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Abstract 

Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions 
such as visual perception, force interaction, spatial obstacle avoidance, and motion planning. To ensure the reliability 
and determinism of system execution, a flexible real-time control system architecture and interaction algorithm are 
required. The ROS framework was designed to improve the reusability of robotic software development by provid-
ing a distributed structure, hardware abstraction, message-passing mechanism, and application prototypes. Rich 
ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux 
system. However, because of the fairness scheduling principle of the default Linux system design and the complexity 
of the kernel, the system does not have real-time computing. To achieve a balance between real-time and non-real-
time computing, this paper uses the transmission mechanism of ROS2, combines it with the scheduling mechanism 
of the Linux operating system, and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2. The 
real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives, including throughput, 
transmission mode, QoS service quality, frequency, number of subscription nodes and EtherCAT master. This paper 
makes two significant contributions: firstly, it employs Preempt_RT to optimize the native ROS2 system, effectively 
enhancing the real-time performance of native ROS2 message transmission; secondly, it conducts a comprehensive 
evaluation of the real-time performance of both native and optimized ROS2 systems. This comparison elucidates 
the benefits of the optimized ROS2 architecture regarding real-time performance, with results vividly demonstrated 
through illustrative figures.
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1 Introduction
Developing a ROS2 control system requires careful atten-
tion to real-time performance design and assurance. 
Industrial robots, aerospace equipment, medical robots, 
service robots, and military robots all impose strict real-
time constraints. A real-time system is one that responds 
to events occurring in the environment within precise 
timing intervals [1]. Hence, optimizing and evaluating 

the real-time performance of ROS2 is crucial, as it deter-
mines the system’s usability for researchers and engineers 
and how to better utilize ROS2 [2] for related research.

Numerous software concepts and architectures have 
been proposed in response to the difficulties of devel-
oping software for complex robot systems. In recent 
years, component-based and model-driven development 
have gradually been introduced into the construction 
of robot software systems to simplify development and 
improve quality. Modern robot control systems are typi-
cally designed as component-based distributed systems. 
Examples of well-known systems that use this approach 
include OROCOS [3], OpenHRP [4], YARP [5, 6], MRDS 
[7], Director [8] and ROS [9–13]. They all share the 
idea that complex robot systems should be composed 
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of software engineering interaction modules based on 
components.

The robot operating system (ROS) has become popular 
among researchers and engineers due to its streamlined, 
message-based, and tool-based design. However, its non-
real-time system architecture prevents it from guarantee-
ing fault tolerance, deadlines, or process synchronization. 
Karamousadakis et  al. [14] designed a quadruped robot 
based on the ROS1 system architecture using Xeno-
mai patches to optimize the native system. Despite this 
improvement, ROS still requires significant resources, 
including CPU, memory, network bandwidth, threads, 
and kernels. It cannot manage these resources to meet 
time constraints effectively.

The real-time robot operating system (RT-ROS) [15] 
creates a non-real-time/real-time task execution environ-
ment using the Linux and Nuttx kernels. This improves 
the real-time performance of ROS, but it does not guar-
antee real-time constraints for ROS. Using RT-ROS 
requires modifications to the ROS library and nodes, 
making it difficult to quickly update and maintain. 
MICRO-ROS [16] is a variant developed specifically 
for resource-limited microcontrollers, which is a light-
weight ROS client that can run on modern 32-bit micro-
controllers like STM32. However, deploying projects on 
microprocessors for dual-arm robots or large engineer-
ing projects is challenging due to limited resources and 
computing power.

As the demand for translating research results into 
commercial products becomes urgent, the limitations of 
ROS1 as a fundamental research platform are becom-
ing apparent, as it was not designed with the needs of 
real-time systems, small embedded platforms, non-ideal 
networks, cross platform compatibility, and commer-
cial productization in mind. ROS2, which uses the data 
distribution service (DDS) [17, 18] for communica-
tion, can improve the real-time performance of message 
passing [19, 20], but this improvement is only targeted 
at the latency between nodes (usually considered to be 
several hundred milliseconds). Ding et  al. [21] system-
atically introduced the architecture of the ROS2 system 
and were among the first to analyze the source code of 
ROS2. Maruyama et  al. [12] have explored the impor-
tant real-time performance of ROS2 on the native kernel, 
evaluating the real-time performance of ROS2 relative to 
ROS1 from multiple perspectives. Choi [22] proposed a 
priority-driven chain-aware scheduler to optimize the 
real-time performance of ROS2 from a scheduling strat-
egy perspective, improving end-to-end latency. ROS2.0 
itself is built on DDS and some modules to construct 
distributed and real-time solutions. However, most of 
the ROS2 ecosystem is currently built around Linux, and 
the upper limit of real-time performance is determined 

by the operating system itself. Commonly, ROS2 is built 
on Ubuntu, which cannot guarantee the real-time per-
formance of the system (such as a robot communication 
cycle of 1ms with jitter below 200 µs). When the robot’s 
trajectory is finely interpolated and the system cannot 
deliver data on time, the robot’s joint motion becomes 
less smooth. Therefore, it is urgent to carry out real-time 
performance analysis under the ROS2 architecture and 
improve the real-time performance of the system.

