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Abstract 

Blank holder force (BHF) is a crucial parameter in deep drawing, having close relation with the forming quality of sheet 
metal. However, there are different BHFs maintaining the best forming effect in different stages of deep drawing. 
The variable blank holder force (VBHF) varying with the drawing stage can overcome this problem at an extent. The 
optimization of VBHF is to determine the optimal BHF in every deep drawing stage. In this paper, a new heuristic 
optimization algorithm named Jaya is introduced to solve the optimization efficiently. An improved “Quasi-opposi-
tional” strategy is added to Jaya algorithm for improving population diversity. Meanwhile, an innovated stop criterion 
is added for better convergence. Firstly, the quality evaluation criteria for wrinkling and tearing are built. Secondly, 
the Kriging models are developed to approximate and quantify the relation between VBHF and forming defects 
under random sampling. Finally, the optimization models are established and solved by the improved QO-Jaya 
algorithm. A VBHF optimization example of component with complicated shape and thin wall is studied to prove 
the effectiveness of the improved Jaya algorithm. The optimization results are compared with that obtained by other 
algorithms based on the TOPSIS method.
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1 Introduction
Deep drawing is a forming process that apply complex 
external force to the sheet through the punch, making 
the sheet material flow to the ideal direction. Refs. [1] 
and [2] review many parameters affecting the forming 
quality in the deep drawing process. For example, Zheng 
et al. [3] and Su et al. [4] studied the formability and per-
formance of plates with different material properties. 
Modi et  al. [5] and Srirat et  al. [6] focused on the BHF 
to improve the forming quality. Lela et al. [7] determined 

the mathematical model of the friction coefficient in 
deep drawing. Karupannasamy et al. [8] and Gong et al. 
[9] explored influences of lubrication conditions on deep 
drawing process. Lin et  al. [10] established the model 
related the tools shape parameters to the drawing stress-
strain. Among these parameters, the BHF that the binder 
applies to the sheet is one of the most vital parameters. 
The friction resistance generated by the BHF can increase 
the tensile stress in the sheet, controlling the material 
flow. However, the BHF is a double-edged sword. An 
inappropriate BHF can result to forming defects. For 
example, a high BHF may cause sheet tearing, while a low 
BHF may cause sheet wrinkling. It is necessary to find a 
method that balance the BHF to maintain the best form-
ing quality.

Compared with the BHF, the VBHF is an effective 
method that can significantly improve the forming qual-
ity. VBHF means the BHF varying differently in different 
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deep drawing steps. The VBHF can reduce or even elimi-
nate the forming defects such as wrinkling, tearing and 
springback. The division of deep drawing steps are gen-
erally based on the shape of forming parts and material 
fluidity. Kitayama et al. [11–13] studied how to determine 
the VBHF trajectory. The VBHF trajectory has reference 
value for the experiment of determining the optimal 
VBHF value at an extent. However, the VBHF trajectories 
are not the same for deep drawing parts with different 
shapes. It is difficult to determine the appropriate VBHF 
only through continuous experiments. A high-efficiency 
optimization method based on advanced models and 
algorithms need be adopted.

The traditional optimization of the sheet deep drawing 
process is developed by the software simulation. Ablat 
et al. [14] took a review on numerical simulation of sheet 
metal forming. Kim and Hong [15] adopted finite ele-
ment (FE) methods and Singh et al. [16] used LS-DYNA 
to optimize design of deep drawing process. Modi et al. 
[5] developed programmable logic controller and data 
acquisition system to determine the variable BHF path, 
predicting formability by FE simulations. A single simu-
lation always costs a lot of time, even though the mod-
ern workstation. Meanwhile, after the samples collected, 
the establishment of optimization model is also a vital 
part. The methods based on mechanics theories have 
complex formula, various parameters and strict prereq-
uisites. It had better be used as a mechanism analysis of 
forming defects rather than a large-scale solution. To 
improve the solution effectivity, the surrogate models 
are proposed to establish the mathematical expression of 
optimization. Manoochehri and Kolahan [17] and Tian 
et  al. [18] adopted the artificial neural network (ANN) 
to build relation between process parameters and form-
ing defects, Feng et al. [19] and Xie et al. [20] applied the 
Kriging model to replace time-consuming optimization 
solving by simulation test. Kitayama et  al. [21–23] con-
ducted sequential approximate optimization of process 
parameters with the radial basis function (RBF) model or 
the support vector machine (SVM) model. These mod-
els can approximate high-precision expression by fitting 
or interpolation with few samples. On the one hand, the 
surrogate models improve the optimization speed. On 
the other hand, the solution of surrogate models also 
needs high efficiency.

