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Abstract 

Predictive maintenance has emerged as an effective tool for curbing maintenance costs, yet prevailing research 
predominantly concentrates on the abnormal phases. Within the ostensibly stable healthy phase, the reliance 
on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment. To 
address this challenge, this paper proposes a dual-task learning approach for bearing anomaly detection and state 
evaluation of safe regions. The proposed method transforms the execution of the two tasks into an optimiza-
tion issue of the hypersphere center. By leveraging the monotonicity and distinguishability pertinent to the tasks 
as the foundation for optimization, it reconstructs the SVDD model to ensure equilibrium in the model’s performance 
across the two tasks. Subsequent experiments verify the proposed method’s effectiveness, which is interpreted 
from the perspectives of parameter adjustment and enveloping trade-offs. In the meantime, experimental results 
also show two deficiencies in anomaly detection accuracy and state evaluation metrics. Their theoretical analysis 
inspires us to focus on feature extraction and data collection to achieve improvements. The proposed method lays 
the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe 
regions.
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1  Introduction
The development of equipment maintenance techniques 
has experienced three stages so far, including reactive 
maintenance, preventive maintenance, and predictive 
maintenance, respectively [1]. Predictive maintenance 
effectively reduces maintenance costs [2], and its attain-
ment relies on the awareness of state changes. Since the 
state change in the abnormal stage is more significant 
than the healthy stage, the existing research of predictive 

maintenance mainly focuses on the abnormal stage. 
Before the anomalies occur, anomaly detection provides 
a qualitative means of condition monitoring, which can 
reduce accidents before equipment damage [3]. Given its 
pivotal role in safeguarding the operation of industrial 
equipment and systems [4], anomaly detection has gar-
nered extensive research attention. This paper organizes 
anomaly detection techniques into three groups of meth-
ods: reconstruction-based methods, classification-based 
methods, and distance-based methods.

Reconstruction-based methods define anomalies by 
meticulously analyzing deviations in domain mapping 
and the data reconstruction processes. Huang et  al. [5] 
advanced a memory residual regression autoencoder to 
improve the detection accuracy; it used the reconstruc-
tion errors and surprisal values to indicate the abnor-
mal condition of the bearing. Jiang et al. [6] proposed a 
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generative adversarial network to realize sample recon-
struction and common feature learning, which over-
comes the problem of data imbalance. Mao et  al. [7] 
presented a new self-adaptive mapping strategy for incip-
ient fault online detection. An autoencoder was used to 
extract features in data reconstruction, and a classifier 
was introduced to distinguish these features. An adaptive 
threshold method was proposed in Ref. [8] based on the 
extreme theory, and the network reconstruction residu-
als were used for anomaly detection and location. This 
method’s reconstruction error is generally insensitive to 
the incipient anomaly [5].

Classification-based methods treat anomaly detection 
as a classification task, including one-class classification 
and two-class classification. The one-class classification 
method arises from the reality that the collected opera-
tion data often only includes healthy data. Vos et al. [9] 
combined a long short-term memory network and a one-
class support vector machine to solve this problem for 
vibration data. Combining the two methods can also be 
used for data sequences with variable length [10]. Zhang 
et  al. [11] advanced an end-to-end algorithm, which 
designed a novel loss function to jointly learn shapelets 
and support vector data description (SVDD) decision 
boundary. Zhao et al. proposed a dynamic radius SVDD 
[12] to detect the anomalies of aircraft engines; the angle 
calculation was introduced in feature space to solve 
the neglected irregularities of the hypersphere. When 
healthy and abnormal data are accessible, two-class clas-
sification methods can be applied for anomaly detection. 
Song et  al. [13] used a meta-learning-based method to 
achieve few-shot anomaly detection. In Ref. [14], the oil 
and bearing temperatures were treated as two univari-
ate variables to construct a dual support vector machine 
model and analyze the adaptive threshold of the binary 
classification model. In addition, the time-frequency 
analysis method can detect anomalies by diagnosing the 
specific fault [15]; it considers the equipment healthy 
when no faults are identified.

Distance-based methods detect anomalies by measur-
ing distances in a designated metric space. Montechiesi 
et al. [16] advanced a modified artificial immune system 
to achieve anomaly detection through the similarity cal-
culation between antigens based on Euclidean distance 
minimization. Liu et  al. [17] decreased the false alarm 
rate of anomalies based on the information fusion of two 
distance dimensions: the spatial dimension considered 
the differences between different locations simultane-
ously. In contrast, the time dimension considered the dif-
ferences between actual and prediction values at different 
times in the same location.

