
profits, it is essential to design an optimization model to 
minimize the number of fixtures while meet the assembly 
requirements. This section will describe the optimization 
problem, decision variables, optimization objectives and 
constraints, and construct the optimization model of the 
fixture layout.

2.1  Decision Variables and Optimization Objectives
In “N-2-1” principle, N fixtures placed on the main datum 
plane are aimed at reducing part deformation. Two fix-
tures are located on the second datum plane and one fix-
ture is placed on the third plane. Among them, the fixtures 
on the main datum plane have great influence on the part 
deformation. Therefore, this paper mainly considers the 
layout optimization of “N” fixtures on the main datum 
plane. According to the engineering practice, fixtures can-
not locate on sharp curves. Therefore, the fixture design 
space should subtract these areas. If the fixture positions 
are represented by the coordinate, it will be difficult to 
design constraints when the part shape is irregular. To 

simplify the problem, the fixture positions are expressed 
by discrete variables X = [x1, x2, x3, . . . , xN ] . X is a vec-
tor representing the fixture layout. xi(i = 1, 2, 3, . . . ,N ) 
means the position of each fixture, which is represented 
by the index of finite element mesh nodes. N denotes the 
fixture number.

The specific method is as follows. Using the finite ele-
ment analysis software, two large thin-walled parts are 
divided into multiple grids. It is assumed that the fix-
tures are arranged at the grid nodes. There are n1 nodes 
and n2 nodes for part 1 and part 2, respectively. Consid-
ering that the fixture cannot be arranged at the sharp 
edge, the nodes at the edge of the parts are excluded 
from the optional range in this paper. NF1 and NF2 are 
used to represent the number of nodes which cannot be 
selected on two parts respectively. In other words, there 
are (n1 + n2 − NF1 − NF2) nodes where fixtures can be 
located on the two parts. Cs represents the set of optional 
nodes so that xi ∈ Cs, i = 1, 2, 3, . . . ,N .

The optimization objective of this paper is as follows to 
optimize the number of fixtures:

where N (X) means the number of fixtures when the fix-
ture layout is X . The objective is to minimize the number 
of fixtures.

2.2  Constraints
Large thin-walled parts have low out-of-plane stiffness. 
This characteristic makes them easy to deform. Excessive 
part deformation will also cause excessive assembly gap 
between two parts, resulting in a decline in assembly qual-
ity. Therefore, while optimizing the number of fixtures, 
constraints are needed to make sure that the part deforma-
tion and the assembly gap meet the requirement. The DSM 
is used to help calculate part deformation and assembly 
gap.

Firstly, the overall part deformation is considered. The 
large thin-walled part is divided into multiple grids through 
finite element analysis, and the nodal deformation is used 
to characterize the overall deformation. To calculate the 
deformation, this paper assumes that the deformation at 
each node is linear elastic. Based on Hooke’s law, the over-
all stiffness equation can be obtained as follows:

where F ∈ Rn represents the force vector, K ∈ Rn×n 
means the global stiffness matrix, and U ∈ Rn is the 
deformation vector. n represents the number of nodal 
displacements. The deformation at each node of the part 
can be calculated by expanding Eq. (2) as follows:

(1)
min

xi ∈ Cs
N (X),

(2)KU = F ,
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To improve the calculation efficiency, this paper 
used the DSM [11, 12] to calculate U  . According to 
the DSM, U  is calculated by adjusting the stiffness 
matrix and force vector. Suppose the  αth node dis-
placement uα is known and uα = uα ′ . The DSM set 
fα

′ = kααu
α ′ , fi ′ = fi − kiαu

α ′ , and k ′

iα = k
′

αi = 0 , where 
i = 1, 2, 3, . . . , n and i  = α . In the fixture layout process, 
when a fixture is set on node α , it  means  that   uα = 0 . 
According to the direct stiffness method, the displace-
ment boundary conditions imposed by the fixture can be 
easily expressed. For example, if α=3, i.e., u3=0, then Eq. 
(3) can be modified as:

(3)
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Through this method, the original Eq. (2) can be rewrit-
ten as follows:

where F ′
1(X) and K ′

1(X) are the adjusted force vector 
and stiffness matrix of part 1, respectively. F ′

2(X) and 
K ′

2(X) denote the force vector and adjusted stiffness 

(5)
K ′

1(X)U1(X) = F ′

1(X),K ′

2(X)U2(X) = F ′

2(X),

matrix of part 2, respectively. U1(X) and U2(X) are 
the node deformation vectors of part 1 and part 2 
respectively.