With the development of high-effective algorithms, 
more and more researchers combine the optimization 
algorithms with the mathematical simulation software 
and apply it in the solution of sheet deep drawing. The 
optimization algorithms mainly divide into determinis-
tic and heuristic algorithms. Lin et al. [24] research that 
the deterministic algorithms (e.g., linear programming, 

dynamic programming and integer programming) obtain 
a global or an approximately global optimum by analyz-
ing properties of the problem. Actually, the determinis-
tic algorithms are not practical in engineering for it too 
complex to solve non-convex or large-scale optimization 
problems. Heuristic algorithms use the empirical rules to 
choose effective methods instead of seeking the answers 
systematically and in definite steps. It is more flexible, 
efficient and universal than deterministic algorithms, 
especially when the optimization problem is expressed in 
surrogate models. Choosing the heuristic algorithms as 
solver, the forming defects are set as optimization objec-
tives and the VBHF as design variables. Algorithms solve 
objectives to find optimal design variables and the simu-
lation software verifies whether the VBHF is excellent out 
of the simulation results. For instance, Manoochehri and 
Kolahan [17] employed simulated annealing algorithm to 
optimize the process parameters. Tian et al. [18] used ant 
colony algorithm, and Li and Wang [25] used differen-
tial evolutionary algorithm to solve VBHF. As the most 
popular algorithm in solving multi-objective problems, 
NSGA-II algorithm is applied in the VBHF optimization 
by Feng et al. [26].

According to summary of Rao [27], the population 
based heuristic algorithms include evolutionary algo-
rithms (EA) and swarm intelligence (SI) algorithms. 
Almost all heuristic algorithms own common control 
parameters such as population size, iterations. Fur-
thermore, different algorithms need their own specific 
control parameters. For instance, the specific control 
parameters of genetic algorithm are mutation probabil-
ity, crossover probability, etc.; simulated annealing algo-
rithm uses annealing start and end temperature, cooling 
speed, etc. These specific control parameters relate to the 
algorithm’s performance significantly. The inappropriate 
adjustment of algorithm-specific parameters has the risk 
of increasing the solution time or falling into the local 
optimum. To avoid the risk brought by algorithm-specific 
parameters, Rao et  al. [27, 28] introduced the teaching-
learning-based optimization (TLBO) algorithm and the 
Jaya algorithm without any algorithm-specific param-
eters. They only need the common controlling parame-
ters such as population size, generation number, random 
number. Compared with the TLBO algorithm’s two-stage 
update, the Jaya algorithm just has one update stage. It 
solves optimization problems more simply with the simi-
lar precision. Therefore, we introduce the Jaya algorithm 
and improve it more suitable as the VBHF optimization 
solver in deep drawing.

After the comprehensive consideration, a new VBHF 
optimization method based on the improved Jaya 
algorithm is proposed. First, we focus on the VBHF 
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optimization of complex shape thin-walled parts. Tear-
ing and wrinkling are the common defects of this type of 
parts. Thus, we choose tearing and wrinkling as multi-
objectives. The evaluation criterions of wrinkling and 
tearing are established as constrains for limiting defects 
overlarge. Second, the BHF sample points are selected 
by Latin Hypercube Sampling (LHS). The Kriging model 
have advantages of good adaptability, smoothness and 
minimum estimation variance. We use Kriging surrogate 
model to approximate the mathematical relation between 
the VBHF and two defects. Third, we adopt the Jaya algo-
rithm as optimization solver. The Jaya algorithm is added 
quasi-oppositional strategy and innovated stop criterion 
for enhancing the convergence speed. Finally, the method 
we proposed is applied in a case study of complex shape 
thin-walled parts. The Pareto solution are scored and 
sorted by decision algorithm TOPSIS. The improved Jaya 
algorithm are compared with the original Jaya algorithm 
and NSGA-II algorithm, which prove the efficiency of the 
QO-Jaya algorithm. The main contributions of this paper 
are as follows.

1) The optimization model considering wrinkling and 
tearing is established by LHS and Kriging surrogate 
method. The operation is solved by a novel algorithm 
named Jaya that is unique in without algorithm-spe-
cific parameters and only having common control 
parameters, thus superior in saving solution times 
and universality of the algorithm.

2) “Quasi-oppositional” strategy is added to Jaya algo-
rithm for improving population diversity. The strat-
egy of opposition based learning is used to generate 
a population opposite to the current population. It 
further diversifies the population and accelerates the 
convergence rate of Jaya algorithm.

3) To ensure the optimization process converges rea-
sonably, a stop criterion based on the “spread” meas-
urement for each iteration is proposed to evaluate 
the Jaya algorithm optimization situation. The meas-
urement index “spread” is defined to reflect the con-
vergence of the solutions objectively.

The rest of the paper is organized as follow: In Sec-
tion  2, the evaluation criteria of tearing and wrin-
kling are put forward and the optimization problem 
is described preliminary. In Section  3, the Kriging 
surrogate model provide optimization problem the 
mathematical expression, including objectives and 
constrains. Section  4 introduces the improved QO-
Jaya algorithm and the improvement scheme. Sec-
tion  5 is a case study about VBHF optimization on a 
complex shape thin-wall part. The conclusion and 
future research are presented in Section 6.

2  Defect Evaluation Criteria and VHBF 
Optimization Problem Framework

The main defects in deep drawing process are the wrin-
kling of the flange, and the tearing at the tangent of the 
bottom fillet and the straight wall. Wrinkling can be 
solved by applying BHF. However, with the increase 
of BHF, tearing at the tangent of the bottom fillet and 
straight wall are likely to occur. Generally, the wrinkling 
and tearing are considered at the same time in practical 
applications.