Currently, several popular commercial real-time sys-
tems include QNX Neutrino, ENEA OSE, Integrity, 
VxWorks, and Windows CE [23–26]. In addition, many 
open-source real-time systems, including CHAOS, 
MARS, Spring, ARTS, RK, TIMIX, MARUTI, HARTOS, 
YARTOS, HARTIK, Erika Enterprise, Shark, Marte OS, 
RTLinux, and FreeRTOS, are commonly used to handle 
real-time tasks for single-core and single-task scenarios 
[1, 27, 28]. However, their capabilities for handling multi-
core tasks and compatibility with non-real-time applica-
tions are weaker.

Linux is a popular choice among researchers and busi-
nesses due to its open-source nature, stability, reliabil-
ity, fast-update environment, and large community. To 
leverage the powerful Linux ecosystem, which includes 
drivers, desktop and human-computer interaction inter-
faces, and to ensure compatibility with the ROS archi-
tecture, modifications to the Linux kernel are required 
to achieve real-time performance. Two approaches are 
typically available: the dual-kernel approach (also known 
as PICO-KERNEL, NANO-KERNEL, DUAL KERNEL) 
and the real-time patch approach, as shown in Figure 1. 
The dual-kernel approach includes Xenomai [29, 30] and 
RTAI [1, 31], while the real-time patch approach includes 
Preempt_RT [32] (Linux Real-time Patch, Linux Configu-
ration). To maintain a flexible architecture design and 
minimize changes to the original system code, this article 

Figure 1 Real-time extension methods based on the Linux kernel
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utilizes the Preempt_RT patch approach to optimize the 
real-time performance of the ROS2 architecture.

This article presents a comprehensive evaluation of the 
real-time performance of ROS1 and ROS2 data trans-
mission on a Preempt_RT optimized real-time system, 
which outperforms the native system. The real-time per-
formance of ROS1 and ROS2 is compared from multiple 
perspectives, including throughput, control frequency, 
and multi-node subscription. Section  2 introduces the 
software and hardware operating environment of the sys-
tem, while Section 3 explains the real-time performance 
optimization based on Preempt_RT. Section 4 conducts a 
rigorous evaluation of the real-time performance. Finally, 
a summary of the results are presented in the last section. 
This study provides valuable insights for improving the 
real-time performance of ROS2 systems.

2  System Setup
The TH-Dual-Arm robot, developed by the Advanced 
Mechanism and Roboticized Equipment Lab at Tsinghua 
University, was utilized as the subject of this study. The 
control hardware architecture was implemented based 
on a PC, as depicted in Figure  2. When designing the 
controller hardware, the requirements for system com-
puting power and storage, as well as the need for plat-
form scalability, universality, and standardization, were 
taken into account. Table 1 shows some of the software 
used, while Table 2 lists the hardware. The system utilizes 
the EtherCAT bus communication protocol. It should be 
noted that this paper does not analyze the motion perfor-
mance of the control system but only conducts real-time 
performance optimization and evaluation under this 
configuration.

The relevant components and software configurations 
are shown in Table 1 and Table 2. The Linux system used 
is Ubuntu 22.04, with a Linux kernel version of 5.15.55 

and the Preempt_RT patch applied. The ROS1 version 
used is Noetic, while the ROS2 version is Humble, which 
is the latest LTS version supported for the last 5 years.

3  Real‑time Optimization of ROS2 Based 
on Preempt_RT

The optimization of the real-time performance of the 
ROS2 system centers on enhancing the real-time capa-
bilities of the operating system kernel. In this work, we 
first studied the Xenomai dual-kernel solution. The basic 
principle of this approach is to run a microkernel and 
a native Linux kernel simultaneously. Real-time tasks 
are executed on the microkernel, which takes control of 
interrupts and directly manages them at the lowest level. 
When no real-time tasks are running on the microker-
nel, the Linux kernel can be given an opportunity to run. 
Xenomai achieves real-time capabilities by running the 
real-time Cobalt kernel in parallel with the Linux ker-
nel, as illustrated in Figure 3. However, we opted for the 
Preempt_RT patch approach to optimize the real-time 
performance of the ROS2 architecture, due to its flexible 
architecture design and minimization of changes to the 
original system code.