During assembly, the surface profile tolerance of the 
large thin-walled part meets the requirement. In this 
paper, the surface profile is expressed by the node defor-
mation. Therefore, the requirements for surface profile 
tolerance can be reflected by the following constraints:

where u1,ix(X) , u1,iy(X) , u1,iz(X) , u2,jx(X) , u2,jy(X) , and 
u
2,jz(X) are linear displacements of the i th node of part 

1 and the j th node of  part 2 in the X, Y and Z direc-
tions, respectively. ε is the surface profile tolerance 
requirement.

Besides considering the surface profile, the influ-
ence of the assembly gap between the two parts on the 
assembly quality is also considered in this paper. In 
fact, if the assembly gap between the two plates is too 
large, it will greatly affect the quality of welding. The 
calculation formula for assembly gap dimension of two 
parts is as follows:

where ψk(X) means the assembly gap at node k under 
fixture layout X . m0 is the number of nodes along the 
assembly gap. H(X) is the maximum assembly gap, which 
needs to meet the requirement of less than σ . Therefore, 
the constraint is as follows:

In general, the optimization model is as follows:

(6)







u1,i(X) =
�

u2
1,ix(X)+ u21,iy(X)+ u21,iz(X) ≤ ε, i = 1, 2, . . . , n1,

u2,j(X) =
�

u2
2,jx(X)+ u2

2,jy(X)+ u2
2,jz(X) ≤ ε, j = 1, 2, . . . , n2,

(7)











ψk(X) =

�

�

u1,kx(X)− u2,kx(X)
�2

+
�

u1,ky(X)− u2,ky(X)
�2

+
�

u1,kz(X)− u2,kz(X)
�2
,

H(X) = max(ψk(X)),

k = 1, 2, . . . ,m0,

(8)H(X) ≤ σ .

(9)min

xi ∈ Cs

N (X), s.t.K
′

1(X)U1(X) = F
′

1(X),K
′

2(X)U2(X) = F
′

2(X),u1,i(X) ≤ ε, i = 1, 2, . . . , n1,u2,j(X) ≤ ε, j = 1, 2, . . . , n2,H(X) ≤ σ .
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It can be found that the optimization model contains three 
unequal constraints. To simplify the model, the number of 
unequal constraints should be reduced. Therefore, the pen-
alty function δ(X) is introduced. δ(X) is defined as follows:

where C1 = {X |u1,i(X) ≤ ε, i = 1, 2, . . . , n1}C2 = {X |u2,j(X) , 
≤ ε, j = 1, 2, . . . , n2} , and δ0 is a positive parameter. δ0 is 
much greater than σ . At this time, the three unequal con-
straints of the original problem can be written as follows:

It can be proved that Eq. (11) is equivalent to the 
three unequal constraints in Eq. (9). The proof process 
is as follows:

(1) When X /∈ C1 orX /∈ C2 , δ(X) is much greater than 
σ as δ0 is much greater than σ . Therefore, H ′(X) will 
be greater than σ.

(2) When H(X) is greater than σ , because δ(X) is 
greater than or equal to 0, H ′(X) must be greater 
than σ.

(3) When X satisfies all three unequal constraints, 
δ(X) equals to 0 and H(X) is less than or equal to σ . 
Therefore, H ′(X) ≤ σ holds.

The optimization model is simplified as follows:

3  Method for Fixture Layout Optimization 
for Large Thin‑Walled Parts

After constructing the optimization model, we need to 
apply the optimization algorithm to calculate the optimal 
number of fixtures. As a classical heuristic algorithm, parti-
cle swarm optimization (PSO) algorithm has simple struc-
ture and fast search speed. It is often used to solve fixture 
layout optimization problems [21–24]. To further improve 
the search ability for the fixture layout optimization, the 
IPSO algorithm is proposed. This section introduces the 
IPSO algorithm and the specific optimization process.

3.1  Improved Particle Swarm Optimization Algorithm
Kennedy and Eberhart [25] first introduced the PSO algo-
rithm. PSO simulates a behavior of birds gathering towards 
the same target in a multidimensional space. According to 
the actual requirements, we improve the PSO algorithm. 

(10)
δ(X) =

{

0,X ∈ C1 andX ∈ C2,

δ0 ×max
{

u1,i(X),u2,j(X)
}

,X /∈ C1 orX /∈ C2,
i = 1, 2, . . . , n1, j = 1, 2, . . . , n2,

(11)H ′(X) = H(X)+ δ(X) ≤ σ .

(12)

min

xi ∈ Cs
N (X), s.t.K

′

1(X)U1(X) = F
′

1(X),K
′

2(X)U2(X)

= F
′

2(X),H ′(X) ≤ σ .

