
Ye et al.
Chinese Journal of Mechanical Engineering (2023) 36:144
https://doi.org/10.1186/s10033-023-00976-5

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Chinese Journal of Mechanical Engineering

ROS2 Real-time Performance Optimization
and Evaluation
Yanlei Ye1, Zhenguo Nie1,2, Xinjun Liu1,2*, Fugui Xie1,2, Zihao Li1 and Peng Li1

Abstract

Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions
such as visual perception, force interaction, spatial obstacle avoidance, and motion planning. To ensure the reliability
and determinism of system execution, a flexible real-time control system architecture and interaction algorithm are
required. The ROS framework was designed to improve the reusability of robotic software development by provid-
ing a distributed structure, hardware abstraction, message-passing mechanism, and application prototypes. Rich
ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux
system. However, because of the fairness scheduling principle of the default Linux system design and the complexity
of the kernel, the system does not have real-time computing. To achieve a balance between real-time and non-real-
time computing, this paper uses the transmission mechanism of ROS2, combines it with the scheduling mechanism
of the Linux operating system, and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2. The
real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives, including throughput,
transmission mode, QoS service quality, frequency, number of subscription nodes and EtherCAT master. This paper
makes two significant contributions: firstly, it employs Preempt_RT to optimize the native ROS2 system, effectively
enhancing the real-time performance of native ROS2 message transmission; secondly, it conducts a comprehensive
evaluation of the real-time performance of both native and optimized ROS2 systems. This comparison elucidates
the benefits of the optimized ROS2 architecture regarding real-time performance, with results vividly demonstrated
through illustrative figures.

Keywords ROS, Real-time system optimization, Preempt_RT, Real-time performance evaluation of ROS2

1 Introduction
Developing a ROS2 control system requires careful atten-
tion to real-time performance design and assurance.
Industrial robots, aerospace equipment, medical robots,
service robots, and military robots all impose strict real-
time constraints. A real-time system is one that responds
to events occurring in the environment within precise
timing intervals [1]. Hence, optimizing and evaluating

the real-time performance of ROS2 is crucial, as it deter-
mines the system’s usability for researchers and engineers
and how to better utilize ROS2 [2] for related research.

Numerous software concepts and architectures have
been proposed in response to the difficulties of devel-
oping software for complex robot systems. In recent
years, component-based and model-driven development
have gradually been introduced into the construction
of robot software systems to simplify development and
improve quality. Modern robot control systems are typi-
cally designed as component-based distributed systems.
Examples of well-known systems that use this approach
include OROCOS [3], OpenHRP [4], YARP [5, 6], MRDS
[7], Director [8] and ROS [9–13]. They all share the
idea that complex robot systems should be composed

*Correspondence:
Xinjun Liu
xinjunliu@mail.tsinghua.edu.cn
1 State Key Laboratory of Tribology in Advanced Equipment, Department
of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipments
and Control, Tsinghua University, Beijing 100084, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10033-023-00976-5&domain=pdf

Page 2 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

of software engineering interaction modules based on
components.

The robot operating system (ROS) has become popular
among researchers and engineers due to its streamlined,
message-based, and tool-based design. However, its non-
real-time system architecture prevents it from guarantee-
ing fault tolerance, deadlines, or process synchronization.
Karamousadakis et al. [14] designed a quadruped robot
based on the ROS1 system architecture using Xeno-
mai patches to optimize the native system. Despite this
improvement, ROS still requires significant resources,
including CPU, memory, network bandwidth, threads,
and kernels. It cannot manage these resources to meet
time constraints effectively.

The real-time robot operating system (RT-ROS) [15]
creates a non-real-time/real-time task execution environ-
ment using the Linux and Nuttx kernels. This improves
the real-time performance of ROS, but it does not guar-
antee real-time constraints for ROS. Using RT-ROS
requires modifications to the ROS library and nodes,
making it difficult to quickly update and maintain.
MICRO-ROS [16] is a variant developed specifically
for resource-limited microcontrollers, which is a light-
weight ROS client that can run on modern 32-bit micro-
controllers like STM32. However, deploying projects on
microprocessors for dual-arm robots or large engineer-
ing projects is challenging due to limited resources and
computing power.

As the demand for translating research results into
commercial products becomes urgent, the limitations of
ROS1 as a fundamental research platform are becom-
ing apparent, as it was not designed with the needs of
real-time systems, small embedded platforms, non-ideal
networks, cross platform compatibility, and commer-
cial productization in mind. ROS2, which uses the data
distribution service (DDS) [17, 18] for communica-
tion, can improve the real-time performance of message
passing [19, 20], but this improvement is only targeted
at the latency between nodes (usually considered to be
several hundred milliseconds). Ding et al. [21] system-
atically introduced the architecture of the ROS2 system
and were among the first to analyze the source code of
ROS2. Maruyama et al. [12] have explored the impor-
tant real-time performance of ROS2 on the native kernel,
evaluating the real-time performance of ROS2 relative to
ROS1 from multiple perspectives. Choi [22] proposed a
priority-driven chain-aware scheduler to optimize the
real-time performance of ROS2 from a scheduling strat-
egy perspective, improving end-to-end latency. ROS2.0
itself is built on DDS and some modules to construct
distributed and real-time solutions. However, most of
the ROS2 ecosystem is currently built around Linux, and
the upper limit of real-time performance is determined

by the operating system itself. Commonly, ROS2 is built
on Ubuntu, which cannot guarantee the real-time per-
formance of the system (such as a robot communication
cycle of 1ms with jitter below 200 µs). When the robot’s
trajectory is finely interpolated and the system cannot
deliver data on time, the robot’s joint motion becomes
less smooth. Therefore, it is urgent to carry out real-time
performance analysis under the ROS2 architecture and
improve the real-time performance of the system.