Regardless of the three types of methods, anom-
aly detection can be attributed to constructing a safe 

region. The differences between them are how they are 
constructed and the metric spaces they are constructed 
in. As illustrated in Figure 1, since the monitoring data 
in the healthy stage is generally stable, the safe region 
is treated as a black box where we do not care about 
its state changes before the anomalies occur. It assumes 
that the health state is immutable in a safe region. 
However, this qualitative way makes the identification 
of anomalies necessarily a sudden event. Correspond-
ingly, preventive measures are taken to deal with this 
uncertainty, especially for scenarios where anomalies 
are not allowed or the abnormal stage is very short. 
These bring many disadvantages, including increased 
downtime, maintenance costs, safety risks, etc.

To deal with these problems, quantifying the time-
varying health state is considered in implementing 
anomaly detection. That is, the health state evaluation 
in the safe region (HSESR) is introduced into the con-
struction of the safe region. The state information helps 
us understand the operating status of equipment bet-
ter so that reasonable maintenance can be performed to 
extend equipment life, reduce safety risks, and improve 
production efficiency. For HSESR, the main difficulty is 
that the health indicators are generally stable and can-
not reflect the changing trend of the health state. Based 
on the irreversibility of mechanical degradation [18], 
monotonic feature extraction is the key problem of 
HSESR.

Boundaries tend to tightly wrap the healthy data in 
constructing the safe region to prevent misjudgment. The 
anomalies of bearings always lead to significant changes 
in the distribution of monitoring data. This change makes 
abnormal data distinguishable from healthy data. In these 
cases, a tight envelope is no longer necessary, and it is 
very cost-effective to release the envelope for additional 
gain without affecting anomaly detection. Following this 
idea, the improvement of feature monotonicity is set as 
the ‘additional gain’ for HSESR.

Taking advantage of the good feature extraction per-
formance in kernel space, we propose a new scheme of 
anomaly detection based on the variant of the classic 
SVDD modeling method. By introducing the time-vary-
ing health state into the construction of the safe region, 
the proposed scheme prevents the suddenness of anoma-
lies without compromising anomaly detection. In this 
way, anomaly detection and HSESR are unified under 
the same framework. The contributions of this paper are 
summarized below.

1)	 This paper opens a new way of thinking to deal with 
the suddenness of anomalies, that is, to explore trend 
indicators to characterize the state information in a 
safe region.
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2)	 This paper deduces the solution principle of the uni-
variate SVDD model under the condition of a certain 
hypersphere center.

3)	 A new framework is proposed by unifying anomaly 
detection and HSESR under the same framework.

2 � Methodology
The proposed method is inspired by SVDD, which has 
been proven effective in detecting anomalies. It con-
structs a hypersphere in high-dimension kernel space as 
the boundary of the safe region, and anomaly detection 
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is achieved based on the distances defined in the kernel 
space. To achieve anomaly detection and HSESR simul-
taneously, we re-organize the hypersphere-solving pro-
cess. In particular, the collaborative optimization of 
the center and boundary is changed to two independ-
ent optimizations. The center optimization obtains the 
health indicator (HI) sequence to evaluate the healthy 
state, and the boundary optimization combines the opti-
mized center for anomaly detection. The framework of 
the proposed method is shown in Figure 2. It consists of 
four portions: date preparation, hypersphere center opti-
mization, boundary solving, as well as the implementa-
tion of anomaly detection and HSESR. The following 

assumptions must be satisfied for application. (1) The 
chronological order of the data must be clear; (2) healthy 
and abnormal data can be distinguished well; (3) degra-
dation features can be captured in a safe region.

2.1 � Data Preparation
Data preparation is to obtain the data required by the 
model. It consists of three steps: dataset division, feature 
extraction, and feature selection.

Dataset division is to divide the data into a training 
dataset and a test dataset. Since healthy data accounts 
for the majority, whereas abnormal data is rare in real 
industrial data, half of the abnormal data are randomly 
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assigned as the test data to prevent the number of 
either dataset from being too small. At the same time, 
the same amount of healthy and abnormal data is ran-
domly sampled as the test data. Then, the remaining 
data is regarded as training data. Feature extraction 
is to calculate the features to reflect the health condi-
tion of the bearing. Feature selection is to screen the 
features that meet specific requirements. To present 
state information alongside anomaly detection, two 
feature indicators need to be determined: one empha-
sizes the realization of anomaly detection, the ability 
to distinguish between healthy and abnormal phases is 
the key for this feature; the other focuses on reflecting 
changes in health state, the monotonicity is prioritized 
for it because the degradation process of mechanical 
components is theoretically irreversible [18], and the 
true inherent health condition is commonly assumed 
to deteriorate over time. The monotonicity is generally 
defined as follows:

where K is the total number of samples; δ(·) is the simple 
unit step function; and H(t) refers to the value of HI at 
time t.