Section 3.1.1, 3.1.2 and 3.1.3 respectively introduce the IPSO 
algorithm from three aspects: mapping between fixture lay-
outs and particles, updating particle velocity and position, 
and selection of optimal fixture layouts.

3.1.1  Mapping Between Fixture Layouts and Particles
There are NP particles in PSO algorithm, and every par-
ticle represents a solution of the problem. As for the opti-
mization model in this paper, each particle represents a 
fixture layout with N ∗ dimensions, where N ∗ means the 
maximum number of fixtures for two parts. The m th parti-
cle can be expressed as Xm = [xm,1, xm,2, xm,3, . . . , xm,N∗ ] , 
where xm,l(l = 1, 2, 3, . . . ,N ∗) indicates the index of the 
node where the l th fixture are located. For a fixture, it can 
be placed on any node on the part except the nodes on the 
edge. However, considering the large number of optional 
nodes and large solution space, it will become difficult to 
search feasible solutions. To improve the efficiency, the 
optional position range of each fixture is constrained. The 
original set Cs is divided into N ∗ subsets. These N ∗ subsets 
have no intersection with each other, and their combina-
tion constitutes Cs . For the l th fixture, its position meets 
the condition that xm,l ∈ Cl

s , where Cl
s represents the set of 

optional nodes for the l th fixture.
As the assembly process involves two parts and the fix-

tures are scattered on them, a particle is also composed of 
two parts. One part represents the fixture layout on part 1 
and the other part represents the fixture layout on part 2. As 
shown in Figure  2, the first n∗1-dimensional variable repre-
sents the positions of n∗1 fixtures for part 1, while the last n∗2
-dimensional variable represents the positions of n∗2 fixtures 
for part 2. n∗1 and n∗2 mean the maximum number of fix-
tures for part 1 and part 2, respectively. The sum of n∗1 and n∗2 
equals N ∗.

In the general PSO algorithm, the variable has a range. 
Once the variable exceeds the range, it needs to be pulled 
back. However, the goal of this paper is to optimize the 
number of fixtures. Therefore, when the variable is out of 
range, it is not pulled back to the range, but is regarded as 
the position of virtual fixtures. The number of fixtures is 
reduced in this way. For example, suppose after iteration t , 
Xm(t) = [xm,1, xm,2, xm,3, . . . , xm,p, . . . , xm,q , . . . , xm,N∗ ]  , 
where xm,p is outside the optional range Cp

s  , and xm,q is 
outside the optional range Cq

s  . Therefore, xm,p and xm,q are 
regarded as the position of virtual fixtures. In this case, the 
number of real fixtures becomes (N ∗ − 2) , which means the 
fitness value of the m th particle N (Xm) equals to (N ∗ − 2) . 
In this way, the number of fixtures is optimized.
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3.1.2  Updating Particle by Integrating Shrinkage Factor 
and Adaptive Inertia Weight

During the iteration, the velocity Vm(t) , the current posi-
tion Xm(t) , the best position a particle reached in pre-
vious iterations Xpbest

m (t) , and the best position of all 
particle Xgbest(t) , determine the new position of particle 
m . Every dimension of velocity Vm(t + 1) and position 
Xm(t + 1) is updated as follows:

 where r1 and r2 are the  random real numbers in range 
[0, 1]. c1 and c2 are the learning factors. Vmax and Vmin 
are the maximum and minimum values of particle 
velocity. ω is an inertia weight coefficient. The sub-
script d indicates the d th dimension of the vectors. 
vm,d(t + 1), vm,d(t), x

pbest
m,d (t), xm,d(t), x

gbest
d (t) and xm,d(t + 1) 

represent the dth element of Vm(t + 1),Vm(t),X
pbest
m (t),

Xm(t),X
gbest(t) andXm(t + 1) , respectively.

Learning factors c1 and c2 reflect the information 
exchange between particles. Setting a larger c1 will cause 
too many particles to search in the local range, while a 
larger c2 will make the particles trapped in local opti-
mal. To control the velocity of particles and make the 
algorithm achieve the balance between local search and 
global search, the shrinkage factor ϕ is introduced [26]. 
This adjustment method can ensure the convergence of 
PSO algorithm [27]. Therefore, the improved velocity and 
position update equation is as follows:

(13)

vm,d(t + 1) = ωvm,d(t)+ c1r1

�

x
pbest
m,d (t)− xm,d(t)

�

+ c2r2

�

x
gbest
d (t)− xm,d(t)

�

=







Vmin, vm,d(t + 1) � Vmin,

vm,d(t + 1),Vmin < vm,d(t + 1) < Vmax

Vmax,Vmax � vm,d(t + 1),
,

xm,d(t + 1) = xm,d(t)+ vm,d(t + 1),

(14)

vm,d(t + 1) = ϕ

�

ωvm,d(t)+ c1r1

�

x
pbest
m,d (t)− xm,d(t)