Currently, several popular commercial real-time sys-
tems include QNX Neutrino, ENEA OSE, Integrity,
VxWorks, and Windows CE [23–26]. In addition, many
open-source real-time systems, including CHAOS,
MARS, Spring, ARTS, RK, TIMIX, MARUTI, HARTOS,
YARTOS, HARTIK, Erika Enterprise, Shark, Marte OS,
RTLinux, and FreeRTOS, are commonly used to handle
real-time tasks for single-core and single-task scenarios
[1, 27, 28]. However, their capabilities for handling multi-
core tasks and compatibility with non-real-time applica-
tions are weaker.

Linux is a popular choice among researchers and busi-
nesses due to its open-source nature, stability, reliabil-
ity, fast-update environment, and large community. To
leverage the powerful Linux ecosystem, which includes
drivers, desktop and human-computer interaction inter-
faces, and to ensure compatibility with the ROS archi-
tecture, modifications to the Linux kernel are required
to achieve real-time performance. Two approaches are
typically available: the dual-kernel approach (also known
as PICO-KERNEL, NANO-KERNEL, DUAL KERNEL)
and the real-time patch approach, as shown in Figure 1.
The dual-kernel approach includes Xenomai [29, 30] and
RTAI [1, 31], while the real-time patch approach includes
Preempt_RT [32] (Linux Real-time Patch, Linux Configu-
ration). To maintain a flexible architecture design and
minimize changes to the original system code, this article

Figure 1 Real-time extension methods based on the Linux kernel

Page 3 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

utilizes the Preempt_RT patch approach to optimize the
real-time performance of the ROS2 architecture.

This article presents a comprehensive evaluation of the
real-time performance of ROS1 and ROS2 data trans-
mission on a Preempt_RT optimized real-time system,
which outperforms the native system. The real-time per-
formance of ROS1 and ROS2 is compared from multiple
perspectives, including throughput, control frequency,
and multi-node subscription. Section 2 introduces the
software and hardware operating environment of the sys-
tem, while Section 3 explains the real-time performance
optimization based on Preempt_RT. Section 4 conducts a
rigorous evaluation of the real-time performance. Finally,
a summary of the results are presented in the last section.
This study provides valuable insights for improving the
real-time performance of ROS2 systems.

2 System Setup
The TH-Dual-Arm robot, developed by the Advanced
Mechanism and Roboticized Equipment Lab at Tsinghua
University, was utilized as the subject of this study. The
control hardware architecture was implemented based
on a PC, as depicted in Figure 2. When designing the
controller hardware, the requirements for system com-
puting power and storage, as well as the need for plat-
form scalability, universality, and standardization, were
taken into account. Table 1 shows some of the software
used, while Table 2 lists the hardware. The system utilizes
the EtherCAT bus communication protocol. It should be
noted that this paper does not analyze the motion perfor-
mance of the control system but only conducts real-time
performance optimization and evaluation under this
configuration.

The relevant components and software configurations
are shown in Table 1 and Table 2. The Linux system used
is Ubuntu 22.04, with a Linux kernel version of 5.15.55

and the Preempt_RT patch applied. The ROS1 version
used is Noetic, while the ROS2 version is Humble, which
is the latest LTS version supported for the last 5 years.

3 Real‑time Optimization of ROS2 Based
on Preempt_RT

The optimization of the real-time performance of the
ROS2 system centers on enhancing the real-time capa-
bilities of the operating system kernel. In this work, we
first studied the Xenomai dual-kernel solution. The basic
principle of this approach is to run a microkernel and
a native Linux kernel simultaneously. Real-time tasks
are executed on the microkernel, which takes control of
interrupts and directly manages them at the lowest level.
When no real-time tasks are running on the microker-
nel, the Linux kernel can be given an opportunity to run.
Xenomai achieves real-time capabilities by running the
real-time Cobalt kernel in parallel with the Linux ker-
nel, as illustrated in Figure 3. However, we opted for the
Preempt_RT patch approach to optimize the real-time
performance of the ROS2 architecture, due to its flexible
architecture design and minimization of changes to the
original system code.

The Cobalt microkernel manages critical timing activi-
ties, such as interrupt handling and scheduling of real-
time threads. The Cobalt kernel has a higher priority than
the native kernel, and the key to enhancing real-time per-
formance lies in the Adaptive Domain Environment for

Figure 2 PC-based control platform

Table 1 Software components of the controller

Item Description Version

Ubuntu Linux distribution 22.04

Linux kernel Linux kernel 5.15.55

Preempt_RT Linux kernel patch 5.15.55-rt48

ROS1 first-generation robot operating system Noetic

ROS2 Second-generation robot operating
system

Humble

EtherCAT master Industrial Ethernet Fieldbus acontis

Table 2 Controller hardware system configuration

Item Description Quantity

Motherboard Mini ITX motherboard SD103-
H110 by Taiwanese manufac-
turer DFI

1

CPU Intel i7 7700 4 cores 3.6 GHz 1

Solid State Drive 256 G 1

RAM DDR4-3200 32 GB 2

Network Interface Controller Intel I211(1 Gbit/s) 2

Network Interface Controller Intel I219(1 Gbit/s) 2

Power Supply DC 24V 1

Page 4 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

Operating Systems (ADEOS). ADEOS enables the shar-
ing of common hardware resources among multiple iden-
tical or different kernels on the same system. In ADEOS,
the Interrupt Pipeline (I-PIPE) manages and distributes
interrupts between Linux and Xenomai, passing them
in domain priority order. For registered interrupts in the
real-time kernel, direct processing is ensured immedi-
ately after their generation, guaranteeing the real-time
performance of the system. For interrupts generated by
Linux, they are recorded first and then processed only
after the real-time task yields the CPU.

