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Abstract 

On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service 
structure is a challenge due to structural complexities, such as ambiguous boundary, variable thickness, nonuniform 
material properties. This work develops for the first time a method that uses ultrasound echo groups and artificial 
neural network (ANN) for reliable on-site real-time identification of material parameters. The use of echo groups 
allows the use of lower frequencies, and hence more accommodative to structural complexity. To train the ANNs, 
a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any 
given set of material properties of a given structure. The waveform of an ultrasonic echo groups at an interest loca-
tion on the surface the structure with material parameters varying in a predefined range are then computed using 
the numerical model. This results in a set of dataset for training the ANN model. Once the ANN is trained, the mate-
rial parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN. 
Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy 
of the currently proposed method. The results show that the maximum identification error of numerical example 
is less than 2%, and the maximum identification error of experimental test is less than 7%. Compared with currently 
prevailing methods and equipment, the proposefy the density and thickness, in addition to the elastic constants. 
Moreover, the reliability and accuracy of inverse prediction is significantly improved. Thus, it has broad applications 
and enables real-time field measurements, which has not been fulfilled by any other available methods or equipment.
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1 Introduction
The performance and reliability of machinery equipment 
working in complex and important situations is critical 
to the operation of the system and need to be evaluated 
in real time [1, 2]. However, the characteristic param-
eters based on the actual assessment are often uncertain, 

resulting in deviations in the assessment, which are 
mainly manifested in the following aspects: (1) there is 
deviation between the characteristic parameters refer-
enced by the initial design and the actual parameters 
after processing and molding [3–5]; (2) some mechani-
cal equipment in service for many years may have local 
mechanical degradation in key parts, which leads to local 
changes in the actual characteristic parameters; (3) some 
large-size structural components can only use artificial 
processing methods during machining, which will lead to 
local inconsistency of material and structural character-
istic parameters. Therefore, real-time accurate and non-
destructive identification of the characteristic parameters 
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is particularly important for the mechanical performance 
and reliability assessment of complex equipment [6–8].

With the development of computer technology and 
numerical simulation methods, more and more research-
ers choose to apply computational inverse techniques for 
nondestructive identification of characteristic parameters 
of components. The computational inverse technique 
uses the measured responses of a known excitation (load) 
on a structural system to search the characteristic param-
eters by solving the physical system as an inverse prob-
lem [9, 10]. Usually, impulsive excitation or continuous 
excitation (high frequency) is applied as the excitation of 
the system [11]. Amongst, the dynamic methods using 
pulse excitation to study the vibration characteristics 
of elastic structures is termed as vibration test method 
[12]. The specimens are usually subjected to mechanical 
and elastic impact with an impactor (hammer, etc.) as 
specified in the ASTM isotropic material test standard 
[13]. Specifically, Hwang et  al. [14] proposed a method 
combining vibration testing with numerical method to 
identify the elastic constants of aluminum and carbon / 
epoxy resin materials. Xu et al. [15] presented an iterative 
method to derive the mechanical parameters of metal 
fiber laminate based on the frequency response func-
tion with least square method. Duan et al. [16] proposed 
a method to quantitatively identify the joint stiffness 
parameters of a robotic arm in real time via measuring 
the low-order natural frequencies of the robotic arm and 
the two-way Tubenets theory. To address the uncertain-
ties of the joint stiffness in the robotic arm, Duan et al. 
[17] identified the uncertain parameters of the joint stiff-
ness in the robotic arm based on the natural frequency 
of the robotic arm itself. This study of parameter identi-
fication based on intrinsic frequencies obtained through 
impulsive excitation usually is effective in the low fre-
quency range to derive global dynamic behavior. How-
ever, the overall mechanical response fails to reflect local 
mechanical properties and parameter variations. Mean-
while, the dynamic method is also very sensitive to the 
boundary conditions and response locations of the tested 
components [18, 19], which are usually ambiguous to 
be specified. Therefore, the dynamic methods are gen-
erally restrained from general application in practical 
engineering.