�

+ c2r2

�

x
gbest
d (t)− xm,d(t)

��

=







Vmin, vm,d(t + 1) � Vmin

vm,d(t + 1),Vmin < vm,d(t + 1) < Vmax

Vmax,Vmax � vm,d(t + 1),
,

ϕ =
2

�

�

�
2− (c1 + c2)−

�

(c1 + c2)
2 − 4(c1 + c2)

�

�

�

,

xm,d(t + 1) = xm,d(t)+ vm,d(t + 1).

In PSO algorithm, inertia weight coefficient ω is a very 
important parameter. It indicates the ability of particles 
to maintain the motion state of the previous moment. 
Also, it can help the algorithm keep the balance between 
local search and global search. The larger ω is, the 
stronger the global search ability can be. When ω is small, 
the local search ability become strong. For the optimiza-
tion algorithm, we hope that it not only has good global 

search ability to find better solutions, but also can accu-
rately search the local space of better solutions. There-
fore, many researchers are interested in the improvement 
of  the inertia weight coefficient ω [28–31]. This paper 
chooses to introduce adaptive inertia weight [32]. The 
calculation of ω of the m th particle is as follows:

where ωmin and ωmax are the preset minimum and maxi-
mum inertia weights respectively, N (X(t)) is the average 
fitness of all particles in the t th iteration, min(N (X (t))) is 
the minimum fitness in the t th iteration, and N (Xm(t)) 
means the fitness of the m th particle in the t th iteration. 
The meaning of this equation is as follows: The smaller 
the fitness value is, the closer it is to the optimal solution, 
which means a greater need of local search. Conversely, 
global search is more needed.

(15)

ωm(t) =







ωmin + (ωmax − ωmin)
N (Xm(t))−min(N (X(t)))

−

N (X(t))−min(N (X(t)))

,N (Xm(t)) ≤ N (X(t)),

ωmax,N (Xm(t)) > N (X(t)),
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3.1.3  Selection of Optimal Fixture Layouts
Figure 3 illustrates the specific flow of the IPSO algorithm. 
As can be seen from the flow chart, selecting and updat-
ing Xpbest

m  and Xgbest is a very important step in PSO algo-
rithm. For unconstrained optimization problems, only the 
fitness value is needed when selecting Xpbest

m  and Xgbest . 
However, the optimization problem in this paper is a con-
strained optimization problem. Therefore, when updating 
X
pbest
m  and Xgbest , the constraint H ′(Xm) needs to be care-

fully considered. H ′(Xm) can be obtained based on Eq. (11). 
In this process, DSM is applied to calculate node deforma-
tion vectors, which are necessary for calculating H ′(Xm) . 
The specific application of DSM is as shown in Section 2.2. 
H ′(Xm) will be one of the key bases for updating Xpbest

m  and 
Xgbest.

The criteria of updating Xpbest
m  and Xgbest are as 

follows:

(1) When there are particles to make H ′ meet the con-
straint of H ′ ≤ σ , select the one with the smallest N
;

(2) When there is no particle to make H ′ meet the con-
straint of H ′ ≤ σ , select the one with the smallest 
H ′;

(3) When there are multiple particles that can make H ′ 
meet the constraint of H ′ ≤ σ , and their N  is equal, 
select the one with the smallest H ′.

The criteria help us avoid selecting a fixture layout that 
has a small number of fixtures but cannot control part 
deformation.

As for the m th particle, the best position it reached in 
previous t iterations is recorded as Xpbest

m (t) . After the 
(t + 1) th iteration, the resulting fixture layout is recorded 
as Xm(t + 1) . The process of updating Xpbest

m (t + 1) 
is shown in Algorithm  1. The process of updating 

X
pbest
m (t + 1) is actually a process of selecting a better 

solution between Xpbest
m (t) and Xm(t + 1) . H ′ and N  are 

two important criteria for evaluating which solution is 
better. There are many situations when comparing H ′ and 
N  , so we listed how to make choices in various situations 
in Algorithm 1.

After updating Xpbest
m (t + 1) , Xgbest(t + 1) is waiting 

to be updated. Xgbest(t + 1) is recorded as the swarm’s 
best position after (t + 1) iterations. It is selected from 
{

X
pbest
m (t + 1),m = 1, 2, · · · ,NP

}

 . Because Xpbest
m (t + 1) 

is chosen from two solutions, while Xgbest(t + 1) is cho-
sen from NP solutions, the update procedures are differ-
ent. The new swarm’s best position Xgbest(t + 1) is 
updated according to Algorithm  2. H ′ and N  are both 
considered when updating Xgbest(t + 1).