To optimize the real-time performance of the native
Linux kernel and fully utilize the rich software of the
Ubuntu system, this paper uses the Preempt_RT patch.
Preempt_RT optimizes the native macro kernel by
minimizing the code of non-preemptible kernels and
the number of code changes implemented to achieve
preemption. In particular, the critical section, interrupt
handler, and interrupt disable code sequence are modi-
fied to make this section preemptible. The Preempt_RT
patch fully utilizes the Symmetrical Multi-Processing
(SMP) function of the Linux kernel to add this additional
preemption without rewriting the kernel, as shown in
Figure 4.

The Preempt_RT patch provides functions such as
preemptible critical sections, preemptible interrupt han-
dlers, preemptible "interrupt disable" code sequences,
kernel spinlocks, and semaphore priority inheritance,
as well as measures to reduce latency. Modifications to
the native kernel include high-precision timers, thread
interrupt handlers, sleep spinlocks, real-time mutexes,
and RCU synchronization mechanisms. To evaluate
the performance of the Preempt_RT patch, we installed

Ubuntu 22.04 on an Intel x86_64 system with kernel
version 5.15.55-generic, applied the Preempt_RT patch
(patch-5.15.55-rt48.patch.gz), and optimized Table 3.
Some visual modules were trimmed.

To achieve high accuracy timing in the nanosecond
range, the clock_gettime(CLOCK_MONOTONIC,
&ts_now) function can be utilized. For timed latency
requiring precise timing, the clock_nanosleep(CLOCK_
MONOTONIC, TIMER_ABSTIME, &ts_nest, NULL)
function is recommended.

For scheduling policies in publish-subscribe, client-
server, and action-client-action-server designs, we use
the CFS scheduler for non-critical nodes in this paper.
The CFS scheduler implements scheduling using a red-
black tree to adjust running times based on time slices
and virtual time, as shown in Eqs. (1) and (2):

For real-time nodes in the controller design, we use the
SCHED_FIFO scheduling policy of the RT scheduler for
control. The SCHED_FIFO scheduling policy schedules
system tasks using a multi-level priority queue. Among
tasks with the same priority, the real-time task based on
SCHED_FIFO will execute until completion, relinquish

(1)ime_slice_I = sched_period ×

weight_i

weight_pq′
,

(2)

vruntime_i = vruntime_i +
weight_nice0

weight_i
× real_runtime.

Figure 3 Xenomai Cobalt kernel architecture

Figure 4 Architecture of Xenomai and Preempt_RT

Table 3 Kernel optimization

Item Description

Preemption model Fully Preemptible Kernel (Real-Time)

Timers’ subsystem High-Resolution Timer Support

Timer tick handling Full dynticks system (tickless)

Timer frequency 1000 Hz

Default CPUFreq governor Performance

C-state Forbid

Page 5 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

control voluntarily, or be preempted by a task with a
higher priority.

4 Real‑time Performance Evaluation of ROS2
This study aims to ensure the stability of the control sys-
tem architecture during operation by maintaining real-
time performance across different frequencies and loads.
The analysis focuses on the jitter and latency caused by
various factors, including frequency, data size, Quality of
Service (QoS), and Data Distribution Service (DDS), in
both native systems and ROS1 and ROS2 systems opti-
mized using Preempt_RT. Specifically, we investigate the
latency characteristics of ROS1 and ROS2 and attempt
to identify differences in their performance. The study
explores the end-to-end latency of individual nodes as
well as the subscription latency of multiple nodes.

Nodes can exchange data through topics, services, and
actions, as depicted in Figure 5. Each of these commu-
nication methods has its own message structure, which
can be nested to enable the exchange of complex data
between nodes. Moreover, each node can perform mul-
tiple roles, and subscribers can be asynchronously awak-
ened to perform computations. Actions are commonly
used in controller design for real-time feedback and exe-
cution status computation. ROS2’s distinct feature is its
decoupling of computation, which facilitates distributed
node computing.

4.1 Latency Evaluation Method
Cyclictest accurately and repeatedly measures the dif-
ference between the expected and actual wakeup times
of threads, providing statistical information on system

latency. It can measure system latency caused by hard-
ware, firmware, and the operating system, and is com-
monly used to test the latency of kernel usage to assess
real-time kernel performance. The latency measured by
Cyclictest refers to interrupt and scheduling delays, as
shown in Figure 6, where interrupt delay refers to the
latency between the occurrence of an interrupt and the
start of the interrupt service routine (ISR), and schedul-
ing latency refers to the time it takes for a task to obtain
actual CPU usage after being awakened.

To test the real-time performance of the kernel, mul-
tiple real-time threads with specified priorities are cre-
ated in the Master thread, and each real-time thread sets
a Timer to periodically wake itself up. When the Timer
overflows, an interrupt is generated, and the system
enters the interrupt handler. The ISR calls wake_up_pro-
cess() to wake up the real-time process, and the scheduler
performs scheduling and dispatching. The total latency
time includes the interrupt handling time and schedul-
ing latency. At the beginning of each loop, the current

Figure 5 Node data transfer diagram of ROS2

Figure 6 Measured latency time

Page 6 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

time is calculated, and the value is passed to the Master
thread through shared memory for statistics and output.
In the while loop, the interval is slept for a few microsec-
onds before waking up and obtaining the current time to
calculate the latency time repeatedly. The relevant code
snippet is shown in Figure 7.