However, it merely focuses on the local monotonic-
ity but neglects the influence of each point on the global 
monotonicity. Figure 3 provides two examples, and their 
corresponding metric results are shown in Table 1. Line 
2 of Figure 3(a) is regarded as having better monotonic-
ity than the other according to Eq. (1) because only point 
C weakens its monotonicity while points b and d weaken 
Line1’s. This contradicts the observable fact. The mistake 
stems from neglecting the affection of points D, E, and F 
to the monotonicity from a global view.

Additionally, the monotonicity evaluation of each point 
in Eq. (1) is qualitative, which cannot precisely reflect the 
difference in their monotonicity. For another instance, 
the monotonicity of the two lines in Figure  3(b) is the 
same according to Eq. (1). They are not the same because 
the influences of the two local minimum points R and r 
to monotonicity differ.

To accurately describe the monotonicity, this paper 
introduces the inverse number as a supplement of Eq. 
(1). In mathematics, for a real array A, which contains N 
numbers, if i < j and A[i] > A[j], (A[i], A[j]) is called an 
inverse pair. The total number of inverse pairs in an array 
is called the inverse number. The inverse number consid-
ers the monotonicity from the perspective of adjacent 
points and the overall relationship among all points. On 
this basis, a new evaluation index for monotonicity has 

(1)
Mon1 =

∣
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∣

∣
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∣
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K − 1
,

been devised, transforming the inverse number into a 
metric that falls within the [0,1] scope.

where I(A) returns the inverse number of array A.
The metrics values for the four lines depicted in Fig-

ure 3 are presented in Table 1, corroborating the preced-
ing analysis. In Figure 3(a), points D, E, and F all produce 
inverse pairs in Line2 while only points c and e in Line1. 
Thus, we can correctly judge with the Mon2 to consider 
the global monotonicity. In addition, the Mon2 achieves 
a quantitative assessment of monotonicity. In Figure 3(b), 
point R produces one more inverse pair than point r, 
which allows us to distinguish the subtle difference in the 
monotonicity of the two figures. Accordingly, the inverse 
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2× I(A)

N (N − 1)
,

(a) Case 1

(b) Case 2

A(a) b c

d

e

f

B

C

D

E F

H
I

t

Line1

Line2

P(p)

Q(q)

r

S(s)

R

H
I

t

Line3

Line4

Figure 3  Two cases for monotonicity evaluation

Table 1  The monotonicity metric results of the lines in Figure 3

Metric Line 1 Line 2 Line 3 Line 4

Mon1 0.2 0.6 0.33 0.33

Mon2 0.87 0.73 0.83 0.67
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number selects the feature indicator that best reflects the 
health state change in a safe region.

After determining the feature indicators, the proposed 
method fuses them into the HI. We draw on the idea of 
SVDD to map input features to the hyperspace and uti-
lize the distances in the hyperspace to construct HIs. 
Since only the envelope is concerned, the traditional 
SVDD model is achieved by balancing two core elements: 
the center a and the radius R. The model construction of 
the proposed method is transformed into independent 
computations to consider both anomaly detection and 
HSESR. Accordingly, it is attained by hypersphere center 
optimization and boundary construction.

2.2 � Hypersphere Center Optimization
Anomaly identification and state assessment depend 
on the HI array, while the HI array has a one-to-one 
correspondence with the hypersphere center. There-
fore, the center optimization is a problem of HI array 
optimization.

2.2.1 � Optimization Model
Let the sample feature set be denoted as {si}. Referring to 
the traditional SVDD model, the hypersphere center a is 
defined [19]:

where γi is a weight factor, it reflects the contribution of 
the feature si to the center; φ is a mapping function, and it 
implicitly maps the data to feature space.

Then, the HI array is expressed by the distances 
between samples and the hypersphere center with

Bring Eq. (2) into Eq. (3), we have

where k(si, sj) is the kernel function, and the Gaussian 
RBF kernel is adopted in this article.

where σ is the bandwidth, controlling the radial range of 
action.

If we denote the HI array as H, then H = {d1
2, d2

2, …, 
dN

2}, where N is the number of samples. Except for the 

(3)a =
∑

i

γiφ(si), s.t.
∑

i

γi = 1,

(4)d2i = (φ(si)− a)2.

(5)d2i = k(si, si)− 2
∑

j

γjk(si, sj)+
∑

ij

γiγjk(si, sj),

(6)k
(

xi, xj
)

= exp

(

−
� xi − xj �

2

2σ 2

)

, σ > 0,

hyperparameter σ, H is determined by the group of weight 
factors {γ1, γ2, …, γN}. Therefore, the problem of HI array 
optimization is further expressed by implicit function 
model G(γ1, γ2, …, γN).