The Cobalt microkernel manages critical timing activi-
ties, such as interrupt handling and scheduling of real-
time threads. The Cobalt kernel has a higher priority than 
the native kernel, and the key to enhancing real-time per-
formance lies in the Adaptive Domain Environment for 

Figure 2 PC-based control platform

Table 1 Software components of the controller

Item Description Version

Ubuntu Linux distribution 22.04

Linux kernel Linux kernel 5.15.55

Preempt_RT Linux kernel patch 5.15.55-rt48

ROS1 first-generation robot operating system Noetic

ROS2 Second-generation robot operating 
system

Humble

EtherCAT master Industrial Ethernet Fieldbus acontis

Table 2 Controller hardware system configuration

Item Description Quantity

Motherboard Mini ITX motherboard SD103-
H110 by Taiwanese manufac-
turer DFI

1

CPU Intel i7 7700 4 cores 3.6 GHz 1

Solid State Drive 256 G 1

RAM DDR4-3200 32 GB 2

Network Interface Controller Intel I211(1 Gbit/s) 2

Network Interface Controller Intel I219(1 Gbit/s) 2

Power Supply DC 24V 1
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Operating Systems (ADEOS). ADEOS enables the shar-
ing of common hardware resources among multiple iden-
tical or different kernels on the same system. In ADEOS, 
the Interrupt Pipeline (I-PIPE) manages and distributes 
interrupts between Linux and Xenomai, passing them 
in domain priority order. For registered interrupts in the 
real-time kernel, direct processing is ensured immedi-
ately after their generation, guaranteeing the real-time 
performance of the system. For interrupts generated by 
Linux, they are recorded first and then processed only 
after the real-time task yields the CPU.

To optimize the real-time performance of the native 
Linux kernel and fully utilize the rich software of the 
Ubuntu system, this paper uses the Preempt_RT patch. 
Preempt_RT optimizes the native macro kernel by 
minimizing the code of non-preemptible kernels and 
the number of code changes implemented to achieve 
preemption. In particular, the critical section, interrupt 
handler, and interrupt disable code sequence are modi-
fied to make this section preemptible. The Preempt_RT 
patch fully utilizes the Symmetrical Multi-Processing 
(SMP) function of the Linux kernel to add this additional 
preemption without rewriting the kernel, as shown in 
Figure 4.

The Preempt_RT patch provides functions such as 
preemptible critical sections, preemptible interrupt han-
dlers, preemptible "interrupt disable" code sequences, 
kernel spinlocks, and semaphore priority inheritance, 
as well as measures to reduce latency. Modifications to 
the native kernel include high-precision timers, thread 
interrupt handlers, sleep spinlocks, real-time mutexes, 
and RCU synchronization mechanisms. To evaluate 
the performance of the Preempt_RT patch, we installed 

Ubuntu 22.04 on an Intel x86_64 system with kernel 
version 5.15.55-generic, applied the Preempt_RT patch 
(patch-5.15.55-rt48.patch.gz), and optimized Table  3. 
Some visual modules were trimmed.

To achieve high accuracy timing in the nanosecond 
range, the clock_gettime(CLOCK_MONOTONIC, 
&ts_now) function can be utilized. For timed latency 
requiring precise timing, the clock_nanosleep(CLOCK_
MONOTONIC, TIMER_ABSTIME, &ts_nest, NULL) 
function is recommended.

For scheduling policies in publish-subscribe, client-
server, and action-client-action-server designs, we use 
the CFS scheduler for non-critical nodes in this paper. 
The CFS scheduler implements scheduling using a red-
black tree to adjust running times based on time slices 
and virtual time, as shown in Eqs. (1) and (2):

For real-time nodes in the controller design, we use the 
SCHED_FIFO scheduling policy of the RT scheduler for 
control. The SCHED_FIFO scheduling policy schedules 
system tasks using a multi-level priority queue. Among 
tasks with the same priority, the real-time task based on 
SCHED_FIFO will execute until completion, relinquish 

(1)ime_slice_I = sched_period ×

weight_i

weight_pq′
,

(2)

vruntime_i = vruntime_i +
weight_nice0

weight_i
× real_runtime.