Algorithm 1 Procedure of updating Xpbest
m (t + 1) in the (t+ 1)th iteration

Figure 2 Sample particle in the IPSO algorithm
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Algorithm 2 Procedure of updating Xgbest(t + 1) in the (t+1)th iteration

3.2  Process of Fixture Layout Optimization
By combining the FEM with the IPSO algorithm, 
this paper optimizes the number of fixtures for large 

thin-walled parts. The specific optimization steps are 
shown in Figure 4.

Step 1. Build a three-dimensional model according to 
the shape and size of the part. After modeling, export 
the data interaction file of the model.
Step 2. Meshed the model by the finite element 
meshing tool, and derive the data interaction file of 
the model. The number of finite element mesh nodes 
of two parts and the coordinates of each node are 
extracted from the data interaction file.
Step 3. Read the data interaction file using the FEA 
software. Set the material parameters. According to 
the actual situation of the assembly and splicing of 
the two thin plates, reasonably simplify the model, 
set that there is no interaction between the two parts 
and load gravity. After the parameter setting is com-
pleted, the stiffness matrixes and force vectors of the 
two parts are derived and recorded as K 1 , K 2 , F1 and 
F2 respectively.
Step 4. Use MATLAB to read the derived stiff-
ness matrixes and force vectors. Set the positions of 
the three fixtures placed on the 2nd and 3rd datum 
planes according to the "N-2-1" positioning principle, 
and modify K 1 , K 2 , F1 and F2.
Step 5. Apply the IPSO algorithm to iteratively find 
the number and position of fixtures that meet all 

Figure 3 Flow chart of the IPSO algorithm

Figure 4 Fixture layout optimization process
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constraints and minimize the objective function. Use 
DSM to calculate H ′ in each iteration. Calculate N  . 
Select the optimal solution according to H ′ and N .
Step 6. Validate and visualize the optimization 
results. According to the optimal fixture layout, we 
found out  that the FEA software is used to design 
constraints at the corresponding grid nodes of the 
finite element model. Carry out finite element simu-
lation, obtain the deformation nephogram of the 
parts, and complete the result verification and visu-
alization.

4  Case Study
A case of ship curved plane assembly is studied to dem-
onstrate the effectiveness of our method. The curved 
plane used in ship assembly has the characteristics of 
large size and low out-of-plane stiffness, which is easy to 
deform under the effect of force. Therefore, it is essen-
tial to reasonably design the fixture layout to reduce the 
deformation. Section 4.1 introduces the background and 
significance of the problem and constructs the finite ele-
ment model. The optimization results are shown in 4.2. 
The optimization result of this method are compared 
with that obtained by iterative trial-and-error procedure 
based on simulated annealing (SA) algorithm [11] in Sec-
tion 4.3, which shows the advantages of this method.

4.1  Problem Description of Ship Curved Panel Assembly
Large curved panels are widely used in ship building. 
Hundreds of large curved panels with different shape and 
size are assembled and welded together to be ship hull. 
With the characteristics of large in-plane dimensions, 
small thickness and low out-of-plane stiffness, large 
curved panels are very easy to deform under the action of 
gravity. The deformation of panels will introduce assem-
bly gap in the assembly process. Incompliant assembly 
gap will affect the welding quality and efficiency [33]. 
Therefore, it is necessary to control the assembly gap 
dimension in the ship assembly process.

It is a common approach to restrain the part deforma-
tion by using reasonably arranged fixtures. At present, 
the uniformly distributed jig frame is usually used to sup-
port the large cured panels and restrain the deformation 
in the assembly process. In fact, this experience-based 
fixture layout not only makes it difficult to achieve satis-
factory results in restraining deformation, but also causes 
unnecessary waste due to the excessive number of fix-
tures. To reduce the assembly cost and effectively restrain 
the deformation, the fixture number and the correspond-
ing layout need to be optimized.

The research objects of this case are two ship parts 
located at the bow. Part 1 and part 2 are two curved parts. 

The welding method used in the part assembly process is 
laser welding or arc welding. During the welding process, 
two curved parts are welded by long continuous welding 
seam [11]. The lengths of four sides for part 1 are 5200 
mm, 4800 mm, 2800 mm and 4200 mm. The lengths of 
four sides for part 2 are 5200 mm, 5100 mm, 1500 mm 
and 1900 mm. Both parts are 6 mm thick. The density, 
Poisson’s ratio, and Young’s modulus of the two parts are 
7.85×10−3 g/mm3, 0.3, and 210000 N/mm2 respectively.