4.2 Real‑time Performance of Native‑Linux Kernel
and Preempt_R‑Linux

The present study first evaluated the real-time perfor-
mance of the native Linux kernel and the kernel opti-
mized with the Preempt_RT patch. For ease of writing,
the native Linux kernel is abbreviated as "Native-Linux,"
while the kernel optimized with the Preempt_RT patch is
abbreviated as "Preempt_RT-Linux." Loading tests were
performed in the experiment, with Fourier transforms

running on four CPUs to bring CPU usage to near 100%
(stress-ng -c 4 --cpu-method fft --timerfd-freq 1000000
-t 24h &), as shown in Figure 8. For the Native-Linux
system, the test took 242.198 s, with a maximum latency
of 6243 µs and an average latency of 3 µs, as shown in
Figure 9. This is inadequate for high-precision motion
equipment and robots, as the timing jitter for a control
cycle of 1 ms is usually required to be less than 200 µs.
Similarly, for the optimized Preempt_RT-Linux system,
five real-time threads were launched with frequencies
ranging from 1000 to 3000 Hz, and a maximum latency
of 82 µs and an average delay of 2 µs were observed dur-
ing the 25.7 h test, as shown in Figure 10.

The comparison between Native-Linux and Preempt_
RT-Linux is shown in Table 4. The real-time performance
of the optimized Preempt_RT-Linux has been signifi-
cantly improved. Compared to Native-Linux, Preempt_
RT-Linux has smaller minimum and average latency
values, and notably, the maximum latency value has sig-
nificantly decreased.

4.3 Real‑time Performance Evaluation of ROS1 and ROS2
under Different Data Sizes

The paper discusses the end-to-end latency between
publishers and subscribers, with data sizes ranging
from 64 bytes to 16 megabytes, using string-type mes-
sages for evaluation. The study evaluates the latency
characteristics of ROS1 and ROS2. Table 4 lists the
hardware and software environment used to measure
the latency from the timing publish function of a sin-
gle publishing node to the callback function of another

Figure 7 Calculating periodic latency

Figure 8 CPU load status

Page 7 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

subscribing node on the same computer, as illustrated
in Figure 11. The nodes are executed at a frequency
of 10 Hz, and data of different sizes are evaluated 120
times. Line graphs and the median latency for each
group of data are obtained.

ROS1 uses TCPROS for reliable communication, while
the corresponding QoS reliable policy is used in ROS2
architecture. Fast DDS is used as the DDS middleware,
which is released under the LGPL license. To accurately
measure real-time performance, the node design follows
the SCHED_FIFO scheduling policy and uses mlockall
for memory locking. SCHED_FIFO processes have prior-
ity over CFS processes (which are usually used with no
specified real-time processes and use the default Linux
scheduling policy). The purpose of mlockall is to fix the
process’s virtual address space in physical RAM, pre-
venting memory from being paged to the swap area and
reducing the latency caused by memory allocation. In
ROS2, the QoS policy queue size for publishers and sub-
scribers is 100, the history is "keep history", the reliability
is "reliable", the persistence is "volatile", and the liveliness,
deadline, lifespan, and lease duration are all set to "sys-
tem default".

Figure 12 illustrates the real-time performance of
ROS1 and ROS2 on Native-Linux and Preempt_RT-
Linux. The results indicate that Preempt_RT-Linux
optimization leads to better real-time performance
compared to Native-Linux. Additionally, the curves
show that as data size increases (e.g., data size exceed-
ing 512K bytes), the real-time performance of ROS2
outperforms ROS1, mainly because DDS is used as the
transmission method in ROS2. However, as data size

Figure 9 Timing latency of the native Linux kernel system

Figure 10 Real-time performance of Preempt_RT-Linux

Table 4 Comparison of real-time performance between Native-
Linux and PREEMPT-RT-Linux

Item Period (µs) Native‑Linux (µs) PREEMPT‑
RT‑
Linux (µs)

Minimum 1000 2 1

1500 2 1

2000 2 1

2500 2 1

3000 2 1

Maximum 1000 3697 67

1500 4973 64

2000 6243 70

2500 3802 82

3000 3542 64

Average 1000 3 1

1500 3 2

2000 3 2

2500 3 2

3000 3 1

Figure 11 Inter-process node message transmission and reception

Page 8 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

increases, the latency also increases due to the impact
of message conversion and DDS processing. DDS has
a more significant impact on larger data size transmis-
sion. For ROS2 message transmission, two message
conversions are required between ROS2 and DDS, with
the first conversion from ROS2 to DDS and the second

conversion from DDS to ROS2. These conversions con-
sume time, and between them, ROS2 calls the DDS API
and sends the message to DDS.

When transmitting small-sized data (ranging from
64 bytes to 64K bytes) in the experiment, the real-time
performance of ROS1 and ROS2 was comparable before
optimization, and remained so after optimization. How-
ever, as shown in Figure 13, the real-time performance
of the ROS2 system optimized with Preempt_RT was
superior to that of the native ROS2 system. For small
data transfers, the conversion and transmission time
between nodes and interfaces is relatively small, so the
latency remains essentially constant based on the curve
observed.

Furthermore, as shown in the bar graph in Figure 14,
it can be seen that Preempt_RT-Linux-ROS2 has better
real-time performance than Preempt_RT-ROS1 in the
case of large data transmission.