Figure 3 Xenomai Cobalt kernel architecture

Figure 4 Architecture of Xenomai and Preempt_RT

Table 3 Kernel optimization

Item Description

Preemption model Fully Preemptible Kernel (Real-Time)

Timers’ subsystem High-Resolution Timer Support

Timer tick handling Full dynticks system (tickless)

Timer frequency 1000 Hz

Default CPUFreq governor Performance

C-state Forbid
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control voluntarily, or be preempted by a task with a 
higher priority.

4  Real‑time Performance Evaluation of ROS2
This study aims to ensure the stability of the control sys-
tem architecture during operation by maintaining real-
time performance across different frequencies and loads. 
The analysis focuses on the jitter and latency caused by 
various factors, including frequency, data size, Quality of 
Service (QoS), and Data Distribution Service (DDS), in 
both native systems and ROS1 and ROS2 systems opti-
mized using Preempt_RT. Specifically, we investigate the 
latency characteristics of ROS1 and ROS2 and attempt 
to identify differences in their performance. The study 
explores the end-to-end latency of individual nodes as 
well as the subscription latency of multiple nodes.

Nodes can exchange data through topics, services, and 
actions, as depicted in Figure  5. Each of these commu-
nication methods has its own message structure, which 
can be nested to enable the exchange of complex data 
between nodes. Moreover, each node can perform mul-
tiple roles, and subscribers can be asynchronously awak-
ened to perform computations. Actions are commonly 
used in controller design for real-time feedback and exe-
cution status computation. ROS2’s distinct feature is its 
decoupling of computation, which facilitates distributed 
node computing.

4.1  Latency Evaluation Method
Cyclictest accurately and repeatedly measures the dif-
ference between the expected and actual wakeup times 
of threads, providing statistical information on system 

latency. It can measure system latency caused by hard-
ware, firmware, and the operating system, and is com-
monly used to test the latency of kernel usage to assess 
real-time kernel performance. The latency measured by 
Cyclictest refers to interrupt and scheduling delays, as 
shown in Figure  6, where interrupt delay refers to the 
latency between the occurrence of an interrupt and the 
start of the interrupt service routine (ISR), and schedul-
ing latency refers to the time it takes for a task to obtain 
actual CPU usage after being awakened.

To test the real-time performance of the kernel, mul-
tiple real-time threads with specified priorities are cre-
ated in the Master thread, and each real-time thread sets 
a Timer to periodically wake itself up. When the Timer 
overflows, an interrupt is generated, and the system 
enters the interrupt handler. The ISR calls wake_up_pro-
cess() to wake up the real-time process, and the scheduler 
performs scheduling and dispatching. The total latency 
time includes the interrupt handling time and schedul-
ing latency. At the beginning of each loop, the current 

Figure 5 Node data transfer diagram of ROS2

Figure 6 Measured latency time
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time is calculated, and the value is passed to the Master 
thread through shared memory for statistics and output. 
In the while loop, the interval is slept for a few microsec-
onds before waking up and obtaining the current time to 
calculate the latency time repeatedly. The relevant code 
snippet is shown in Figure 7.

4.2  Real‑time Performance of Native‑Linux Kernel 
and Preempt_R‑Linux

The present study first evaluated the real-time perfor-
mance of the native Linux kernel and the kernel opti-
mized with the Preempt_RT patch. For ease of writing, 
the native Linux kernel is abbreviated as "Native-Linux," 
while the kernel optimized with the Preempt_RT patch is 
abbreviated as "Preempt_RT-Linux." Loading tests were 
performed in the experiment, with Fourier transforms 

running on four CPUs to bring CPU usage to near 100% 
(stress-ng -c 4 --cpu-method fft --timerfd-freq 1000000 
-t 24h &), as shown in Figure  8. For the Native-Linux 
system, the test took 242.198 s, with a maximum latency 
of 6243 µs and an average latency of 3 µs, as shown in 
Figure  9. This is inadequate for high-precision motion 
equipment and robots, as the timing jitter for a control 
cycle of 1 ms is usually required to be less than 200 µs. 
Similarly, for the optimized Preempt_RT-Linux system, 
five real-time threads were launched with frequencies 
ranging from 1000 to 3000 Hz, and a maximum latency 
of 82 µs and an average delay of 2 µs were observed dur-
ing the 25.7 h test, as shown in Figure 10.

The comparison between Native-Linux and Preempt_
RT-Linux is shown in Table 4. The real-time performance 
of the optimized Preempt_RT-Linux has been signifi-
cantly improved. Compared to Native-Linux, Preempt_
RT-Linux has smaller minimum and average latency 
values, and notably, the maximum latency value has sig-
nificantly decreased.