2.1  Tearing Assessment
The tearing of sheet is related to material strength limit. 
The tensile stress exceeds the strength limit of the mate-
rial during the deep drawing. The dangerous section of 
the drawing part is where the lower end of the cylinder 
wall meets the outer corner. The excessive strain at the 
dangerous section causes the wall thickness excessively 
thin, which leads to tearing.

The degree of tearing can be reflected by the maximum 
thinning rate. Shown in the study by Feng et al. [19, 26], 
the maximum thinning rate is defined as follows:

 where ηmax is the maximum thinning rate, t0 is the initial 
sheet thickness, and tmin is the thinnest sheet thickness 
of the thin-walled member after deep drawing. In order 
to prevent tearing during the deep drawing process, it is 
usually stipulated that the maximum thinning rate shall 
not exceed the critical value. Therefore, the evaluation 
criterion of tearing is

 where ηcr is the critical thinning rate. It usually set as 25% 
according to experience. The maximum thinning rate has 
been widely used in actual production for its intuition 
and easy understanding.

2.2  Wrinkling Assessment
Wrinkling is a major harmful phenomenon in the deep 
drawing process. Slight wrinkling affects the forming 
accuracy and surface smoothness of parts. Severe wrin-
kling prevents the sheet material from flowing into the 
gap between the punch and die, resulting in the sheet 
tearing and become waste. Wrinkling is a phenomenon 
of plastic deformation instability. There are three rea-
sons for wrinkling: the pressure bar instability caused 
by the pressure stress, the uneven stress in the defor-
mation zone, and the shear stress effect. Flange wrin-
kling and sidewall wrinkling are two forms of wrinkling. 
Flange wrinkling usually reaches the maximum in the 

(1)ηmax=
t0 − tmin

t0
× 100%,

(2)ηmax ≤ ηcr ,
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initial stage of deep drawing. Sidewall wrinkling is usually 
accompanied by flange wrinkles. Thus, the flange part is 
mainly considered in the calculation of the critical wrin-
kling BHF.

The evaluation indicators of wrinkling are the maxi-
mum thickness strain and the wrinkling height. The max-
imum thickness strain can reflect the wrinkling trend of 
the sheet during the deep drawing process, and the wrin-
kling height reflects the wrinkling severity of the drawn 
part truly during deep drawing.

When the sheet is wrinkled, the distance L between 
the die and the blank is greater than the initial thick-
ness t0. Therefore, the wrinkle evaluation criterion can be 
expressed by the distance between the die and the blank

 where L is the distance between the die and the blank, 
t0 is the initial thickness of thin-walled components, B is 
a safety factor. According to engineering experience, B 
always takes 1.2.

Springback is another common forming defect in addi-
tion to wrinkling and tearing. In this paper, we omit-
ted the consideration of springback because it seldom 
appears in the complex shape thin-wall part.

2.3  Model of the VHBF Optimization Problem
The optimization of VBHF includes the determination of 
design variables, objectives and constraints. The design 
variables are BHFs in different deep drawing stage, that is, 
in the different punch stroke. In Figure 1, the total punch 
stroke is partitioned into n steps S = [S1, S2, . . . , Sn] . 
Correspondingly, the BHFs takes n different values 
FVBH = [FVBH1

, FVBH2
, . . . , FVBHn ] . Every FVBH is a design 

variable in the optimization. The divided steps are not 
changeless. It is mainly determined by the characteristics 
of the hydraulic press itself and the drawing parts shape.

After the VBHF curve established, the objectives 
and constrains can be determined. The objectives are 
that minimize the evaluation of tearing and wrinkling. 
There are three constrains. One is the range of BHF, and 
another are the evaluation of wrinkling and tearing that 
not exceed the limitation settled in Section 2.1 and Sec-
tion  2.2. The description of optimization problem is as 
follows:

(3)L > B× t0,

After the model of optimization problem built initially, 
the specific expression of problem is needed for solving. 
There are two main methods to build a solution model. 
One is the method based on the software simulation, 
that is, use finite element analysis model to select BHF 
and experiment continuously. The other one is using the 
surrogate model to approximate the evaluation of tear-
ing and wrinkling. The simulation is time-consuming and 
requires high computer hardware. However, it is easier 
to use surrogate model and the accuracy of the surrogate 
model is guaranteed. In this paper, the Kriging surrogate 
model is selected for modeling. The simulation software, 
Dynaform, is applied to verify the effectiveness of the 
optimums.