Using HyperMesh 13.0 for mesh generation. The size 
of the mesh is 100 mm × 100 mm. Part 1 is divided into 
1751 elements with 1828 nodes; Part 2 is divided into 826 
elements with 892 nodes. Figure  5 shows the finite ele-
ment model. This case only considers the influence of the 
gravity of the parts themselves on the deformation dur-
ing the assembly process. The gravity is evenly distrib-
uted on the two parts in Z direction, and the gravitational 
acceleration is set as 9.81 m/s2.

After establishing the finite element model, the stiff-
ness matrixes K 1 and K 2 , and force vectors F1 and F2 
are derived. Table  1 shows the input parameters which 
are set according to the obtained model and the known 
information in the assembly process. The parameter set-
tings of the IPSO algorithm are shown in Table  2. The 
number of particles, the number of iterations, and the 
particle velocity variation range are determined through 
trial and error. To balance the search time and search 
scope, these parameters are set to the values in Table 2. 
The variable dimension is determined according to the 
maximum number of fixtures on two parts. The values of 
learning factors and the variation range of inertia weight 
are set according to Ref. [26].

4.2  Results of Optimal Design
After setting the initial parameters, the appropriate fix-
ture layout is found after several iterations. This section 
introduces the optimized fixture layout and the changes 
of deformation and assembly gap before and after 

Figure 5 Finite element models of two parts to be assembled
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optimization. The comparison demonstrates the effec-
tiveness of our method.

After 25 iterations, the optimized number and position 
of fixtures are obtained. The iterative process is shown 
in Figure 6. Table 3 shows the number of fixtures on the 

two parts and nodes where the fixtures are located before 
and after optimization. Before optimization, there are 
28 fixtures on part 1 and 14 fixtures on part 2. The fix-
tures are evenly distributed on the two parts in the X-Y 
plane (shown in Figure 7). After optimization, the num-
ber of fixtures on part 1 is m1 = 21 , and the number of 
fixtures on part 2 is m2 = 11 . The total number of fixtures 
is reduced from 42 to 32. Figure  8 shows the X-Y plane 
projection of the fixture layout.

Although the number of fixtures is reduced, the opti-
mized fixture layout still has a good effect of controlling 
deformation through the optimization of fixture posi-
tion. Table 4 shows the deformation of parts with differ-
ent fixture layouts. Comparing the dimension of the gap 
between the two parts, it can be found that the mean gap 
is 1.32 mm and the maximum gap is 1.86 mm when the 
fixture is evenly distributed. The optimized fixture lay-
out controls the mean gap dimension to 0.37 mm and the 
maximum gap to 0.69 mm. They are reduced by 72.0% 
and 62.9% respectively compared with the former. It can 
be found that when the number of fixtures is 42, uni-
formly distributed fixtures cannot effectively control the 
part deformation. The maximum node deformation of 
the part is 4.53 mm. With the optimized fixture layout, 
the maximum deformation of parts is 2.20 mm, 51.4% 
reduced than the former. In terms of average deforma-
tion, before optimization, the mean deformation is 0.78 
mm, while after optimization, the mean deformation is 
0.36 mm. The average deformation is reduced by 53.8%.

To intuitively show the part deformation under differ-
ent fixture layouts, the deformation diagram of the part is 
drawn using ABAQUS 6.14. Figure 9 shows the deforma-
tion of parts under uniform layout and optimized layout. 
It can be found from the figure that the most of nodal 
deformation of the two parts is well-controlled when the 
fixtures are evenly distributed. However, the deformation 

Table 1 Setting of input parameters

Parameter symbol Parameter description Parameter value

n1 Total number of nodes on part 1 1828

n2 Total number of nodes on part 2 892

NF1 Total number of nodes on part 1 where fixtures cannot be placed 170

NF2 Total number of nodes on part 2 where fixtures cannot be placed 135

m0 Number of nodes along the interface 53

n1
∗ Maximum number of fixtures for part 1 28

n2
∗ Maximum number of fixtures for part 2 14

N
∗ Maximum number of fixtures on two parts 42

ε Surface profile tolerance for two parts (mm) 3

σ Maximum assembly gap (mm) 1

δ0 Penalty factor 300

Table 2 Setting of algorithm parameters

Parameter symbol Parameter description Parameter value

NP Number of particles 40

G Number of iterations 25

D Variable dimension, D = N
∗ 42

c1 Individual learning factor 
of particles

2.05

c2 Social learning factor of par-
ticles

2.05

[ωmin,ωmax] Inertia weight variation range [0.4, 0.9]