Compared to dynamic methods, the ultrasonic wave is 
mainly in the high frequency band and the stress range 
is small, which can well reflect the influence of differ-
ent mechanical properties of the elastic phase on the 
ultrasonic propagation process. For this reason, the 
ultrasonic wave is more suitable than the vibration tests 
for the characterization of field materials [20, 21]. The 
wave acting on a thin plate or shell structure produces 
guided propagation between two parallel free surfaces 

of the material, so it is called a guided wave alias a lamb 
waves [22, 23]. The guided wave based approach is usu-
ally the preferred method for thin plate analysis, which 
is widely used in the parameter identification of compos-
ite plates. Chimenti et  al. [24] discussed the generation 
and detection of guided waves in composite materials 
and employed dispersion curves to evaluate the material 
parameters. Pabisek et al. [25] presented a hybrid mate-
rial identification computational system applying Lamb 
waves dispersion curves and neural networks to esti-
mate the material parameters. Cui et al. [26, 27] succes-
sively extended the numerical work to actual parts tested 
experimentally and applied a semi-analytic finite element 
method to identify the elastic coefficients of compos-
ite laminates by matching the phase velocity dispersion 
curves in the direction of single wave propagation. It is 
understood that the lamb wave mainly propagates in the 
thin plate in the transverse direction. When the ultra-
sonic wave is emitted back in the incident wave direction 
after hitting the bottom boundary. Analysis for the com-
plex dispersion characteristics of the wave is thus spared. 
On the other hand, once the structure of the specimen 
is not a thin plate structure, the lamb wave will not be a 
feasible approach.

For the ultrasonic echo method, the travel time of the 
ultrasonic echo is often engaged to calculate the veloc-
ity of the wave and thus inverse the elastic constant 
of the material [28–31]. In the 1950s, researchers [32, 
33] applied the ultrasonic pulse excitation method to 
obtain the echo velocity and measure the elastic con-
stants. For example, Hu et al. [34] measured the propa-
gation velocity of ultrasonic waves and calculated the 
elastic constants using an ultrasonic transducer in order 
to measure the variation of the elastic constants of alu-
minum alloy materials at different temperatures. Franco 
et al. [35] determined the elastic modulus and Poisson’s 
ratio of high-purity aluminum, electrolytic copper and 
glass by adopting the transverse and longitudinal wave 
velocities of ultrasonic waves propagating in materials. 
Besides, Santoni et  al. [36] ignored the size and bound-
ary conditions of the laminate by fitting the experimental 
flexural wave velocity to the dispersion relation to invert 
the elastic and stiffness properties of the cross-laminated 
wood. Although many techniques have been developed 
to identify elastic constants based on the wave veloc-
ity of ultrasonic echoes, the applications are very much 
limited by the prerequisites of the density or thickness 
of the material, the accurate measurements of longitudi-
nal and transverse wave velocities. To this gap, Liu et al. 
[37–39] used the hybrid numerical method to calculate 
the displacement response of elastic waves in the form 
of the wave group, and combined with a progressive 
neural network to characterize the material parameters 



Page 3 of 14Duan et al. Chinese Journal of Mechanical Engineering            (2024) 37:8  

of anisotropic materials. This method does not require 
inverse parameterization by wave velocity, but since 
the displacement response of waves is often intricate to 
measure, so Liu’s study is still held back for numerical 
simulation stage only [40].

General application of the existing researches are 
highly limited by ambiguous boundary conditions, non-
homogeneity of material properties, prior knowledge of 
density and thickness, etc. Thus, it is not feasible to iden-
tify parameters in real time and on site. To address these 
issues, this paper proposes a characteristic parameter 
identification method using ultrasonic echo group signal 
combined with artificial neural network inverse tech-
niques. This method does not require prior input of den-
sity and thickness. Instead, the density and thickness can 
be treated as target resultants. It enables on-site real-time 
identification of local characteristic parameters of struc-
tural components. To start with, the initial finite element 
model of the generic ultrasonic echo group is established. 
The experimental system of ultrasonic echo acquisition is 
built for validation. A progressive grid search optimiza-
tion method is then used to update the generic ultrasonic 
echo group finite element model to refine the finite ele-
ment model and eliminate the uncertainty interference in 
the acquisition device. For exemplification, the aluminum 
alloy material is studied for optimal Latin hypercube 
sampling in its parameter interval. Material parameter-
echo group dataset is generated using numerical simula-
tion technique to train the neural network inverse model. 
Once the neural network has been trained, the measured 
echo group waveforms can be used as input parameters 
to identify the characteristic parameters of the material.