Figure 12 Comparison of real-time performance of ROS1 and ROS2 before and after optimization

Figure 13 Real-time performance comparison of ROS1 and ROS2
for small data sizes

Figure 14 Comparison of ROS1 and ROS2 real-Time performance
bar chart

Figure 15 Comparison of the real-time performance of optimized
ROS2

Page 9 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

Figure 15 provides clear evidence that Preempt_RT-
Linux-ROS2 outperforms Preempt_RT-ROS1 in real-
time performance, particularly when dealing with large
data transfers. In fact, as data transfer size increases,
the superiority of Preempt_RT-Linux-ROS2 over ROS1
becomes even more pronounced.

Further analysis of the latency of each execution shows
that Native-Linux-ROS2 has larger latency fluctuations
for different data sizes, as shown in Figure 16. The larger
the size of the message-passing data, the more pro-
nounced the latency fluctuations.

Examining small-sized data reveals that, for Native-
Linux-ROS2, a smaller data size does not necessarily
mean less latency, as shown in Figure 17, where a data
size of 64 bytes resulted in a latency of more than 800 µs.
Latency also depends on the real-time capabilities of the
operating system.

After optimization, Preempt_RT-Linux-ROS2 has
smaller real-time fluctuations, and the maximum latency
for different data sizes is much smaller than that of
Native-Linux-ROS2, as shown in Figures 18 and 19.

4.4 Real‑time Performance of Different DDS and QoS
ROS2 is built on top of DDS/RTPS middleware, provid-
ing discovery, serialization, and transmission. DDS, as
an end-to-end middleware, provides message-passing
mechanisms and control over different "quality of ser-
vice" (QoS) options. This section attempts to illustrate
the intuitive impact of different DDS and QoS on real-
time performance. The study compares eProsima’s Fast
DDS, Eclipse’s Cyclone DDS, and GurumNetworks’
GurumDDS, as shown in Figure 20. The curves show
that the latency of the different DDS is similar. Specific
RMW files and dependencies need to be installed for
use. Both C++ and Python nodes support the RMW_
IMPLEMENTATION environment variable to select
the RMW implementation to be used when running
ROS2 applications. This variable can be set to a spe-
cific implementation identifier, such as rmw_fastrtps_
cpp, rmw_connextdds, or rmw_gurumdds_cpp. For
instance, RMW_IMPLEMENTATION=rmw_connext-
dds ros2 run demo_nodes_cpp talker.

Figure 16 Real-time performance of Native-Linux-ROS2
with different packet sizes

Figure 17 Real-time performance of Native-Linux-ROS2
on small-scale Data

Figure 18 Real-time performance of Preempt_RT-Linux-ROS2
with different sizes

Page 10 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

ROS2 provides a rich variety of QoS policies for
adjusting communication between nodes. Using the
appropriate QoS set, ROS2 can achieve reliable com-
munication, similar to TCP, or best-effort transmission,
similar to UDP, and can realize various possible states.
Unlike ROS1, which mainly supports TCP communica-
tion, ROS2 benefits from the flexibility of the underlying
DDS transport. In lossy wireless network environments,
the best-effort policy is more suitable. In real-time com-
puting systems, the correct service configuration is
needed to meet the final deadline. A set of correct QoS
policy combinations form a QoS configuration file. QoS
configuration files can be specified for publishers, sub-
scribers, service servers, and clients. QoS configuration
files can be applied independently to each instance of
the above entities, but if different configuration files are
used, they may be incompatible, thus preventing message
delivery. Different QoS policies affect the real-time per-
formance of the system. We compared the reliable policy
with the best-effort policy using QoS settings. A reliable
policy helps ensure reliable communication transmis-
sion, while communication in the best-effort policy is
unreliable. In the best-effort policy, the subscriber node
must be started before the publisher node begins sending
messages to avoid "initial value loss." In the test, the sub-
scriber node was started first, followed by the publisher
node.

Figure 21 shows the latency under different QoS poli-
cies. It can be seen from the figure that for small data
sizes, the latency of the best-effort policy and the reliable
policy is similar. When the data size increases, the latency
of the best-effort policy is smaller than that of the reli-
able policy. This is because UDP is used in the best-effort

policy, while TCP is used in the reliable policy. The QoS
history for reliable policy is KEEP_ALL with a depth of
100, and for the best-effort policy, the history is KEEP_
LAST with a depth of 1. The specific policy settings are
shown in Table 5.

4.5 Real‑time Performance of Different Transmission
Methods

In design, applications are often composed of individ-
ual "nodes" that perform small tasks and are separated
from other parts of the system. Such design enables

Figure 19 Real-time performance of Preempt_RT-ROS2
on small-scale data

Figure 20 Real-time performance of different DDS in ROS2

Figure 21 Real-time performance of different QoS in ROS2

Table 5 Different QoS policies

Item Reliable strategy Best‑effort strategy

History KEEP_ALL KEEP_LAST

Depth 100 1

Reliability Best_effort Reliable

Durability Transient local Volatile

Deadline Default Default

Page 11 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

fault isolation, faster development, program modu-
larity, and code reuse, but often at the cost of perfor-
mance. In design, it is also possible to implement
multiple nodes within a single process (intra-process),
with different nodes implementing message passing,
i.e., shared memory transfer, as shown in Figure 22. In
this case, DDS is not required. When using std::unique_
ptrs for publishing and subscribing, zero-copy message
transfer can be achieved through intra-process publish/
subscribe connections. DDS requires at least two mes-
sage translations. The address can be printed to view it:
printf("Print out the address of the received message in
DDS: 0x%", reinterpret_caststd::uintptr_t(msg.get())).
The publishing node and subscribing node have the
same address, indicating that the received mail address
is the same as the published mail address and not a
copy. However, when using const& and std::shared_ptr
for publishing and subscribing, multiple copies will be
created in this case.