[Vmin, Vmax] Particle velocity variation range [−95, 95]

Figure 6 Iterative process of the IPSO algorithm
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of some nodes at the edge of  part 2 is serious. This is 
because when the fixtures are evenly distributed, the fix-
tures at the edge are arranged sparsely due to the size and 
shape of part 2. After optimization, the deformation of 

the two parts is well controlled because the deformation 
constraints are set before optimization. The maximum 
deformation of part 2 is reduced from 4.53 mm to 2.20 
mm. Figure 9 also shows the assembly gap between two 
parts before and after optimization. It can be found from 
Figure 9 that when fixtures are uniformly distributed, the 
size of the assembly gap between the two parts increases 
along the X-direction and the gap is obvious. With the 
same deformation scale factor in ABAQUS 6.14, the 
assembly gap between these two parts is significantly 
reduced after optimization.

Figure  10 shows two different distribution histograms 
of node deformation before and after optimization. Fig-
ure 10(a) shows the deformation when a uniform layout 
is adopted. It can be found that the displacement of most 
nodes is less than 1 mm, and the displacement is mostly 
concentrated in 0.5−1 mm. However, the displacement 
of a few nodes has not been well controlled, exceeding 3 
mm. Figure 10(b) shows the deformation after the fixture 
layout is optimized. It can be found that the nodal dis-
placement is concentrated between 0−0.5 mm, and only a 
small part of the nodal displacement exceeds 1 mm. Fig-
ure 11 shows the gap dimensions at each node along the 
assembly edge. Compared with that before optimization, 
the gap dimensions are significantly reduced. Figures 10 
and 11 illustrate that although our objective is to reduce 
the number of fixtures, the deformation and assembly 
gap dimensions of the two parts are reduced due to the 
setting of constraints.

4.3  Comparison and Discussion
This section proves the reliability and advantages of the 
proposed method from two aspects. Firstly, we validate 
the calculation accuracy of DSM. Secondly, the per-
formance of IPSO algorithm for the number of fixtures 
optimization are compared with the traditional trial-and-
error procedure.

To prove the accuracy of the calculation results of 
DSM, the deformation obtained by the DSM is com-
pared with that obtained by ABAQUS 6.14. Taking the 
optimized fixture layout as an example, the absolute dif-
ferences of the deformation results obtained by the two 

Table 3 Comparison of the number and position of fixtures

Before optimization After optimization

Number of fixtures on part 1 28 21

Position of fixtures on part 1 [540, 496, 713, 203, 1383, 1538, 1418, 810, 575, 287, 196, 1718, 
1132, 1591, 885, 845, 370, 187, 1820, 1451, 986, 457, 927, 630, 177, 
949, 1410, 1502]

[250, 324, 366, 431, 513, 554, 604, 686, 750, 795, 836, 
914, 968, 1014, 1154, 1202, 1324, 1450, 1482, 1713, 
1812]

Number of fixtures on part 2 14 11

Position of fixtures on part 2 [831, 786, 666, 140, 524, 197, 328, 782, 859, 583, 148, 436, 292, 237] [156, 226, 341, 354, 444, 471, 563, 591, 657, 754, 854]

Figure 7 X-Y plane projection of fixture layout before optimization

Figure 8 X-Y plane projection of fixture layout after optimization



Page 12 of 15Liu et al. Chinese Journal of Mechanical Engineering            (2024) 37:1 

methods are shown in Table 5. It can be found that the 
order of magnitude of the absolute differences is 10−4 , so 
the calculation result of DSM is credible. This means that 
the method of using DSM to calculate deformation does 
not need to call the FEA software frequently, and the cal-
culation process is simpler.

Based on general PSO algorithm, the IPSO algorithm 
integrates the shrinkage factor and adaptive inertia 

weight to improve the search ability. To verify the supe-
riority of the IPSO algorithm, we compare general PSO 
and IPSO through experiments. We run two algorithms 
10 times respectively. The parameters of the IPSO algo-
rithm are shown in Table  2, while PSO algorithm does 
not have shrinkage factor, and the inertia weight is fixed 
at 0.9. The results are plotted as a boxplot, as shown 
in Figure  12. It can be seen from the figure that the 

Table 4 Comparison of part deformation and assembly gap under different fixture layout

Fixture layout Mean gap (mm) Max gap (mm) Mean deformation (mm) Max deformation (mm)

Uniform layout of 42 fixtures 1.32 1.86 0.78 4.53

Optimized layout of 32 fixtures 0.37 0.69 0.36 2.20

Reduction percentage (%) 72.0 62.9 53.8 51.4

Figure 9 Deformation and assembly gap with different fixture 
layouts Figure 10 Nodal deformation distribution
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overall optimization result obtained by IPSO is better. 
The median of the numbers of fixtures obtained by IPSO 
algorithm is 32, while that obtained by PSO algorithm is 
34. In addition, the results obtained by PSO algorithm are 
more scattered, which indicates that the search ability of 
PSO is unstable. The comparison results show that IPSO 
algorithm has better and more stable search ability.