2  Presentation of the Method
The current existing method of identifying elastic con-
stants by ultrasonic wave velocity requires accurate 
measurement of the propagation time of longitudinal and 
transverse waves, and mostly uses higher frequency ultra-
sonic waves for measurement, for example, a frequency 
of about 5  MHz. The smaller wavelength of the echo is 
ensured, and the time of arrival of the echo can be deter-
mined more easily. In order to accurately count the time 
interval between multiple echo signals, usually choose 
the thickness of 20 mm or more specimens for measure-
ment. However, the high frequency signal is accompa-
nied by greater attenuation, which makes it difficult to 
apply in particularly thick materials and also to penetrate 
to the lowest layers of the composite. In order to be appli-
cable to more complex situations, consider using longer 
wavelength ultrasound waves for measurements at lower 
frequencies. However, a longer wavelength makes the 
echo signal not a single waveform, instead it is a wave-
form composed of a more complex group of waves. This 

complex wave group is difficult to determine the exact 
time of arrival of the echo, so the existing methods of 
using wave speed to identify the characteristic parame-
ters are helpless [41]. Only by using advanced numerical 
simulation techniques combined with neural networks 
can the analysis of complex wave groups be performed 
and the characteristic parameters be extracted from the 
wave groups. So this paper proposes a method to identify 
the characteristic parameters by ultrasonic echo swarm 
and neural network. The difficulty of this method is to 
obtain a repeatable and insensitive wave cluster signal to 
the shape and structure of the specimen. Therefore, the 
first few waveform signals in the wave group signal are 
selected as the input responses of the neural network for 
prediction.

The flow chart of the currently proposed method is 
shown in Figure 1. The method is divided into two stages, 
which are building the generic ultrasonic echo group 
model and parameter identification via ultrasonic echo 
group.

In building the generic ultrasonic echo group model, it 
is a premise to build the basic numerical model and con-
struct an experimental platform for validation. Thus, sen-
sitivity analysis is performed using the numerical model 
to evaluate the feasibility of adopting the inverse solu-
tion technique for identification. Since various uncer-
tainties may exhibit in the modeling process to negate 

Start

Sensitivity analysis
Experimental echo group signal

Update numerical model

Build basic numerical model

Generic model of ultrasound echo group

Numerical dataset

Neural network inverse model Echo group of local structure

Characteristic Parameter

End

Building a generic ultrasound 
echo group model

Identification based on the 
ultrasound echo group

Build experimental platform

Training

Identify 

Numerical echo group signal

Sampling and Simulation

Figure 1 Flow chart for currently proposed method for identification 
of characteristic parameters



Page 4 of 14Duan et al. Chinese Journal of Mechanical Engineering            (2024) 37:8 

the modeling accuracy, the model should be updated to 
derive a high-precision generic ultrasonic echo group 
numerical model. The specific numerical model updat-
ing process will be described in detail in Section  3. In 
the stage of parameter identification via ultrasonic echo 
group, firstly, the numerical dataset of echo group-char-
acteristic parameters is generated using a high-precision 
generic ultrasonic echo group numerical model instead of 
the experimental acquisition of echo signals. The neural 
network is trained using the numerical dataset. Once the 
neural network is trained, the experimentally acquired 
echo group are then input to the inverse model of the 
trained neural network for parameter identification.

3  Identification of Characteristic Parameters 
via Echo Group of Ultrasound

3.1  Numerical Modeling of Generic Ultrasound Echo 
Group

The various shapes of structural components in real engi-
neering a generic ultrasonic echo group numerical model 
with a wide range of application. The process of establish-
ing the generic ultrasonic echo group numerical model is 
described in detail as below.