3  Mathematical Expression Based on Kriging 
Model for VBHF Optimization in Deep Drawing

3.1  Introduction of Kriging Surrogate Model
The Kriging surrogate model has the characteristics of 
smoothness and minimum estimation variance. It can 
fit problems with high nonlinearity ideally. It is widely 
used to fit low-order or high-order nonlinear problems, 
concluded by study of Zhao et al. [29]. The Kriging sur-
rogate model is essentially an interpolation method 

(4)































min f1(FVBH ) = ηmax,

min f2(FVBH ) = L,
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ηmax ≤ ηcr .
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Figure 1 The step partition of the punch stroke and the VBHF
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based on statistical theory. Its basic principle is to con-
struct an approximate model of the objectives through 
known samples and their responses. And then use the 
constructed model to predict unknown samples and their 
responses. The Kriging surrogate model consists of a 
global model and a local random deviation function, that 
is, a combination of a parametric model and a non-para-
metric random process. The Kriging surrogate model is 
more flexible than a single parametric model. And it also 
overcomes the limitation of non-parametric models in 
processing high-dimensional data.

The expression form of Kriging surrogate model is

where F = [f1(s1), f2(s2), ..., fq(sm)]
T is a known regres-

sion model, generally a polynomial model, including pol-
ynomials of zero-order, first-order, second-order and so 
on; β = [β1,β2, ...,βq]

T is the corresponding regression 
coefficients to be estimated; z(x) is a stationary stochas-
tic process, and E[z(s)]=0, cov(z(s), z(x)) = σ

2R̃(θ , s, x) . 
R̃(θ , s, x) is a correlation function about parameter θ, 
which generally takes Gaussian correlation function

Fβ provides a global approximation of the Kriging 
model and z(x) provides an approximation of the local 
variation of the model. Kriging surrogate model is used 
to realize the nonlinear fitting between the input data 
(VBHF) and the output data (the response value of each 
VBHF). In Section  3.2, the VBHF optimization model 
constructed by Kriging method will be introduced in 
detail.

3.2  Kriging Surrogate Model of VBHF Optimization
In this section, the optimal Latin Hypercube Design 
(LHD) will be used to select sample points. The Kriging 
model will be constructed based on these sample points. 
Then the relationship will be established between VBHF 
and forming defects in the deep drawing process. The 
whole steps of establishing and solving the VBHF optimi-
zation problem is shown in Figure 2.

McKey et  al. [30] proposed the Latin Hypercube 
Design (LHD). The LHD have been widely used in sam-
pling in various large-scale design spaces. In the VBHF 
optimization, the sample array {(V1, Y1)...(Vi, Yi)...(Vk, 
Yk)} can be obtained by LHD, where k is the number 
of samples, Vi (i = 1,2,...,k) is the ith sample point in 
VBHF design space, and Yi is the response correspond-
ing to the sample Vi obtained by the Dynaform simula-
tion software.

(5)ỹ(x) = Fβ + z(x),

(6)R̃(θ , s, x) =
n
�
i=1

exp(−θ |sj − xj|
2
).

In view of the fact that the sample points taken in the 
symmetric LHD are more uniform, it is also more con-
ducive to the establishment of subsequent approxima-
tion models. In this paper, the symmetric LHD is used 
for the adoption of the design space. Considering the 
6-dimensional design space is hard for visualization, we 
take a 2-dimensional design space to extract 30 sample 
points as an example to illustrate the symmetric LHD 
sampling scheme, as shown in Figure 3.

Based on the VBHF optimization model represented 
by Eq. (4), we convert the objectives and constrains 
with solvable mathematical form. The approximate 
models of wrinkling and tearing are constructed based 
on Kriging surrogate model, as follows:

Figure 2 Framework of VBHF optimization using proposed method 
in deep drawing
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where f̃W (FVBH ) and f̃T (FVBH ) are the approxi-
mate expresses of wrinkling and tearing respectively, 
βWFW (FVBH ) and βTFT (FVBH ) are the regression mod-
els of wrinkling and tearing respectively, zW (FVBH ) and 
zT (FVBH ) are the random deviation in the regression 
models of wrinkling and tearing respectively.

4  Multi‑objective Quasi‑oppositional Based Jaya 
Algorithm

Jaya algorithm is a relatively new swarm intelligence algo-
rithm, which was proposed first by Rao [27] in 2016. The 
optimization principle of Jaya algorithm is that the solu-
tion should move towards the best solution but avoid 
the worst one. The most significant feature of Jaya algo-
rithm is which only has common control parameters 
without algorithm-specific control parameters. This fea-
ture makes the algorithm more easily in initial parame-
ters setup, thereby reducing the time cost and ensuring 
the stable performance. Rao et  al. [31] and Zhang et  al. 
[32] proved the effectiveness of algorithm through solv-
ing various constrained and unconstrained engineering 
optimization problems or benchmark problems. And 
the computational results reveal that the Jaya algorithm 

(7)











































min f̃W (FVBH ), f̃T (FVBH ),

f̃W (FVBH ) = βWFW (FVBH )+ zW (FVBH ),

f̃T (FVBH ) = βTFT (FVBH )+ zT (FVBH ),

s.t., f̃W (FVBH ) < B× t0,

f̃T (FVBH ) < ηcr ,

FL
VBH ≤ FVBH ≤ FH

VBH ,

FVBH = (FVBH1, ...FVBH j, ...FVBHn)
T,

is superior to or comparable with other optimization 
algorithms.