It is also essential to compare the method with the tra-
ditional iterative trial-and-error process to evaluate the 
performance of our method. Du et al. [11] used the com-
bination of DSM and SA algorithm to optimize the fix-
ture layout. Their purpose was to minimize the assembly 
gap between the two parts. The number of fixtures was 
determined before optimization. Based on the method 
proposed by Du et  al., this paper carries out iterative 
trial-and-error to reduce the number of fixtures. Then, 
the trial-and-error procedure is compared with the IPSO 
algorithm. The iterative trial-and-error procedure on the 
basis of the method developed by Du et al. is as follows: 
Firstly, optimize the fixture layout with a constant num-
ber of fixtures until the assembly gap and deformation 
meet the requirements. Then, remove a fixture at ran-
dom and continue to optimize the fixture layout until the 
requirements are met. Iterate until the number of fixtures 
is reduced to the target.

According to the optimization results shown in the 
previous section, the initial number of fixtures is 42 and 
the target number is 32. The relevant parameters of SA 
algorithm are consistent with those in the research con-
ducted by Du et al. [11]. The data related to the finite ele-
ment models of the parts are modified according to the 
case in this paper.

Through the above method, the number of fixtures is 
reduced. Table  6 shows the comparison between the 
result found by the iterative trial-and-error process and 
the proposed method. Run these two programs on a 
laptop with 11th Gen Intel  (R) Core (TM) i5-11400H @ 
2.70 GHz processor, 16 GB of RAM, it takes longer time 
for the iterative trial-and-error procedure to reduce the 
number of fixtures by the same degree. Besides, the abil-
ity of the fixture layout found by iterative trial-and-error 
procedure in controlling deformation and assembly gap is 
not as good as that found by the proposed method. With 
the fixture layout obtained by iterative trial-and-error 

Figure 11 Comparison of gap dimensions of nodes 
along the assembly edge before and after optimization

Table 5 Deformation differences between DSM and FEA with 
the optimized fixture layout

Absolute difference Part 1 Part 2

Maximum 5.0015× 10−4 4.9962× 10−4

Mean 1.7220× 10−4 2.4202× 10−4

Figure 12 Comparison of IPSO and PSO

Table 6 Comparison of two different methods

Running time (s) Mean gap (mm) Max gap (mm) Mean deformation 
(mm)

Max 
deformation 
(mm)

Proposed method 6309.39453 0.37 0.69 0.36 2.20

Iterative trial-and-error 
based on SA

8346.97434 0.71 0.99 0.39 2.12
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method, the maximum deformation of the two parts is 
smaller, but the maximum gap, average gap and aver-
age deformation are not as small as that with the fixture 
layout obtained by the IPSO. The results in Table 6 show 
that the IPSO algorithm has higher efficiency and higher 
solution accuracy.

5  Conclusions

(1) An optimization model with the objective of mini-
mizing the number of fixtures is proposed. We 
designed constraints to ensure that the deformation 
of parts and the assembly gap meet the require-
ments while reducing the number of fixtures. The 
stiffness matrixes and force vectors are derived by 
FEA software. The DSM is used to calculate the 
deformation. Using DSM can avoid frequently call-
ing FEA software and make the process of calculat-
ing deformation easier.

(2) The IPSO algorithm is used for optimization. Each 
dimension of a particle represents the position 
of a fixture. To improve the solution efficiency, 
we restrict the feasible position of each fixture to 
ensure that the feasible positions of a fixture are 
in a small area. The number of feasible solutions is 
greatly reduced, and the phenomenon that multiple 
fixtures concentrated in a unified area is avoided. 
In addition, this paper introduces adaptive inertia 
weight and shrinkage factor to weigh local search 
and global search.

(3) A case of ship curved plane assembly is prepared. 
This case demonstrates that our approach can sig-
nificantly reduce the number of fixtures while 
controlling the deformation and assembly gap 
very well. Comparing the deformation calculated 
by DSM with that calculated by FEA, it is proved 
that DSM can accurately calculate the deformation. 
In addition, the IPSO algorithm is compared with 
the general PSO algorithm, and the result shows 
that the IPSO algorithm has stronger search abil-
ity. Finally, comparing our method with the Itera-
tive trial-and-error method, it is proved that our 
method has higher computational efficiency.
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