3.1.1  Numerical Modeling of Initial Ultrasonic Echo Group
The ultrasonic double crystal probe is selected in this 
study as the ultrasonic excitation and reception device 
for on-site real-time acquisition of the echo signal of the 
component. Figure  2 illustrates the ultrasonic double 
crystal probe structure working principal diagram. From 
Figure 2, it has two piezoelectric wafers. One excites the 
ultrasonic waves, and the other receives ultrasonic waves 
and converting the acoustic signals into voltage signals. 
The acoustic beam passes through the delay block and 
enters the specimen at a certain incidence angle. Between 
the two delay blocks, there is a cork sound insulation 
layer to buffer the interference between the two piezo-
electric wafers. Thus, the intensity of the interfacial wave 
is greatly reduced [20]. It greatly reduces the blind area 
compared to the single crystal probe and thus is more 
suitable for thin materials.

Numerical simulation of the process of acquiring ultra-
sonic echoes by a double-crystal probe is performed 
by the finite element software COMSOL to establish a 
numerical model for the initial ultrasonic echo group. 
Consequently, a three-dimensional model, as shown in 
Figure  3a, is built. To reduce the computational inten-
sity of the 3D model, only half of the model is employed 
in view of symmetry [42, 43]. Part 1 is the test material 
for simulation of the propagation process of ultrasonic 
waves. Since the transverse dimension of Part 1 is not 
the dominating factor for the echo signal, the dimension 
of the test material is approached by a cylinder with a 
radius of 25 mm to reduce the computational intensity. 
2 mm-thick delamination (Part 4) is deployed on the cyl-
inder side as an absorption layer to mimic an infinite test 
material.

The double crystal probe is composed of Part 2 and 
Part 6, which exhibit different functions. The materials 
and functions for these two parts are shown in Table 1. 
Specifically, Part 2 is a delay block having an incline 
angle. Part 3 is the piezoelectric crystal that generates the 
excitation signal. Part 4 is the sound insulation layer that 
buffers the interference between the two wafers and Part 
5 is the buffer layer that absorbs the residual waves of 
vibration. Part 6 is the piezoelectric crystal that receives 
the echo signal. The dimensional parameters of these 
parts can be seen in Figure 3b.

The overall simulation process of ultrasonic measure-
ment is studied in three steps to investigate the excita-
tion, propagation and reception of ultrasonic signals, 
respectively. Firstly, the generating excitation ultrasonic 
waves by a piezoelectric wafer is studied. As shown in 
Figure 3d, a potential constraint is applied to the upper 
surface of the excited piezoelectric wafer, which is a 
1 MHz DC sinusoidal pulse voltage, and its peak-to-peak 
value is 200 V. A ground constraint is applied to the lower 
surface of the excited piezoelectric wafer so that the 
potential is zero. In the meshing part, the free triangular 
nodes are employed to mesh the surface of the piezoelec-
tric wafer with a size of 1 mm prior to sweeping along 
the height direction (Figure  3c). The ultrasonic waves 
generated by the positive piezoelectric effect are solved 
using an implicit solver and mapped to the elastic wave 
study process in the form of pressure loads by a consist-
ent mapping method.

Then the propagation process of ultrasonic waves 
within the delay block of the probe and the material 
under test is investigated. The lower surface of the mate-
rial under test is set as a fixed constraint. A boundary 
condition of material discontinuity is added between 
the delay block and the material under test to handle the 
material property jump. The blue area as shown in Fig-
ure  3c is divided into free tetrahedral meshes with the 

Probe shell

Piezoelectric wafe

Delay block

Sound insulation layer

Figure 2 Schematic for double crystal probe
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maximum mesh size of λmin/1.5 and a minimum grid 
size of λmin/2. Since the main study is the transverse 
and longitudinal waves propagation in solids and λmin is 
the wavelength of the transverse wave. The elastic wave 
study is solved using an explicit solver, which employs 
the interrupted Galliakin algorithm, and the number 
of degrees of freedom to be solved is approximately 7.1 
million. The computation is performed using a personal 
computer with CPU i7-8700 and 16G RAM, and the time 
spent is 3 h.