The optimization of the model includes monotonicity 
optimization with only healthy data and distinguishability 
optimization with healthy and abnormal data.

(1)	 Optimization Model Considering Monotonicity

	 To reflect the condition degradation inside the safe 
region, monotonicity is utilized for the model con-
struction. Denote the feature set of healthy train-
ing data as {si

h, i = 1, 2, …, NH}; the subscript h to 
the corresponding parameters of the healthy data. 
Bring them into Eqs. (2) and (4), we have

	 Then, HI array is obtained as Hh = {(d1
h)2, (d2

h)2, 
…, (dNH

h)2}. The inverse number is applied as the 
monotonicity metric, and its calculation function is 
marked as I(·); the optimization model is expressed as

(2)	 Optimization Model Considering Distinguishability

	 Distinguishability is also introduced for the model 
construction to describe the difference between 
healthy and abnormal data. In addition to the 
healthy data, rare but valuable abnormal data is 
exploited to improve boundaries’ distinguishabil-
ity through center optimization indirectly. Specifi-
cally, the center described by the healthy data is 
kept as far away from the abnormal data as possible. 
Denote the feature set of abnormal training data as 
{sp

a, p = 1, 2, …, NA}, the subscript a refers to the 
corresponding parameters of the abnormal data. 
The distances from each abnormal point to the 
center can be expressed as

(7)a1 =
∑

i

γ h
i φ(s

h
i ), s.t.,

∑

i

γ h
i = 1,

(8)

(

dhi

)2

=k
(

shi , s
h
i

)

− 2
∑

j

γ h
j k

(

shi , s
h
j

)

+
∑

ij

γ h
i γ

h
j k

(

shi , s
h
j

)

.

(9)

G1

(

γ h
1 , γ

h
2 , ..., γ

h
NH

)

= min I(Hh), s.t.,
∑

i

γ h
i = 1.

(10)
(

dap

)2

=

(

φ(sap)− a2

)2

,
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	 Bring Eq. (10) into Eq. (9), we have

	 Their HI array is obtained as Ha = {(d1
a)2, (d2

a)2, 
…, (dNA

a)2}. The abnormal points are expected to be as 
far away from the safe region to achieve distinguish-
ability. Thus, the optimization model is expressed as

2.2.2 � Model Solution and Center Expression

(1)	 Model Solving Based on Genetic Algorithm

	 The models of Eqs. (9) and (13) are the problems of 
multivariate implicit function optimization. We 
introduce the genetic algorithm to automatically 
seek the optimal solution based on natural selection 
and genetic mechanisms. The optimizations are 
achieved by following processes.

	 Step 1. Parameter initialization. Suppose the initial 
population is M, the individual P is expressed as

	 Step 2. HI calculation. Based on the M groups of Pj, 
we can get the distance set {H1, H2, …, HM} by Eq. 
(5).

	 Step 3. Fitness calculation. The fitness function of 
each population is calculated as the index of their 
fitness.

	 Step 4. Convergence strategy. As a result, it fluctu-
ates greatly with the σ and the maximum number of 
iterations allowed is selected instead of the specific 
threshold.

	 Step 5. Survival of the fittest through natural selec-
tion. After the selection operations, crossover, and 
mutation, a more adaptable population is obtained 
for further evolution until it meets the stop criteria.

(11)a2 =
∑

i

γ a
i φ

(

shi

)

, s.t.,
∑

i

γ a
i = 1.

(12)

(

dap

)2

=k
(

sap, s
a
p

)

− 2
∑

i

γ a
i k

(

shi , s
a
q

)

+
∑

ij

γ a
i γ

a
j k

(

shi , s
h
j

)

.

(13)

G2

(

γ a

1 , γ
a

2 , ..., γ
a

NA

)

= max

(

∑

H
a

)

, s.t.,
∑

i

γ a

i = 1.

(14)

Pj = [γ1, γ2, · · · , γN ]j = [γ1j , γ2j , · · · , γNj],∀j = 1, 2, · · · ,M,

s.t.,
∑

i

γij = 1,∀i = 1, 2, · · · ,N .

(2)	 Fusion Representation of the Hypersphere Center

	 After applying the genetic algorithm to solve the 
optimizations for monotonicity and distinguish-
ability, we obtain two sets of optimized parameters. 
They are further used for two optimized centers 
with Eqs. (7) and (11). Subsequently, the weight 
coefficient coef is introduced to balance them, and 
we obtain the final hypersphere center:

where φh = [φ(s1
h), φ(s2

h), …, φ(sNH
h)]T and the sub-

script T signifies the transpose symbol.