To facilitate the analysis of end-to-end latency char-
acteristics of inter-process transmission (Figure 11) and
shared memory transmission (Figure 22), Figure 23 is

drawn. The mean latency of each data size is statistically
calculated 120 times. For small data sizes, the latency of
inter-process and shared memory transmission is simi-
lar because the effect of shared memory is hidden by
small data sizes. As the data size increases, a significant
difference in latency can be observed. Shared memory
provides an effective way to transmit large data sizes. It
also effectively avoids splitting a message into multiple
data packets, reducing end-to-end latency.

Figure 22 Inter-process communication through shared memory

Figure 23 Real-time performance of different transport methods
in ROS2

Figure 24 Periodic execution of tasks

Figure 25 Periodic jitter at different frequencies on Native-Linux

Figure 26 Different frequency period jitter in Preempt_RT-Linux

Page 12 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

4.6 Real‑time Characteristics at Different Frequencies
The high and low control frequencies have a significant
impact on the effectiveness of control, including trajec-
tory smoothness and computational refinement. This
section discusses the impact of frequency on real-time
performance. An experiment was conducted to test
10000 cycles, with the horizontal axis representing the
number of recordings and the vertical axis indicating
cycle jitter. The absolute positioning period, dk , was also
measured:

The cycle jitter, Pk is defined as the deviation between
time k+1 and time k minus the period T, as shown in
Figure 24.

To better evaluate real-time performance, the CPU was
run at full load. Figure 25 shows the cycle jitter for dif-
ferent frequencies on a Native-Linux system, with maxi-
mum jitter greater than 400 µs and large fluctuations.
The native system is not real-time and cannot be used for
multi-axis high-precision motion control.

For the optimized Preempt_RT-Linux system, an analy-
sis was conducted on the cycle jitter for different timing
frequencies, which were increased sequentially from 25

(3)dk = tk − kT .

(4)Pk = tk+1 − tk − T = dk+1 − dk .

to 5000 Hz, with corresponding curves plotted as shown
in Figure 26. The jitter fluctuations were smaller, and the
maximum cycle jitter was less than 60 µs. The real-time
system based on the Preempt_RT patch exhibits good
timing performance.

In Figure 27, a histogram of the corresponding cycle jit-
ter is shown, which demonstrates a roughly normal dis-
tribution, with the majority of the data points centered
around ±10 μs.

4.7 Evaluation of Timing Jitter Performance for Multiple
Subscribing Nodes

In the previous section, we focused on end-to-end
latency between two nodes, analyzed the real-time per-
formance of ROS1 and ROS2, and investigated the
impact of different factors on ROS2’s real-time perfor-
mance, such as DDS, QoS, frequency, and throughput.
However, in practical applications, there may be a single
node publishing messages that are shared and received by
multiple nodes. In this section, we conduct further real-
time performance analysis by designing one publisher
and six subscribers to measure the latency of each receiv-
ing node.

Figure 28 shows the latency of ROS1, and it can be
observed that there is a significant difference in the
latency between the subscribing nodes. Since ROS1
arranges message publishing and receiving in sequence,
it is not suitable for real-time systems. For instance, when
the data size is 4Mb, the maximum latency of the sub-
scribing node is nearly twice the minimum latency. In
contrast, the latency of ROS2 is largely dependent on the
packet size, and the latency deviation of all subscribers in
ROS2 is small, as shown in Figures 29 and 30. It is evident
that the behavior of all subscribers is relatively fair in
ROS2. This demonstrates that ROS2 message publishing
is fairer for multiple subscribing nodes than ROS1. After
real-time optimization, ROS2 shows improved real-time
performance for multi-node subscriptions compared to
before the optimization.

Figure 27 Histogram-based statistics of periodic jitter

Figure 28 Real-time performance of multiple subscriber nodes in ROS1

Page 13 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

Furthermore, an in-depth analysis of the latency
characteristics of data transmission at various frequen-
cies optimized with Preempt_RT is conducted. Using
the default Fast-DDS as the message passing middle-
ware, we measured the data transmission latency of
sending and receiving messages at different frequencies
with a fixed message size of 1K byte. Each frequency
was tested 120 times, and the results were plotted in
a 3D graph in Figure 31 and a corresponding curve
in Figure 32. It can be observed from the figures that
the latency deviation is small at different frequencies

under real-time constraints. It should be noted that
the latency also depends on the size of the transmit-
ted data, which was fixed at 1K byte in this experiment.
The maximum latency was less than 150 µs.

4.8 Real‑time Performance of EtherCAT Master
The EtherCAT master needs to run on a real-time system
to ensure strict real-time performance. The robot system

Figure 29 Real-time performance of multiple subscriber nodes in the native system ROS2

Figure 30 Real-time performance of the optimized multiple subscriber nodes in ROS2

Figure 31 Latency distribution of ROS2 at different frequencies
Figure 32 Real-time performance of Preempt_RT-Linux-ROS2
at different frequencies

Page 14 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

platform (see Figure 2) has one EtherCAT master and
16 EtherCAT slaves. In the experiment, the master sta-
tion cycle period was set to 1000 µs, and we obtained the
EtherCAT master’s latency data for a duration of 1613610
ms, as shown in Figure 33. The minimum period of the
master station was 982.5 µs, the average period was 999.8
µs, and the maximum period was 1022.4 µs. It can be
seen that the EtherCAT master exhibits good real-time
performance and can be applied to robot control.