4.3  Real‑time Performance Evaluation of ROS1 and ROS2 
under Different Data Sizes

The paper discusses the end-to-end latency between 
publishers and subscribers, with data sizes ranging 
from 64 bytes to 16 megabytes, using string-type mes-
sages for evaluation. The study evaluates the latency 
characteristics of ROS1 and ROS2. Table  4 lists the 
hardware and software environment used to measure 
the latency from the timing publish function of a sin-
gle publishing node to the callback function of another 

Figure 7 Calculating periodic latency

Figure 8 CPU load status
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subscribing node on the same computer, as illustrated 
in Figure  11. The nodes are executed at a frequency 
of 10 Hz, and data of different sizes are evaluated 120 
times. Line graphs and the median latency for each 
group of data are obtained.

ROS1 uses TCPROS for reliable communication, while 
the corresponding QoS reliable policy is used in ROS2 
architecture. Fast DDS is used as the DDS middleware, 
which is released under the LGPL license. To accurately 
measure real-time performance, the node design follows 
the SCHED_FIFO scheduling policy and uses mlockall 
for memory locking. SCHED_FIFO processes have prior-
ity over CFS processes (which are usually used with no 
specified real-time processes and use the default Linux 
scheduling policy). The purpose of mlockall is to fix the 
process’s virtual address space in physical RAM, pre-
venting memory from being paged to the swap area and 
reducing the latency caused by memory allocation. In 
ROS2, the QoS policy queue size for publishers and sub-
scribers is 100, the history is "keep history", the reliability 
is "reliable", the persistence is "volatile", and the liveliness, 
deadline, lifespan, and lease duration are all set to "sys-
tem default".

Figure  12 illustrates the real-time performance of 
ROS1 and ROS2 on Native-Linux and Preempt_RT-
Linux. The results indicate that Preempt_RT-Linux 
optimization leads to better real-time performance 
compared to Native-Linux. Additionally, the curves 
show that as data size increases (e.g., data size exceed-
ing 512K bytes), the real-time performance of ROS2 
outperforms ROS1, mainly because DDS is used as the 
transmission method in ROS2. However, as data size 

Figure 9 Timing latency of the native Linux kernel system

Figure 10 Real-time performance of Preempt_RT-Linux

Table 4 Comparison of real-time performance between Native-
Linux and PREEMPT-RT-Linux

Item Period (µs) Native‑Linux (µs) PREEMPT‑
RT‑
Linux (µs)

Minimum 1000 2 1

1500 2 1

2000 2 1

2500 2 1

3000 2 1

Maximum 1000 3697 67

1500 4973 64

2000 6243 70

2500 3802 82

3000 3542 64

Average 1000 3 1

1500 3 2

2000 3 2

2500 3 2

3000 3 1

Figure 11 Inter-process node message transmission and reception
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increases, the latency also increases due to the impact 
of message conversion and DDS processing. DDS has 
a more significant impact on larger data size transmis-
sion. For ROS2 message transmission, two message 
conversions are required between ROS2 and DDS, with 
the first conversion from ROS2 to DDS and the second 

conversion from DDS to ROS2. These conversions con-
sume time, and between them, ROS2 calls the DDS API 
and sends the message to DDS.

When transmitting small-sized data (ranging from 
64 bytes to 64K bytes) in the experiment, the real-time 
performance of ROS1 and ROS2 was comparable before 
optimization, and remained so after optimization. How-
ever, as shown in Figure  13, the real-time performance 
of the ROS2 system optimized with Preempt_RT was 
superior to that of the native ROS2 system. For small 
data transfers, the conversion and transmission time 
between nodes and interfaces is relatively small, so the 
latency remains essentially constant based on the curve 
observed.

Furthermore, as shown in the bar graph in Figure  14, 
it can be seen that Preempt_RT-Linux-ROS2 has better 
real-time performance than Preempt_RT-ROS1 in the 
case of large data transmission.

Figure 12 Comparison of real-time performance of ROS1 and ROS2 before and after optimization

Figure 13 Real-time performance comparison of ROS1 and ROS2 
for small data sizes

Figure 14 Comparison of ROS1 and ROS2 real-Time performance 
bar chart

Figure 15 Comparison of the real-time performance of optimized 
ROS2
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Figure  15 provides clear evidence that Preempt_RT-
Linux-ROS2 outperforms Preempt_RT-ROS1 in real-
time performance, particularly when dealing with large 
data transfers. In fact, as data transfer size increases, 
the superiority of Preempt_RT-Linux-ROS2 over ROS1 
becomes even more pronounced.