	 The coef needs to be manually adjusted in the 
range [0,1] according to the characteristics of the data. 
The adjustment is to balance the monotonicity and 
distinguishability of HI. When the distinguishability 
of feature 1 is good, a large coef is feasible to improve 
the monotonicity of HI. Otherwise, a smaller coef is 
necessary to avoid the impact on anomaly detection.

2.3 � Boundary Construction
With the optimized hypersphere center, the boundary 
is solved based on a variant of SVDD. As a is fixed, the 
variant is a univariate model converted from the original 
bivariate model:

where C is a trade-off to balance the volume and errors; 
and ξi is the slack variable to allow more points to be con-
tained in the hypersphere with the constraint of ξi > 0.

The Lagrange multipliers method is applied to incor-
porate the constraints into the model. The minimization 
problem is transformed into a maximum one, as shown 
below:

(15)
a = f (a1,a2, coef ) =

[

coef · Ph + (1− coef ) · Pa
]

· φh
,

(16)Ph = arg

γ h
1
,γ h
2
,...,γ h

NH

min I
(

Hh
)

,

(17)Pa = arg
γ a
1 ,γ

a
2 ,...,γ

a
NA

max
(

∑

Ha
)

.

(18)

min F(R) = R2 + C
∑

i

ξi,

s.t., � φ

(

shi

)

− a �2≤ R2 + ξi, ξi ≥ 0, ∀i = 1, 2, . . . ,N ,
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where αi and βi are Lagrange multipliers with the con-
straints αi ≥ 0 and βi ≥ 0, respectively.

Seeking the partial derivatives of the variables and set-
ting them to 0, we have

By introducing Eqs. (15) and (20), Eq. (19) is converted 
into Eq. (21):

where γnew = coef·Ph +(1-coef)·Pa; K = [k(si
h, sj

h)]NH×NH, 
and i, j = 1, 2, …, NH; A=[α1, α2, …, αi,…, αNH]T, and 0 ≤ 
αi ≤ C, sum(A) = 1; sum(·) is summation function and ∘ 
refers to the Hadamard product.

In Eq. (21), the first term equals 1 using the Gaussian 
RBF kernel. The second term is also a constant because 
γnew has been determined with a genetic algorithm, and K 
can be calculated with the training data and kernel func-
tion. Thus, the last term is the only changeable term that 
changes with the elements of A. As only the data si

h with 
the αi > 0 describes the boundary, these data are called 
the support vectors of the description [20]. Assuming R2 
is the radius square of the hypersphere, we have

where Nsv is the number of support vectors; and ssv 
denotes the support vectors.

2.4 � Implementation of Anomaly Detection and HSESR
In the proposed method, HSESR and anomaly detection 
are the two goals we want to achieve simultaneously.

HSESR can be achieved with the HI array of healthy 
data. The HIs of the training and test data are all cal-
culated to illustrate the implementation process and 
effect of the proposed method. After getting the opti-
mized hypersphere center, the HI array of healthy data 
is acquired by the distances of their features from each 
point to the hypersphere center in kernel space. Sorting 
the elements of an array by time, the sorted sequence can 

(19)

max L (R,αi,βi, ξi) = R2 + C
∑

i

ξi −
∑

i

βiξi

−
∑

i

αi

(

R2 + ξi− � φ(shi )− a �2
)

,

(20)



















∂L

∂R
= 0 ⇒

�

i

αi = 1,

∂L

∂ξi
= 0 ⇒ C = αi + βi.

(21)
max L = k

(

shi , s
h
i

)

︸ ︷︷ ︸

constant

+ sum
(

γ T
new · γnew ◦ K

)

︸ ︷︷ ︸

constant

− 2 × sum (A · γnew ◦ K ),

(22)R2 =
1

Nsv

∑

� φ(ssv)− a �2,

be considered time-continuous. To make the trend more 
prominent, a smoothing of the moving average is adopted 
to remove the effect of volatility, and the smoothed indi-
cator can display the state change of healthy data with 
time.

Anomaly detection needs to be judged by both HI 
array for healthy and abnormal data. Unlike HSESR, the 
obtained array in anomaly detection is temporal discrete. 
In addition, it requires the introduction of boundaries for 
anomaly judgment. In this way, anomaly detection and 
HSESR are unified into the same framework and imple-
mented simultaneously.

3 � Experimental Validation and Discussion
There are two dataset types for bearing prognostics and 
health management. One is a fault dataset whose data 
is collected under different bearing faults, and the other 
is a degradation dataset that consists of time-continu-
ous operation data. The latter is selected for validation 
because it satisfies the data assumption of the proposed 
method. Accordingly, two bearing degradation bench-
mark datasets are used for experiments.