Finally, the ultrasonic receiving process is simulated. 
The settings of the grid and the solver are similar to those 
for the process of the ultrasonic excitation. The boundary 

condition of the lower surface of the receiving piezoelec-
tric wafer is set to the pressure load, which is the elas-
tic wave pressure load transferred to the lower surface of 
the receiving piezoelectric wafer in the previous simula-
tion. Setting the upper surface of the receiving wafer as a 
“floating potential’’ to collect the voltage signal generated 
by the inverse piezoelectric effect, a one-dimensional 
drawing group is created in post-processing to display 
the voltage signal waveform in real time. It is worth to 
note that the above divided meshes are only simulated 
for a single physical field and the loads are mapped by the 
"consistent mapping" method, so there is no need to con-
sider whether the meshes divided between different stud-
ies are aligned on the contact surface.

In order to evaluate the sensitivity of the echo signal 
to the shape of the specimen, four structures of different 
shapes as shown in Figure 4a–d, made of aluminum alloy 
material with a center thickness of 10.5 mm are designed 
for simulation verification. The time domain signal of 
the echoes of these four different models is shown in 
Figure 4e. It can be seen that at the initial moment, the 
voltage is zero because the ultrasonic waves have not yet 
reached the receiving piezoelectric sheet. As the ultra-
sonic waves propagate, the piezoelectric wafer gradu-
ally receives the echo signal. In the red dashed box is the 
first echo that reaches the receiver first, which consists 

Part 2

Part 4 Part 5Part 3

Part 1

Part 6

(a)

Free Tetrahedral 

Free Triangular

and swept 

r:10mm

3 mm
h1:1.9mm

30 mm

50 mm

h

H2:1.6mm� : 10°

h2:0.5mm

2 mm

(b)
Ground

Electric 

potential

Floating 

potential

Roller
Roller

(c) (d)

Fixed constraintsMaterial discontinuity

Figure 3 3D model diagram: a FE model of generic ultrasound echo groups, b Dimensional parameters of FE model, c Mesh for finite element 
model, d Setting of boundary conditions

Table 1 Materials and functions of generic ultrasonic echo 
model components

Parts Materials Function

Part 1 Metal Propagating wave

Part 2 Plexiglass Delay block

Part 3 PZT-5H Excited wave

Part 4 Cork Separating layer

Part 5 Plexiglass Damping block

Part 6 PZT-5H Receive wave



Page 6 of 14Duan et al. Chinese Journal of Mechanical Engineering            (2024) 37:8 

of a wave group signal with multiple peaks and valleys. 
The first echoes of the four different models do not dif-
fer much from each other. After the first echo, the wave-
forms start to differ from each other. The reason is that 
the first echo is the first signal to reach the receiver after 
the reflection of the ultrasonic waves hitting the bottom 
boundary, and there is no interference from the clut-
ter reflected from the lateral boundary at this time. This 
shows that the first echo in the echo group signal is not 
sensitive to the different transverse boundary of the 
samples. Since the subsequent arriving waves are full of 
uncertainties affected by the transverse shape, only the 
first echo in the echo group signal is viable as the input 
of the neural network inverse model for identification 
of the parameters. The first echo signal is only sensi-
tive to the longitudinal propagation path. Thus, as long 
as the center thickness is the same, the first echo signal 
remains unchanged. The first echo signal from complex 
structures, such as curved surfaces, can be approximated 
using equivalented flat plate. Therefore, the current finite 
element model based on double crystal probe to acquire 
the echo signal in this paper is a general ultrasonic echo 
group numerical model.

3.1.2  Experimental Verification of Ultrasound Echo Group
To verify the reliability of the finite element simula-
tion results, an ultrasonic echo experimental system, as 
shown in Figure  5 is built. The experimental system is 
instrumented with the ultrasonic double crystal probe, 
arbitrary waveform generator, power amplifier, digi-
tal oscilloscope, computer, and detected specimen. The 
ultrasonic double crystal probe is applied to excite the 
ultrasonic wave and receive the reflected echo signal. 
It is a Model 1P20FG10 manufactured by Yushi NDT. 
The center frequency is 1  MHz, the crystal diameter is 
20  mm, the focal length is 10  mm. The arbitrary wave-
form generator RIGOL DG811generates a sinusoidal 
pulse excitation signal (1 cycle, frequency of 1 MHz). The 

power amplifier Aigtek ATA-2021H can amplify the volt-
age to maximum peak-to-peak value of 200 V to meet the 
voltage requirements for driving the probe. The digital 
oscilloscope UNI-T UTD2102CEX connects the receiver 
side of the probe for sampling the ultrasonic waveform. 
The sampling frequency is 200  MHz, so that the single 
point sampling time period is 5  ns. The digitized wave-
form is collected into a personal computer to be pro-
cessed. In addition, the detected specimen is 100  mm 
long, 100 mm wide, and 10 mm thick. The operation pro-
cedure comprises of mainly four steps as follows.