5 Conclusions
This paper proposes an optimization and assessment of
ROS2’s real-time performance, utilizing a method that
melds fair and first-in-first-out scheduling strategies for
a robotic control system. This method, predicated on the
ROS2’s DDS transmission mechanism, adopts the use
of Preempt_RT to construct a fully preemptive, event-
driven system kernel, thereby improving the timeliness
and reliability of ROS2’s data transmission.

We engage in both qualitative and quantitative evalu-
ations of the real-time performance of ROS1 and ROS2,
considering factors such as throughput, transmission
methodology, QoS service quality, frequency, quantity of
subscription nodes, and EtherCAT master. Our findings
indicate reliable real-time performance of the optimized
ROS2 with Preempt_RT implementation. This research
intuitively demonstrates that, in large-scale data trans-
mission and multiple node subscriptions, ROS2 outper-
forms ROS1 in terms of real-time performance.

Specific conclusions of the paper are as follows.

(1) The key to improving the real-time performance of
ROS2 lies in optimizing the real-time performance
of the operating system. The use of the Preempt_
RT patch can reduce the latency in ROS2 message
transmission. Preempt_RT improves the real-time
computing capability of the native Linux kernel
through high-precision timers, thread interrupt
handlers, sleep spinlocks, real-time mutexes, and
RCU synchronization mechanisms.

(2) The real-time performance of the optimized ROS2
system was systematically and comprehensively
evaluated under stringent operating conditions

with the CPU running at full load. The system dem-
onstrated stable real-time performance, running
for 25.7 h with a maximum latency of 82 µs and an
average latency of 2 µs.

(3) This study compares the real-time performance of
ROS1 and ROS2, both located in the application
layer above the Linux kernel. The real-time perfor-
mance of the optimized Preempt_RT-Linux-ROS2
is much better than that of the Native-Linux-ROS2.
Additionally, for a single publisher node corre-
sponding to multiple subscriber nodes, ROS2 dem-
onstrates fairer real-time performance than ROS1
for multiple subscribers, making ROS2 more suit-
able for the development of real-time control sys-
tems.

(4) The optimized Preempt_RT-Linux maintains stable
performance for both average jitter and maximum
jitter at different frequencies, with a timing jitter
cycle of less than 60 µs. The study also measures
the real-time performance of the EtherCAT master,
with a timing cycle of 1000 us and a worst-case tim-
ing cycle of 1022.4 us, demonstrating the effective-
ness of the optimized system.

Acknowledgements
Not applicable.

Authors’ Contributions
YY designed and wrote the paper, XL and ZN completed manuscript revisions,
FX provided suggestions and guidance, ZL assisted with programming, and PL
provided assistance in device construction. All authors read and approved the
final manuscript.

Authors’ Information
Yanlei Ye born in 1991, is currently a Ph.D. candidate at Department of Mechani-
cal Engineering (DME), Tsinghua University, China. His research interests include
robot operating systems and compliant motion control.
Zhenguo Nie born in 1983, is currently an associate professor at DME, Tsinghua
University, China. His research interests include intelligent design and surgical
robotics.
Xinjun Liu born in 1971, is currently a professor and a Ph.D. candidate supervi-
sor at DME, Tsinghua University, China. His research interests include robotics,
parallel mechanisms, and advanced manufacturing equipment.
Fugui Xie born in 1982, is currently an associate professor and a Ph.D.
candidate supervisor at DME, Tsinghua University, China. His research interests
include parallel mechanisms and mobile machining robots.
Zihao Li born in 1992, is currently a Ph.D. candidate at DME, Tsinghua University,
China. His research interests include cooperative robot and teleoperation.

Figure 33 Real-time performance of EtherCAT master

Page 15 of 15Ye et al. Chinese Journal of Mechanical Engineering (2023) 36:144

Peng Li born in 1989, is currently a Ph.D. candidate at DME, Tsinghua University,
China. His research interests include collaborative robot design and control.

Funding
Supported by National Key Research and Development Program of China
(Grant No. 2019YFB1309900), and Institute for Guo Qiang, Tsinghua University
of China (Grant No. 2019GQG0007).

Declarations

Competing Interests
The authors declare no competing financial interests.

Received: 22 February 2023 Revised: 11 November 2023 Accepted: 12
November 2023

References
 [1] F Reghenzani, G Massari, W Fornaciari. The real-time linux kernel: A survey

on preempt_rt. ACM Computing Surveys (CSUR), 2019, 52(1): 1-36.
 [2] S Macenski, T Foote, B Gerkey, et al. Robot Operating System 2:

Design, architecture, and uses in the wild. Science Robotics, 2022, 7(66):
eabm6074.

 [3] S Barut, M Boneberger, P Mohammadi, et al. Benchmarking real-time
capabilities of ROS2 and OROCOS for robotics applications. IEEE Interna-
tional Conference on Robotics and Automation, Xi’an, China, May 30 -June
05, 2021: 708-714.

 [4] R Mittal, A Konno, S Komizunai. Implementation of hoap-2 humanoid
walking motion in openhrp simulation. International Conference on
Computing Communication Control and Automation, Pune, India, February
26-27, 2015: 29-34.

 [5] G Metta, P Fitzpatrick, L Natale. YARP: yet another robot platform. Interna-
tional Journal of Advanced Robotic Systems, 2006, 3(1): 43-48.

 [6] T Fietzek, H Ü Dinkelbach, F H Hamker. ANNarchy-iCub: An interface for
easy interaction between neural network models and the iCub Robot.
Computational Intelligence and Virtual Environments for Measurement
Systems and Applications, Chemnitz, Germany, June 15-17, 2022.