3.1 � Experimental Dataset
XJTU-SY bearing dataset has large data amounts and 
abundant failure types [21]. Three different operating 
conditions were tested, including a 12 kN load at 2100 r/
min, an 11 kN load at 2250  r/min, and a 10  kN load at 
2400 r/min. Five bearings were tested under each oper-
ating condition, and two accelerometers were used to 
record vibration signals in the horizontal and vertical 
directions. The sampling frequency is 25.6 kHz, each 
time record collects 1.28 s of data, and the interval 
between two adjacent collections is 1 min.

PRONOSTIA bearing dataset is the most widely used 
bearing degradation dataset [22]. Three different oper-
ating conditions were tested, including a 4  kN load at 
1800 r/min, a 4.2 kN load at 1650 r/min, and a 5 kN load 
at 1500 r/min. Seven bearings were tested under the first 
two operating conditions, and three bearings were tested 
under the last operating condition. Two accelerometers 
were installed to record vibration signals in the horizon-
tal and vertical directions. The sampling frequency is 25.6 
kHz, each time record collects 0.1 s of data, and the inter-
val between two adjacent collections is 10 s.

3.2 � Performance Evaluation Metric
This paper evaluates the experimental results concerning 
existing related research. The anomaly detection result is 
evaluated from the accuracy perspective, including the 
accuracy metrics of healthy data, abnormal data, and all 
data. The result of HSESR is judged from the perspec-
tive of monotonicity and correlation. The monotonicity is 
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measured by both traditional metrics obtained by Eq. (1) 
and the newly introduced metric of inverse number; the 
correlation is estimated by two classic metrics: Pearson 
coefficient is used to show the linear correlation of the HI 
array with time, and the Spearman coefficient reflects the 
nonlinearity of the HI array through monotonicity.

3.3 � Comparison Methods
Three distinguished methods from varied domains have 
been chosen for comparison: RMS, the negative entropy 
of the squared envelope spectrum (NESES), and the 
autoencoder. RMS is a cornerstone metric in vibration 
analysis, providing a perspective on system states by 
measuring vibration intensity. NESES is adept at discern-
ing nuanced variations in early-stage faults by gauging 
signal complexity [23]. On the other hand, the autoen-
coder, a sophisticated approach widely employed in 
anomaly detection [24, 25], excels at seamlessly extract-
ing anomalous features directly from raw data.

3.4 � Experimental Results
The feature indicators are selected based on the calcula-
tion results of 35 classical statistical characteristics [26] 
commonly used as HIs. The feature of standard deviation 
frequency reflects the degradation in a safe region best, 
and it is chosen as the first feature. Besides, the RMS 
value is selected as the other candidate.

After specifying the features to be extracted, we 
use the dataset of XJTU-SY for the experiment first. 
The metric results of anomaly detection are shown in 
Table 2. The Bearing 1_4 and Bearing 3_5 are excluded 
due to their insufficient data volume.

Across most datasets, all four methods effectively 
distinguish between healthy and abnormal states. The 
proposed method, in particular, demonstrates excep-
tional robustness and consistently delivers the most 
outstanding average accuracy. Further, the healthy 
data is collated based on temporal continuity, and the 
corresponding metrics for HSESR are computed. The 
original SVDD method is also applied as an additional 
comparison to see the changes before and after the 
improvement. The monotonicity results are shown in 
Figure 4.

The result reveals that the monotonicity metrics of 
the proposed method see enhancements across all data-
sets, with the majority showing substantial improve-
ments. Specifically, the Mon1 metric surges with an 
impressive average growth of 281.8%, and the Mon2 
metric increases by 39.2%. Further, the correlation 
results are illustrated in Figure 5, where Cor1 and Cor2 
correspond to the Pearson and Spearman coefficients.

Consistent with the data above, the results in Fig-
ure  5 highlight the proposed method’s pronounced 
augmentation in the correlation of HIs over time. This 
encompasses both linear and non-linear correlations. 

Table 2  Anomaly detection accuracy with the XJTU-SY dataset 
(%)

Group number Bearing 
number

RMS NESES Auto-encoder Proposed 
method

1 1_1 100 100 95.7 97.8

1_2 97.1 88.2 97.1 97.1

1_3 98.3 100 96.6 100

1_5 100 100 100 100

2 2_1 100 95 100 100

2_2 100 100 100 100

2_3 99.2 85 97.5 97.8

2_4 100 100 100 99.2

2_5 100 85.8 98.3 100

3 3_1 100 96.3 97.0 100

3_2 83.5 50 94.2 99.5

3_3 94.1 94.1 100 98.5

3_4 61.9 62.3 97.5 100

Average 0.95 0.89 0.98 0.99

Figure 4  Comparison of monotonicity metrics with the XJTU-SY 
dataset

Figure 5  Comparison of correlation metrics with the XJTU-SY 
dataset
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To elaborate, the linear correlation metric Cor1 rises 
by 132.6%, and the non-linear correlation metric Cor2 
increases by 157.1%. Post-enhancements, the two met-
rics have values of 0.797 and 0.842, respectively. This 
transformation suggests a shift from a previously weak 
correlation to a very strong correlation.