Further analysis of the latency of each execution shows 
that Native-Linux-ROS2 has larger latency fluctuations 
for different data sizes, as shown in Figure 16. The larger 
the size of the message-passing data, the more pro-
nounced the latency fluctuations.

Examining small-sized data reveals that, for Native-
Linux-ROS2, a smaller data size does not necessarily 
mean less latency, as shown in Figure  17, where a data 
size of 64 bytes resulted in a latency of more than 800 µs. 
Latency also depends on the real-time capabilities of the 
operating system.

After optimization, Preempt_RT-Linux-ROS2 has 
smaller real-time fluctuations, and the maximum latency 
for different data sizes is much smaller than that of 
Native-Linux-ROS2, as shown in Figures 18 and 19.

4.4  Real‑time Performance of Different DDS and QoS
ROS2 is built on top of DDS/RTPS middleware, provid-
ing discovery, serialization, and transmission. DDS, as 
an end-to-end middleware, provides message-passing 
mechanisms and control over different "quality of ser-
vice" (QoS) options. This section attempts to illustrate 
the intuitive impact of different DDS and QoS on real-
time performance. The study compares eProsima’s Fast 
DDS, Eclipse’s Cyclone DDS, and GurumNetworks’ 
GurumDDS, as shown in Figure  20. The curves show 
that the latency of the different DDS is similar. Specific 
RMW files and dependencies need to be installed for 
use. Both C++ and Python nodes support the RMW_
IMPLEMENTATION environment variable to select 
the RMW implementation to be used when running 
ROS2 applications. This variable can be set to a spe-
cific implementation identifier, such as rmw_fastrtps_
cpp, rmw_connextdds, or rmw_gurumdds_cpp. For 
instance, RMW_IMPLEMENTATION=rmw_connext-
dds ros2 run demo_nodes_cpp talker.

Figure 16 Real-time performance of Native-Linux-ROS2 
with different packet sizes

Figure 17 Real-time performance of Native-Linux-ROS2 
on small-scale Data

Figure 18 Real-time performance of Preempt_RT-Linux-ROS2 
with different sizes
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ROS2 provides a rich variety of QoS policies for 
adjusting communication between nodes. Using the 
appropriate QoS set, ROS2 can achieve reliable com-
munication, similar to TCP, or best-effort transmission, 
similar to UDP, and can realize various possible states. 
Unlike ROS1, which mainly supports TCP communica-
tion, ROS2 benefits from the flexibility of the underlying 
DDS transport. In lossy wireless network environments, 
the best-effort policy is more suitable. In real-time com-
puting systems, the correct service configuration is 
needed to meet the final deadline. A set of correct QoS 
policy combinations form a QoS configuration file. QoS 
configuration files can be specified for publishers, sub-
scribers, service servers, and clients. QoS configuration 
files can be applied independently to each instance of 
the above entities, but if different configuration files are 
used, they may be incompatible, thus preventing message 
delivery. Different QoS policies affect the real-time per-
formance of the system. We compared the reliable policy 
with the best-effort policy using QoS settings. A reliable 
policy helps ensure reliable communication transmis-
sion, while communication in the best-effort policy is 
unreliable. In the best-effort policy, the subscriber node 
must be started before the publisher node begins sending 
messages to avoid "initial value loss." In the test, the sub-
scriber node was started first, followed by the publisher 
node.

Figure 21 shows the latency under different QoS poli-
cies. It can be seen from the figure that for small data 
sizes, the latency of the best-effort policy and the reliable 
policy is similar. When the data size increases, the latency 
of the best-effort policy is smaller than that of the reli-
able policy. This is because UDP is used in the best-effort 

policy, while TCP is used in the reliable policy. The QoS 
history for reliable policy is KEEP_ALL with a depth of 
100, and for the best-effort policy, the history is KEEP_
LAST with a depth of 1. The specific policy settings are 
shown in Table 5.