 [7] J Jackson. Microsoft robotics studio: A technical introduction. IEEE Robot-
ics & Automation Magazine, 2007, 14(4): 82-87.

 [8] P Marion, M Fallon, R Deits, et al. Director: A user interface designed for
robot operation with shared autonomy. Journal of Field Robotics, 2017,
34(2): 262-280.

 [9] D Kortenkamp, R Simmons, D Brugali. Robotic systems architectures and
programming. Springer Handbook of Robotics, 2016: 283-306.

 [10] M Quigley, K Conley, B Gerkey, et al. ROS: an open-source robot operating
system. ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

 [11] T Itsuka, M Song, A Kawamura, et al. Development of ROS2-TMS: new
software platform for informationally structured environment. ROBO-
MECH Journal, 2022, 9(1): 1-19.

 [12] Y Maruyama, S Kato, T Azumi. Exploring the performance of ROS2.
Proceedings of the 13th International Conference on Embedded Software,
Pittsburgh, PA, USA, October 02-07, 2016.

 [13] M Albonico, M Đorđević, E Hamer, et al. Software engineering research
on the Robot Operating System: A systematic mapping study. Journal of
Systems and Software, 2022.

 [14] M Karamousadakis. Real-time programming of EtherCAT master in ROS for a
quadruped robot. National Technical University of Athens, 2019.

 [15] H Wei, Z Shao, Z Huang, et al. RT-ROS: A real-time ROS architecture on
multi-core processors. Future Generation Computer Systems, 2016, 56:
171-178.

 [16] K Belsare. Micro-ROS//A Koubaa. Robot Operating System (ROS). Cham:
Springer International Publishing, 2023: 3-55.

 [17] A Hakiri, P Berthou, A Gokhale, et al. Publish/subscribe-enabled software
defined networking for efficient and scalable IoT communications. IEEE
Communications Magazine, 2015, 53(9): 48-54.

 [18] W Sim, B Song, J Shin, et al. Data distribution service converter based on
the open platform communications unified architecture publish–sub-
scribe protocol. Electronics, 2021, 10(20): 2524.

 [19] H Choi, Y Xiang, H Kim. PiCAS: New design of priority-driven chain-aware
scheduling for ROS2. Real-Time and Embedded Technology and Applica-
tions Symposium, Nashville, TN, USA, May 18-21, 2021: 251-263.

 [20] T Kronauer, J Pohlmann, M Matthé, et al. Latency analysis of ROS2 multi-
node systems. Multisensor Fusion and Integration for Intelligent Systems,
Karlsruhe, Germany, September 23-25, 2021.

 [21] L Ding, M C Qu, Y L Zhang, et al. Analysis and engineering application of
ROS2. Beijing: Tsinghua University Press, 2019. (in Chinese)

 [22] H Choi. On the design and analysis of autonomous real-time systems. Uni-
versity of California, Riverside, 2021.

 [23] B Akesson, M Nasri, G Nelissen, et al. An empirical survey-based study
into industry practice in real-time systems. Real-Time Systems Symposium,
Houston, TX, USA, December 01-04, 2020: 3-11.

 [24] H Kopetz, W Steiner. Real-time systems: design principles for distributed
embedded applications. Springer Nature, 2022.

 [25] A Barbalace, A Luchetta, G Manduchi, et al. Performance comparison of
VxWorks, Linux, RTAI, and Xenomai in a hard real-time application. IEEE
Transactions On Nuclear Science, 2008, 55(1): 435-439.

 [26] D Dasari, M Becker, D Casini, et al. End-to-end analysis of event chains
under the qnx adaptive partitioning scheduler. Real-Time and Embedded
Technology and Applications Symposium, Milano, Italy, May 04-06, 2022:
214-227.

 [27] C Maiza, H Rihani, J M Rivas, et al. A survey of timing verification tech-
niques for multi-core real-time systems. ACM Computing Surveys (CSUR),
2019, 52(3): 1-38.

 [28] D Ramegowda, M Lin. Energy efficient mixed task handling on real-time
embedded systems using FreeRTOS. Journal of Systems Architecture, 2022:
131.

 [29] R Delgado, B You, B W Choi. Real-time control architecture based on
Xenomai using ROS packages for a service robot. Journal of Systems and
Software, 2019, 151: 8-19.

 [30] R Delgado, J Park, B W Choi. Open embedded real-time controllers for
industrial distributed control systems. Electronics, 2019, 8(2): 223.

 [31] J Arm, Z Bradac, V Kaczmarczyk. Real-time capabilities of Linux RTAI. Ifac-
Papersonline, 2016, 49(25): 401-406.

 [32] G K Adam, N Petrellis, L T Doulos. Performance assessment of Linux
Kernels with PREEMPT_RT on ARM-Based embedded devices. Electronics,
2021, 10(11): 1331.

	ROS2 Real-time Performance Optimization and Evaluation
	Abstract
	1 Introduction
	2 System Setup
	3 Real-time Optimization of ROS2 Based on Preempt_RT
	4 Real-time Performance Evaluation of ROS2
	4.1 Latency Evaluation Method
	4.2 Real-time Performance of Native-Linux Kernel and Preempt_R-Linux
	4.3 Real-time Performance Evaluation of ROS1 and ROS2 under Different Data Sizes
	4.4 Real-time Performance of Different DDS and QoS
	4.5 Real-time Performance of Different Transmission Methods
	4.6 Real-time Characteristics at Different Frequencies
	4.7 Evaluation of Timing Jitter Performance for Multiple Subscribing Nodes
	4.8 Real-time Performance of EtherCAT Master

	5 Conclusions
	Acknowledgements
	References