The PRONOSTIA dataset was also tested for the pro-
posed method’s generalization performance. The metric 
results of anomaly detection are shown in Table  3, and 
the metric results of HSESR are calculated in Figures  6 
and 7.

For anomaly detection, the outcomes closely align 
with the XJTU-SY dataset. The performance of RMS is 
decent but exhibits some inconsistencies; NESES displays 
significant fluctuations. Both the autoencoder and the 
proposed method exhibit impressive performance. How-
ever, the former shows performance declines on certain 
datasets.

For HSESR, the proposed method brings about sub-
stantial improvements across all metrics. In terms of 
monotonicity metrics, the Mon1 sees a remarkable aver-
age rise of 270.2%, while the Mon2 increases by an aver-
age of 51.3%.

About the correlation metrics, the linear correlation 
represented by Cor1 surges by 198.1%, whereas the non-
linear correlation, indicated by Cor2, grows by 120.1%. 
Following these optimizations, the values of the two met-
rics settle at 0.806 and 0.827, respectively. This marks 
a transition from an initially weak correlation to a very 
strong one.

Upon consolidating the metric results of the pro-
posed method from both datasets, the following insights 
emerge: In anomaly detection, the proposed method 
showcases a consistently stellar accuracy, surpassing 99%. 
When we shift our focus to state evaluation, the metrics 
tell a tale of significant advancement. One of the monoto-
nicity metrics registers a surge of roughly 276%, while its 
counterpart experiences a rise of about 45.3%. Parallelly, 
two correlation metrics experience robust growth, with 
average increases of 165.4% and 138.6%, respectively. 
Post-optimization, both the metrics settle at impressive 
averages of 0.802 and 0.835. This remarkable evolution 
highlights a transformative leap from an initial weak cor-
relation to a very strong one, attesting to the soundness 
of the state assessment. The proposed method performs 
state assessments during healthy intervals and maintains 
unparalleled accuracy in detecting anomalies.

3.5 � Result Discussion
Based on the experimental results, this section analyzes 
the proposed method from two aspects: effectiveness and 
deficiency.

Table 3  Anomaly detection accuracy with the PRONOSTIA 
dataset (%)

Group number Bearing 
number

RMS NESES Auto-encoder Proposed 
method

1 1_1 96.4 91.2 96.2 98.2

1_2 95.8 50.0 95.8 100.0

1_3 98.3 84.2 98.3 99.3

1_4 99.1 62.6 98.0 99.2

1_5 92.3 67.3 100.0 98.9

1_6 90.6 50.0 100.0 100.0

1_7 100.0 78.0 100.0 99.5

2 2_1 94.7 50.0 97.4 98.9.

2_2 100.0 64.3 100.0 100.0

2_3 100.0 85.0 99.2 99.0

2_4 100.0 100.0 100.0 100.0

2_5 100.0 85.0 98.3 99.4

2_6 100.0 100.0 100.0 100.0

2_7 100.0 87.5 100.0 100.0

3 3_1 80.8 50.0 96.2 98.8

3_2 97.5 50.0 100.0 98.5

3_3 85.7 54.8 100.0 100.0

Average 0.96 0.69 0.98 0.99

Figure 6  Comparison of monotonicity metrics with the PRONOSTIA 
dataset

Figure 7  Comparison of correlation metrics with the PRONOSTIA 
dataset
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The effectiveness refers to the attainment of anom-
aly detection and state evaluation. The achievement of 
anomaly detection is based on the second assumption 
of the proposed method, that is, healthy and abnormal 
data can be distinguished well. When abnormal data 
are not easily distinguished from healthy data, anomaly 
detection requires a tight envelope, and the boundary 
adjustment may affect the anomaly detection. When the 
abnormal data are distinguished from the healthy data, 
the proposed method can sacrifice part of the envelop-
ment to achieve state assessment. Although the adjusted 
boundary becomes looser, the optimization of distin-
guishability is added in the adjustment process to ensure 
the effectiveness of anomaly detection.