Step 1. Use sandpaper to smoothen the surface of the 
specimen, thus mitigating as much as possible the 
interference of the surface roughness on the ultra-
sonic signal.
Step 2. Apply an appropriate amount of ultrasonic 
coupling agent on the center of the specimen surface, 
so that the ultrasonic waves generated by the probe 
can be transmitted into the material.
Step 3. Put the probe on the area where the coupling 
agent is deployed, and press the hand down firmly to 
record the waveform at this time. Repeat this opera-
tion seven times.
Step 4. Process the data for the seven waveform 
stored in the computer. Remove the waveform with 
the maximum and minimum values and average the 
remaining five waveform.

Original waveform of digital oscilloscope collection 
is shown in Figure  6a. It can be found that the wave-
form collected directly by the oscilloscope exhibits 
strong noise interference and should be processed by 
band pass filtering. Since the center frequency of the 
experimental excitation signal is 1 MHz, the bandpass 
interval is set to 0.5–1.5  MHz. It can be seen from 
Figure 6a that the first waveform attars at 15 μs. This 
waveform is the interface wave of the double crys-
tal probe itself. The second red dotted circle contains 

Figure 4 Simulations results: a Cylinders with radius of 25 mm, b 
Cylinders with radius of 30 mm, c Cuboid with hole in the bottom, 
d Cylinder with radius of 25 mm at the bottom of the surface, e 
Waveform diagram of simulation results

High voltage 

amplifier

Signal 

generator

Digital 

oscilloscope

Ultrasonic 

transducer

Metallic 

material

Computer

Figure 5 Instruments for experimental system
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the large peak of the waveform, which indicates the 
arrival of the initial echo to the receiving piezoelectric 
sheet. To isolate the initial echo, a window is added 
to the measured signal. The waveform is intercepted 
in the signal interval T1‒T2 using rectangular window 
function:

where T1 is the time point corresponding to the first 
waveform peak of the first echo in the echo waveform 
group. The peak of the waveform is traversed from the 
moment zero, and when the peak is greater than the 
threshold value of 0.08 V, it is the initial velocity wave, 
and the time point at this time is T1. T2 is the termina-
tion point of the intercepted signal, and in order to select 
the information with three peaks and troughs, T2 is set 
here to be at 2.5 μs after T1, and the amount of informa-
tion contained in this echo signal satisfies the use of sub-
sequent studies. Since the time interval of each point is 
5  ns, 501 data points are sampled in the T1 − T2 inter-
val. The sampled echo signal graph is shown in Figure 6b. 
In this interval, the echo signal waveform contains three 
peaks and valleys, which meets the requirements as the 
input response. If too few points are sampled, the num-
ber of feature points in the waveform will not meet the 
recognition requirements. If the points are sampled too 
many, there may be interference from subsequent clut-
ter to negate recognition. Therefore, after comprehend, 
501 data points are sampled as the input response of the 
neural network inverse model. In addition, in Figure 6b, 
E1, E2, and E3 represent the waveforms measured in three 
experiments (several days apart), respectively. It can be 
seen that the errors among these three experiments are 
minimal, indicating that the acquisition method of this 
study can effectively reduce the influence of artifacts 
on the ultrasonic probe measurement results since the 
results are repetitive.

(1)x(t) =

{

1,T1 ≤ t ≤ T2,

0,

3.1.3  Process of Updating Numerical Model of Ultrasonic 
Echo Group

In practical application, the device structure for meas-
uring ultrasonic echoes is subject to various uncertain-
ties with regard to geometry, material parameters, and 
cognitions. These uncertainties will lead to deviations 
between the simulation results using nominal structural 
parameters and the experimental results. The usual 
practice to reduce such error is to modify the model 
parameters until the error between analytical predic-
tions and experimental results meets the specified 
requirements [44–46]. Therefore, after constructing the 
initial finite element model and the experimental sys-
tem, the initial ultrasonic echo group numerical model 
based on the double crystal probe should be updated to 
improve the relevance of the numerical model.