4.5  Real‑time Performance of Different Transmission 
Methods

In design, applications are often composed of individ-
ual "nodes" that perform small tasks and are separated 
from other parts of the system. Such design enables 

Figure 19 Real-time performance of Preempt_RT-ROS2 
on small-scale data

Figure 20 Real-time performance of different DDS in ROS2

Figure 21 Real-time performance of different QoS in ROS2

Table 5 Different QoS policies

Item Reliable strategy Best‑effort strategy

History KEEP_ALL KEEP_LAST

Depth 100 1

Reliability Best_effort Reliable

Durability Transient local Volatile

Deadline Default Default
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fault isolation, faster development, program modu-
larity, and code reuse, but often at the cost of perfor-
mance. In design, it is also possible to implement 
multiple nodes within a single process (intra-process), 
with different nodes implementing message passing, 
i.e., shared memory transfer, as shown in Figure 22. In 
this case, DDS is not required. When using std::unique_
ptrs for publishing and subscribing, zero-copy message 
transfer can be achieved through intra-process publish/
subscribe connections. DDS requires at least two mes-
sage translations. The address can be printed to view it: 
printf("Print out the address of the received message in 
DDS: 0x%", reinterpret_caststd::uintptr_t(msg.get())). 
The publishing node and subscribing node have the 
same address, indicating that the received mail address 
is the same as the published mail address and not a 
copy. However, when using const& and std::shared_ptr 
for publishing and subscribing, multiple copies will be 
created in this case.

To facilitate the analysis of end-to-end latency char-
acteristics of inter-process transmission (Figure 11) and 
shared memory transmission (Figure  22), Figure  23 is 

drawn. The mean latency of each data size is statistically 
calculated 120 times. For small data sizes, the latency of 
inter-process and shared memory transmission is simi-
lar because the effect of shared memory is hidden by 
small data sizes. As the data size increases, a significant 
difference in latency can be observed. Shared memory 
provides an effective way to transmit large data sizes. It 
also effectively avoids splitting a message into multiple 
data packets, reducing end-to-end latency.

Figure 22 Inter-process communication through shared memory

Figure 23 Real-time performance of different transport methods 
in ROS2

Figure 24 Periodic execution of tasks

Figure 25 Periodic jitter at different frequencies on Native-Linux

Figure 26 Different frequency period jitter in Preempt_RT-Linux
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4.6  Real‑time Characteristics at Different Frequencies
The high and low control frequencies have a significant 
impact on the effectiveness of control, including trajec-
tory smoothness and computational refinement. This 
section discusses the impact of frequency on real-time 
performance. An experiment was conducted to test 
10000 cycles, with the horizontal axis representing the 
number of recordings and the vertical axis indicating 
cycle jitter. The absolute positioning period, dk , was also 
measured:

The cycle jitter, Pk is defined as the deviation between 
time k+1 and time k minus the period T, as shown in 
Figure 24.

To better evaluate real-time performance, the CPU was 
run at full load. Figure 25 shows the cycle jitter for dif-
ferent frequencies on a Native-Linux system, with maxi-
mum jitter greater than 400 µs and large fluctuations. 
The native system is not real-time and cannot be used for 
multi-axis high-precision motion control.

For the optimized Preempt_RT-Linux system, an analy-
sis was conducted on the cycle jitter for different timing 
frequencies, which were increased sequentially from 25 

(3)dk = tk − kT .

(4)Pk = tk+1 − tk − T = dk+1 − dk .

to 5000 Hz, with corresponding curves plotted as shown 
in Figure 26. The jitter fluctuations were smaller, and the 
maximum cycle jitter was less than 60 µs. The real-time 
system based on the Preempt_RT patch exhibits good 
timing performance.

In Figure 27, a histogram of the corresponding cycle jit-
ter is shown, which demonstrates a roughly normal dis-
tribution, with the majority of the data points centered 
around ±10 μs.

4.7  Evaluation of Timing Jitter Performance for Multiple 
Subscribing Nodes

In the previous section, we focused on end-to-end 
latency between two nodes, analyzed the real-time per-
formance of ROS1 and ROS2, and investigated the 
impact of different factors on ROS2’s real-time perfor-
mance, such as DDS, QoS, frequency, and throughput. 
However, in practical applications, there may be a single 
node publishing messages that are shared and received by 
multiple nodes. In this section, we conduct further real-
time performance analysis by designing one publisher 
and six subscribers to measure the latency of each receiv-
ing node.

Figure  28 shows the latency of ROS1, and it can be 
observed that there is a significant difference in the 
latency between the subscribing nodes. Since ROS1 
arranges message publishing and receiving in sequence, 
it is not suitable for real-time systems. For instance, when 
the data size is 4Mb, the maximum latency of the sub-
scribing node is nearly twice the minimum latency. In 
contrast, the latency of ROS2 is largely dependent on the 
packet size, and the latency deviation of all subscribers in 
ROS2 is small, as shown in Figures 29 and 30. It is evident 
that the behavior of all subscribers is relatively fair in 
ROS2. This demonstrates that ROS2 message publishing 
is fairer for multiple subscribing nodes than ROS1. After 
real-time optimization, ROS2 shows improved real-time 
performance for multi-node subscriptions compared to 
before the optimization.