After the Jaya algorithm presenting, there have been 
various improvement and strategies added in it for bet-
ter performance. In order to handle multiple objectives 
simultaneously, Rao et al. [33] proposed the multi-objec-
tive Jaya (MO-Jaya) algorithm. Some changes are aimed 
to further diversify the population and increase the 
convergence speed of the Jaya algorithm. For example, 
Rao and More [34] proposed the self-adaptive Jaya algo-
rithm that determined the population size automatically 
to improve the population diversity; Rao and Rai [35] 
advanced the quasi-oppositional based Jaya algorithm, 
which generated a population opposite to the current 
population to keep the randomness of Jaya algorithm. 
Meanwhile, it is also important for algorithm to bal-
ance the global exploration and local exploitation. In 
researches of Farah and Belazi [36] and Yu et al. [37], the 
chaotic Jaya algorithm use the chaotic sequence gener-
ated by the chaotic graph rather than random numbers 
to balance the exploration and exploitation. Rao and 
Saroj [38] added the elitist stratagem in Jaya algorithm. 
It replaces the worst solution(s) with the elitist one(s) to 
effectively control Jaya algorithm for the transition from 
global exploration to local exploitation. Besides, there 
are some other tiny improvements, such as adopting a 
neighborhood search strategy to enhance the population 
diversity, linearly decreasing inertia weights to enhance 
development efficiency, or a combination of the above 
strategies. The summary of the improvement strategies 
on Jaya algorithm is shown in Figure 4, which is divided 
according to the specific improvement objects.

Nowadays, the Jaya algorithm is applied in continu-
ous/discrete, high-dimensional/low-dimensional, or 
linearity/nonlinearity optimization problems. The pro-
fessional fields of application include electronic and 
electrical engineering, energy engineering, mechanical 
engineering, management science, computer science 
and so on. It has not been applied to drawing forming 
process optimization yet. In this paper, we will first use 

Figure 3 The symmetric LHD (30 sampling points)

Figure 4 Summary of the improvement strategies on Jaya algorithm
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Jaya algorithm to solve the VBHF optimization of sheet 
in deep drawing.

4.1  Introduction of the Multi‑objectives Jaya Algorithm

Like the common heuristic algorithm, Jaya algorithm has 
the common control parameters such as the population 
size, generation number, etc. The initial population is 
generated randomly within the ranges of variables. How-
ever, it is different from other heuristic algorithms that 
Jaya algorithm only have one update function. It is more 
quickly in updating population. In every generation, the 
population updates based on Eq. (8):

 where G is the max generation number; g means the gth 
generation. Pop is the population size; p means the pth 
individual. n is the number of variables; j means the jth 
variable. In Eq. (7), W ′

g ,p,j is the updated new individual, 
Wg ,p,j is the old individual, r1,g ,j and r2,g ,j are the random 
number in [0,1]. Wg ,best,j and Wg ,worst,j are respectively the 
best and worst solutions in the gth generation, the jth var-
iable. (Wg ,best,j − |Wg ,p,j|) means the tendency of the solu-
tion towards the best solution, while (Wg ,worst,j − |Wg ,p,j|) 
means the tendency of the solution far from the worst 
solution. In the function, the random number act as scal-
ing factor to ensure good exploration performance. The 
best and worst solutions guarantee the positive direc-
tion of the update solution. At the end of the iteration, 
all acceptable solutions will be retained and become the 
inputs for the next generation.

Since the VBHF optimization we researched is a 
multi-objective problem, the Jaya algorithm needs some 
strategies added to convert to the multi-objectives Jaya 

(8)
W ′

g ,p,j = Wg ,p,j + r1,g ,j(Wg ,best,j − |Wg ,p,j|)

− r2,g ,j(Wg ,worst,j − |Wg ,p,j|),

g = 1, 2, . . . ,G; p = 1, 2, . . . ,Pop; j = 1, 2, . . . , n,

algorithm. In the multi-objectives Jaya algorithm, the 
concepts of constraint-dominance sorting, non-domi-
nance sorting and crowding distance computation are 
used to determine the rank of solutions. These principles 
are the keys for conducting the searches of Pareto fron-
tier. The sorting principles are explained by Figure 5. The 
flowchart of the multi-objectives Jaya algorithm is shown 
in Figure 6.

The detailed solving steps of multi-objective Jaya algo-
rithm is described as follows.

Step 1: Pop solutions are generated randomly as 
an initial population. The initial population is sorted 
based on the principles of constraint-dominance and 
non-dominance.

Step 2: First, the constraint-dominance is used to deter-
mine the superiority between solutions initially. Then the 
non-dominance and crowding distance are conducted to 
further determine the priority of the solution. The solu-
tion with a higher rank is better than the other one. If the 
solutions have the same rank, the solution with a higher 
crowding distance is considered better than the other 
one.Figure 5 The sorting principles of constraint-dominance sorting, 

non-dominance sorting and crowding distance computation

Figure 6 Flowchart of the multi-objectives Jaya algorithm
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Step 3: Choose the solution with the highest rank (rank 
= 1) as the best solution and the solution with the lowest 
rank is the worst solution. Then the solution of next gen-
eration can be updated according to Eq. (7).