The effectiveness of HSESR is interpreted from two 
perspectives. Perspective 1: Parameter adjustment. 
According to Eq. (4), the HI array is determined by the 

location of the hypersphere center, while the group of 
weight factors determines the center in Eq. (3). After 
applying a genetic algorithm to optimize the weight fac-
tors, the obtained HI array better reflects the health state 
in the safe region. As shown in Figure 8, the example with 
the XJTU-SY dataset intuitively shows that the proposed 
method improves the monotonicity of HI.

(a)

(b)
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Figure 8  Comparison of HI array with Bearing 3_3 in the XJTU-SY 
dataset: (a) Training data, (b) Test data

Figure 9  Envelope visualization with the Bearing 3_3 in the XJTU-SY 
dataset: (a) Data distribution and envelope visualization, (b) The 
envelope changes of the proposed method compared to the SVDD 
model
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Perspective 2: Enveloping trade-offs. The optimization 
of the HI sequence is based on the reduction of enve-
lope requirements, and Figure 9 shows the envelop plot 
of the data in Figure 8. Compared to the original SVDD 
model, the envelop boundary of the proposed method 
becomes looser, as shown in Figure 9(b). Due to the good 
distinguishability of the data, the loose boundary can 
still separate healthy data from abnormal data very well, 
just as Figure 9(a) shows. At the same time, the released 
envelope is directly transformed into the monotonic gain 
of the HI sequence through model optimization, which 
ensures the effectiveness of HSESR.

Two deficiencies exist in the experimental results. The 
first one is that the accuracy of several anomaly detection 
results is not very high, such as Bearing 1_1, Bearing 1_2, 
and Bearing 2_2 of the PRONOSTIA dataset. The reason 
is that the distinguishability of the feature indicators is 
not good enough; in other words, the data does not meet 
the applicable conditions of the proposed method.

Another shortcoming is that the HSESR metrics of 
some data are still not good enough, even though these 
trend features have been greatly improved. These unsat-
isfactory performances are also closely related to the 
application hypotheses of the proposed method. For 
instance, the abnormal data for Bearing 2_5 from the 
PRONOSTIA dataset is not distinctly differentiated from 
the healthy data, indicating a weak alignment with the 
second hypothesis. Accordingly, the data envelope has to 
be tight to prevent the misjudgment of abnormality, and 
the HI monotonicity cannot be well considered. Another 
example, the HSESR of Bearing 3_2 in the XJTU-SY 
dataset is invalid because all metrics of HSESE are too 
small to reflect the tendency. It can be attributed to the 
failure to satisfy the third hypothesis, i.e., the trend of 
extracted features in safe regions is too poor. The trend 
of the features is positively correlated with the metrics of 
the HSESE. For example, the extracted trend features do 
not reflect the condition degradation well in Bearing 1_2 
in the XJTU-SY dataset and Bearing 2_1 of the PRON-
OSTIA dataset; the corresponding correlation metrics of 
their results are all lower than 70%, which is lower than 
the other data.

Therefore, future improvements can be made from the 
following aspects.

1)	 Better features must be explored to characterize the 
degradation in safe regions. As the degradation pro-
cess of mechanical components is theoretically irre-
versible [18], it is commonly assumed that the true 
inherent health condition decreases with time [27]. 
Since the degradation inside the safe region is imper-
ceptible, most studies assume no degradation exists. 
This degradation is theoretically inevitable. The study 

of healthy features is expected to improve the predic-
tive maintenance inside the safe region.

2)	 The feature performances of generalization and 
robustness are expected to improve the indicator’s 
effectiveness for more and wider data. Although the 
adopted features work well on most data, some cases 
still do not apply.

3)	 More data are expected to be collected. The amount 
of data used in the modeling is insufficient, making 
the boundary’s generalization ability insufficient for 
unknown data.

4 � Summary and Conclusions
In this paper, a dual-task learning approach is proposed 
to deal with the problem of suddenness in anomaly 
detection. By considering both the monotonicity and 
distinguishability of the HIs in model construction, the 
proposed scheme unifies anomaly detection and HSESR 
under the same framework. Experimental outcomes from 
two datasets reveal that the proposed method ensures an 
impressive average anomaly detection accuracy surpass-
ing 99% and excels in state evaluation. The correlation 
indicators have surged upwards by over 150%, reaching 
values beyond 0.8. This signifies a shift in correlation 
from its initial weak correlation to an extremely strong 
one. Still, some data results were suboptimal because the 
application assumption was unsatisfied. Analysis of the 
results showed that the data amount and the extracted 
features are the key factors affecting the effect of the 
method. Accordingly, they enlighten us on the direction 
for further improvement in the future. The proposed 
method lays the foundation for implementing predictive 
maintenance throughout the life cycle by improving state 
awareness in safe regions.
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