Figure 27 Histogram-based statistics of periodic jitter

Figure 28 Real-time performance of multiple subscriber nodes in ROS1
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Furthermore, an in-depth analysis of the latency 
characteristics of data transmission at various frequen-
cies optimized with Preempt_RT is conducted. Using 
the default Fast-DDS as the message passing middle-
ware, we measured the data transmission latency of 
sending and receiving messages at different frequencies 
with a fixed message size of 1K byte. Each frequency 
was tested 120 times, and the results were plotted in 
a 3D graph in Figure  31 and a corresponding curve 
in Figure  32. It can be observed from the figures that 
the latency deviation is small at different frequencies 

under real-time constraints. It should be noted that 
the latency also depends on the size of the transmit-
ted data, which was fixed at 1K byte in this experiment. 
The maximum latency was less than 150 µs.

4.8  Real‑time Performance of EtherCAT Master
The EtherCAT master needs to run on a real-time system 
to ensure strict real-time performance. The robot system 

Figure 29 Real-time performance of multiple subscriber nodes in the native system ROS2

Figure 30 Real-time performance of the optimized multiple subscriber nodes in ROS2

Figure 31 Latency distribution of ROS2 at different frequencies
Figure 32 Real-time performance of Preempt_RT-Linux-ROS2 
at different frequencies
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platform (see Figure  2) has one EtherCAT master and 
16 EtherCAT slaves. In the experiment, the master sta-
tion cycle period was set to 1000 µs, and we obtained the 
EtherCAT master’s latency data for a duration of 1613610 
ms, as shown in Figure 33. The minimum period of the 
master station was 982.5 µs, the average period was 999.8 
µs, and the maximum period was 1022.4 µs. It can be 
seen that the EtherCAT master exhibits good real-time 
performance and can be applied to robot control.

5  Conclusions
This paper proposes an optimization and assessment of 
ROS2’s real-time performance, utilizing a method that 
melds fair and first-in-first-out scheduling strategies for 
a robotic control system. This method, predicated on the 
ROS2’s DDS transmission mechanism, adopts the use 
of Preempt_RT to construct a fully preemptive, event-
driven system kernel, thereby improving the timeliness 
and reliability of ROS2’s data transmission.

We engage in both qualitative and quantitative evalu-
ations of the real-time performance of ROS1 and ROS2, 
considering factors such as throughput, transmission 
methodology, QoS service quality, frequency, quantity of 
subscription nodes, and EtherCAT master. Our findings 
indicate reliable real-time performance of the optimized 
ROS2 with Preempt_RT implementation. This research 
intuitively demonstrates that, in large-scale data trans-
mission and multiple node subscriptions, ROS2 outper-
forms ROS1 in terms of real-time performance.

Specific conclusions of the paper are as follows.

(1) The key to improving the real-time performance of 
ROS2 lies in optimizing the real-time performance 
of the operating system. The use of the Preempt_
RT patch can reduce the latency in ROS2 message 
transmission. Preempt_RT improves the real-time 
computing capability of the native Linux kernel 
through high-precision timers, thread interrupt 
handlers, sleep spinlocks, real-time mutexes, and 
RCU synchronization mechanisms.

(2) The real-time performance of the optimized ROS2 
system was systematically and comprehensively 
evaluated under stringent operating conditions 

with the CPU running at full load. The system dem-
onstrated stable real-time performance, running 
for 25.7 h with a maximum latency of 82 µs and an 
average latency of 2 µs.

(3) This study compares the real-time performance of 
ROS1 and ROS2, both located in the application 
layer above the Linux kernel. The real-time perfor-
mance of the optimized Preempt_RT-Linux-ROS2 
is much better than that of the Native-Linux-ROS2. 
Additionally, for a single publisher node corre-
sponding to multiple subscriber nodes, ROS2 dem-
onstrates fairer real-time performance than ROS1 
for multiple subscribers, making ROS2 more suit-
able for the development of real-time control sys-
tems.

(4) The optimized Preempt_RT-Linux maintains stable 
performance for both average jitter and maximum 
jitter at different frequencies, with a timing jitter 
cycle of less than 60 µs. The study also measures 
the real-time performance of the EtherCAT master, 
with a timing cycle of 1000 us and a worst-case tim-
ing cycle of 1022.4 us, demonstrating the effective-
ness of the optimized system.
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