Step 4: After the solutions updated, the new solutions 
combine with the old solution as 2Pop solutions. Reorder 
these solutions according to the principles of constraint-
dominance, non-dominance sorting and crowding dis-
tance computation. Then select Pop solutions as the new 
population based on the new sorting.

Step 5: Turn to Step 3 to update generation until satisfy 
the stop criterion.

The concept of constraint dominance guarantees that 
feasible solutions have a higher rank than infeasible solu-
tions. Among the feasible solutions, the superior solu-
tion (non-dominated solution) ranks higher than the 
dominated solution. Among the infeasible solutions, a 
higher rank is assigned to the solution with less overall 
constraint conflict. The use of crowding distance for non-
dominated sorting ensures that the solution is selected 
from the sparse area of the search space.

4.2  Introduction of the Multi‑objectives Jaya Algorithm
4.2.1  Quasi‑oppositional Based Strategy

QO-Jaya algorithm means Quasi-oppositional based 
Jaya algorithm, which is added a concept of opposition 
based learning in common Jaya algorithm. A population 
opposite to the current population is generated to further 
diversify the population and accelerate the convergence 
rate of Jaya algorithm. We improve the quasi-opposi-
tional population generation strategy for better practical-
ity in programming. The opposite population is generate 
based on Eqs. (9)–(11):

 where WL
j  and WU

j  are the lower and upper bounds of 
the variables range. Wg ,p,j is the current population and 
W

q
g ,p,j is the opposite population to the current popula-

tion. r3 is the random number in [0, 1]. a means the mid-
point of the variables interval and b means the mirror 
point of the variables.

(9)a =
WL

j +WU
j

2
,

(10)b = WL
j +WU

j −Wg ,p,j ,

(11)W
q
g ,p,j = a+ (b− a) ∗ r3,

4.2.2  Improved Stop Criterion
In most optimization algorithm, the stop criterion is usu-
ally the generation number reaches a max generation 
number or the cumulative individuals reach the limita-
tion. Both the stop criteria are set rigidly by cumulative 
sum of counting parameters without reflecting the solu-
tions condition. In this case, some solving progress that 
solutions have converged may continue searching mean-
inglessly. This greatly reduces the solution speed and 
waste resources on unnecessary computation.

In this paper, a measurement index ‘spread’ is defined to 
reflect the solutions convergence objectively. We propose 
a stop criterion based on spread: when the spread does 
not change much, the spread of current generation is 
smaller than the average of previous spread, and this con-
dition is maintained for a certain number of times, the 
algorithm will stop. The spread is calculated by Eq. (12). 
We set the population size to 50, 100, and 500 for testing, 
which proves the stop criterion effective.

Figure 7 Flowchart of the improved QO-Jaya algorithm



Page 9 of 14Jiang et al. Chinese Journal of Mechanical Engineering            (2024) 37:5  

where k is the number of objective functions, σ is the 
standard deviation of the crowding distance measure of 
points that are on Pareto front with finite distance. μ is 
the norm of the difference between the minimum objec-
tive on the Pareto front of the current generation and that 
of the previous generation. As there are two objectives in 
this study, μ is the sum over the two norms of objective 
functions shown as Eq. (13). Wg ,best and Wg−1,best indicate 
the parameters for the minimum objective on the Pareto 
front of the current generation and the previous genera-
tion, respectively.

The spread-based stop criterion can make the conver-
gence measurement of the design variables more objec-
tive, for it is not affected by parameters other than the 
number of iterations. The spread not only reflects the 
change of the congestion degree of the Pareto front, but 
also reflects the movement of the Pareto front. It is also 
found from experiment that many Pareto fronts may 
jump and escape from the best solution obtained before 
after satisfying the stop criterion once. This indicates 
that the Pareto front is not stable finally yet. Therefore, in 
order to maintain more stable and reliable Pareto optimal 
solutions, the algorithm will finally stop after reaching 
the stop criterion 5 times. Write the program in the algo-
rithm to count the total number of the times that accu-
mulatively satisfying the stop criterion. The flowchart of 
the improved QO-Jaya algorithm is shown in Figure 7.

5  Case Study
The complex outer shell thin-walled parts have many 
sharp inflection points. It is easy to cause wrinkling, 
tearing and other problems in the deep drawing pro-
cess. Figure 8 shows the complex outer shell thin-walled 
parts that we optimized in case study. In this section, we 

(12)Spread =
µ+ σ

µ+ k · σ
,

(13)
µ =

∥

∥

∥

f̃W (Wg ,best)− f̃W (Wg−1,best)
∥

∥

∥

+

∥

∥

∥

f̃T (Wg ,best)− f̃T (Wg−1,best)
∥

∥

∥

,

conduct the VBHF optimization of a specific complex 
outer thin-walled parts.

5.1  Parameters of the Complex Outer Shell Thin‑walled 
Part

The material is 304L stainless steel. The simulation analy-
sis model of the complex outer shell thin-walled part is 
shown in Figure 9.

The entire drawing stroke is divided into 6 phases, each 
phase adopts a different BHF. According to experience, 
the range of each BHF is [500 kN, 2000 kN], taking wrin-
kling and tearing as objectives. The constrains are all set 

Figure 8 The complex outer shell thin-walled parts

Figure 9 Simulation analysis model of the complex outer shell 
thin-walled part

Figure 10 The mean square error of Kriging model: (a) The error 
of tearing objective function, (b) The error of wrinkling objective 
function
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by experience. The multi-objective optimization model of 
VBHF is established as follows:

5.2  VBHF Optimization Solution of Complex Outer Shell 
Thin‑walled Part in Deep Drawing

After the simulation model conducted, the LHD is used 
to sample the initial BHF and defects measurements of 
the sheet in deep drawing. Sampling is performed in 
6-dimensional space and 30 sample points are collected. 
Then establish the Kriging surrogate model of objectives 
{ f̃W (FVBH ), f̃T (FVBH ) } based on the samples. The expres-
sion of the model is as follows:

• Tearing objective function

• Tearing objective function

The kriging model is the best unbiased estimate 
based on the interpolation method. It completely passes 
through the sample points. Figure  10 shows the mean 
square error of Kriging model.

The improved QO-Jaya algorithm is used to solve the 
established optimization model. Set the max individual 
number as 37500, and the population size is 100. The 100 
initialized individuals.

5.2.1  Iteration Process
After initializing the 100 individuals of a population, gen-
erate the quasi-opposition population of the initialized 
population. Combine the two populations to sort and 

(14)

f̃T (FVBH ) =5.7858× 10
−7 + 0.0180FVBH1

− 0.2837FVBH2 + 0.0739FVBH3

+ 0.2315FVBH4 − 0.1374FVBH5

− 0.0805FVBH6 + r(θ , d)γ .

(15)

f̃W (FVBH ) = 6.8894 × 10
−6 − 0.1456FVBH1

+ 0.2251FVBH2 + 0.0214FVBH3

− 0.0047FVBH4 + 0.0761FVBH5

− 0.0365FVBH6 + r(θ , d)γ .

selected the first 100 individuals as a new population. 
Then update the current population, sort the new and old 
individuals to the best 100 individuals. Update the quasi-
opposition population and repeat the iteration as before.

5.2.2  Convergence Process
The spread measures whether the Pareto solutions have 
converged effectively. The final convergence results are as 
follows:

The algorithm runs for 12 generations, and the spread 
order of each generation is: 0, 0.3465, 0.3400, 0.3360, 
0.3334, 0.3366, 0.3334, 0.3333, 0.3333, 0.3334, 0.3333, 
0.3333. The mean of spread in 12 generation are 0.3465, 
0.3432, 0.3408, 0.3390, 0.3385, 0.3376, 0.3370, 0.3366, 
0.3362, 0.3359, 0.3357, respectively. Figure 11 shows the 
comparison between spread and the mean of spread. 
The order of changes in spread is 0.3465, 0.0065, 0.0040, 
0.0026, 0.0032, 0.0032, 3.9357×10−5, 2.1998×10−5, 
2.1998×10−5, 7.8417×10−6. It can be seen from Figure 12 
that the change of spread decreases rapidly and stabilizes 
gradually. Both of the evaluating indicators maintain the 
effective convergence of solutions.

The algorithm will stop when the principle satisfied in 
5 times. The principle is that the spread has not changed 
much and the final spread is less than the average of the 
most recent spreads.

5.2.3  Optimization Results
The solutions are scored and sorted by the decision algo-
rithm TOPSIS. The solution with highest score is shown 
in Table  1. It can be seen that the risk of wrinkling has 
reduced 5.1% and that of tearing has reduced 42.6%. It 
can be concluded that the VBHF optimization improves 
the forming quality of complex outer shell thin-walled 
part in deep drawing process. For better representation 
of the optimization effect, we use Dynaform to simulate 
the optimized VBHF, as shown in Figures 13, 14.

Figure 11 The comparison between spread and the mean of spread 

Figure 12 The changes of spread 
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Table 1 Comparison between the original constant BHF and the optimized VBHF

FVBH1
(kN)

FVBH2
(kN)

FVBH3
(kN)

FVBH4
(kN)

FVBH5
(kN)

FVBH6
(kN)

Wrinkling L (mm) Tearing ηmax (%)

The original parameters 1000 1000 1000 1000 1000 1000 1.157 24.768

The optimized parameters 1168.948 1728.490 731.1526 1088.581 1567.474 1895.709 1.098 14.210

Figure 13 The comparison of tearing between complex outer liner thin-walled parts before and after optimization: (a) Before optimization, (b) 
After optimization

Figure 14 The comparison of wrinkling between complex outer liner thin-walled parts before and after optimization: (a) Before optimization, (b) 
After optimization

Figure 15 The comparison of iteration curves between QO-Jaya algorithm (improved or not) and Jaya algorithm (improved or not): (a) 500 
population size, (b) 50 population size
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5.3  Discussion and Comparison
In this section, the improved QO-Jaya algorithm is com-
pared with the common QO-Jaya algorithm, the Jaya 
algorithm added stop criterion, the common Jaya algo-
rithm and NSGA-II algorithm. The comparison with 
the first three kinds of Jaya algorithm is to explain the 
advantages of improved strategies. The comparison with 
NSGA-II algorithm is to show the effectives of QO-Jaya 
algorithm in solving problem.

The comparison with the first three kinds of Jaya algo-
rithm is shown in Figure  15. When the population size 
is 50, QO-Jaya algorithm runs for 20 generations, and 
Jaya algorithm runs for 22 generations. The improved 
QO-Jaya algorithm runs for 9 generations, and improved 
Jaya algorithm runs for 12 generations. When the popu-
lation size is 500, QO-Jaya algorithm runs for 13 genera-
tions, and Jaya algorithm runs for 14 generations. The 
improved QO-Jaya algorithm runs for 9 generations, and 
improved Jaya algorithm runs for 12 generations. In gen-
eral, the Jaya algorithms without improved strategies are 
waste more time on meaninglessly searching. And the 
improved Jaya algorithms are convergent faster. However, 
the QO-Jaya algorithm is superior to the Jaya algorithm 

no matter having improved strategies or not. Sorted by 
the TOPSIS algorithm, the solutions of improved QO-
Jaya algorithm are at a higher ranking.

The next is the comparison between QO-Jaya algo-
rithm and NSGA-II. After comparing the scatter plots 
of design variables, QO-Jaya algorithm is better than 
NSGA-II algorithm in the dispersion degree of solu-
tions. QO-Jaya algorithm can obtain boundary points. 
Many solutions generated by NSGA-II algorithm are 
concentrated near the boundary but cannot be obtained 
the boundary value. After sorting by TOPSIS, the solu-
tion is divided into 7 intervals spaced equally (shown in 
Figure  16). QO-Jaya algorithm has solutions in the first 
5 intervals, and the number of each intervals is not very 
different. The solutions generated by NSGA-II algorithm 
are distributed on all the 7 intervals, and the individuals 
number decreases gradually as the score decreases. The 
number is also gradually decreasing. The mean and vari-
ance of the two algorithms are not much different (shown 
in Figure 17). However, the continuous optimal individu-
als in the ranking are generated by QO-Jaya algorithm, 
and the continuous worst individuals are generated by 
the NSGA-II algorithm. It is confirmed that QO-Jaya 
algorithm presents the good solving performance.

6  Conclusions
In this paper, we propose a VBHF optimization method 
based on the improved QO-Jaya algorithm for the com-
plex outer shell thin-walled part in deep drawing. The 
VBHF optimization is conducted to reduce the risk of 
forming defects effectively. And the new method aims 
to improve the efficiency of solving optimization. In the 
optimization, VBHFs in different stages are the design 
variables. The optimization objectives are wrinkling 
and tearing for the two are the most common defects 
in the complex outer shell thin-walled part. Set the esti-
mation criteria corresponding to wrinkling and tearing. 
And the constrains are limiting the two estimation cri-
teria under two safety thresholds. After established the 
optimization problem, the LHD is used for sampling. 
The Kriging surrogate model is adopted to express the 
optimization in mathematical form. Then the multi-
objectives QO-Jaya algorithm is introduced in solving 
the optimization problem. A numerical example of the 
complex outer shell thin-walled part is conducted to 
verify the effectiveness of the method. We use TOPSIS 
to select the best solutions that each algorithm gener-
ates, and put them in Dynaform for simulation and vis-
ual comparison.

We adopt Jaya algorithm as solver for it without 
algorithm-specific parameters and only having com-
mon control parameters, which save solving times and 
ensure the universality of the algorithm. The improved 

Figure 16 Comparison of solution scores between QO-Jaya 
algorithm and the NSGA-II algorithm

Figure 17 Comparison of characteristic parameters of QO-Jaya 
algorithm and the NSGA-II algorithm
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multi-objective QO-Jaya algorithm in this paper 
includes three parts of contribution. First, the concepts 
of constraint-dominance sorting, non-dominance sort-
ing and crowding distance computation are used to 
determine the rank of solutions. Second, the strategy of 
opposition-based learning is used to generate a popu-
lation opposite to the current population. It further 
diversifies the population and accelerates the conver-
gence rate of Jaya algorithm. Thirdly, the measurement 
index ‘spread’ is defined to reflect the solutions conver-
gence objectively. A new stop criterion is raised based 
on the spread. The improved multi-objective QO-Jaya 
algorithm (improved QO-Jaya algorithm in short) is 
compared with the common Jaya algorithm, NSGA-II 
algorithm and so on. It verifies the good performance of 
improved QO-Jaya algorithm in solving optimization.

In future, we can study the VBHF coupling with other 
parameters in process optimization of deep drawing. 
Consider whether the parameters have uncertainty in 
optimization. The solving algorithm can be focused 
on how to balance the exploitation and exploration. 
We have considered the hybrid algorithm initially to 
improve the problem.
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