Assuming that there are n uncertain structural 
variables, which can be aggregately denoted as 
x = (x1, x2, · · · , xn) . Sampling in the intervals of these 
uncertain variables yields m combinations of struc-
tural variables χ . The ith sampled combination can be 
expressed as xi . The structure optimization objective 
function of the ultrasonic echo group numerical model 
can then be set as:

where V FEM
ij =

(

V FEM
ij1 , · · · , V FEM

ijs , · · · ,V FEM
ijτ

)

 indicates 
the voltage at each time instant s from the simulation; 
V

EXP
j =

(

V EXP
j1 , · · · ,V EXP

js , · · · ,V EXP
jτ

)

 represents the 
voltage per moment s from the experimental acquisition; 
k denotes the number of materials involved in the test. 
Since the objective function involves the optimization of 
a discrete nonlinear problem, solution to the derivative of 
the objective function is not straightforward. Moreover, 
the calculation of individual finite element models is 
intensive, and the overall calculation time can reach hun-
dreds of hours. To reduce the computational intensity, a 
progressive grid search optimization method is pro-
posed, as shown in Figure 7. The steps for the optimiza-
tion method can be summarized as follows [47].

Step 1. Initialization: Through the sensitivity analy-
sis of the uncertain structural variables, the three most 
sensitive uncertain variables are identified, which are 
the thickness h1 of the piezoelectric film, the thickness 
h2 of the retardation block and the inclination angle θ 
of the retardation block. Initialize the finite element 

(2)







































min
i

{F(χi)}, i = 1, 2, · · · ,m,

F(χi) =

k
�

j=1

f (ε), j = 1, 2, · · · , k ,

f (ε)=

τ
�

s=1

�

V
FEM
ij − V

EXP
j

�2
, s = 1, 2, · · · , τ ,

Figure 6 Experimental waveform: a Original waveform of digital 
oscilloscope collection, b First echo group waveform after filtering 
and interception
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model and turn these three structural parameters into 
variables.

Step 2. Rough sampling: Based on the initial nominal 
parameters of the three uncertain variables, the upper and 
lower bounds of the optimal design of the interval uncer-
tainty are divided. The larger interval of the three uncertain 
variables is uniformly sampled in large steps.

Step 3. Finding local optimal point: The echo signal of the 
numerical simulation is obtained by parallel calculation of 
all sample points obtained after coarse selection sampling. 
The numerical results are input to the structural optimi-
zation function (Eq.  2) together with the experimental 
results, and the objective function values corresponding to 
the interval sampling points are calculated. The actual situ-
ation of two different aluminum alloy materials as shown in 
Table 2 is taken into account in this step.

Step 4. Update the local optimum point: Set a smaller 
range of intervals around the local optimum and reduce 
the step size of the search sampling to obtain all sample 
points. Then find the corresponding local optimum point 
for updating at this time.

Step 5. Stopping criteria: If the fitting accuracy of the cur-
rent local optimum reaches the set accuracy, i.e., when the 
value of the objective function is less than 0.5, then the iter-
ative updating process ends and the final optimal structural 
parameters are obtained, which leads to the optimal finite 
element model. Otherwise, return to Step 4 to continue the 
update.

The initial values of the nominal structural parameters of 
the three uncertainty variables corresponding to the ultra-
sonic double crystal probe used in this study are 1.9 mm, 
1.6  mm, and 10°, respectively. Because the FE simulation 
is time-consuming, parallelism on multiple computers is 
implemented. The stopping criterion is reached after the 
third iteration, when the uncertainty parameter interval 
has been narrowed down to a smaller range, and it is diffi-
cult to further improve the accuracy by making fine param-
eter corrections. Therefore, only three iterations of interval 
optimization were performed in this study, and the values 
of the objective function in the specific iterative optimiza-
tion process are shown in Figure 8. The interval variation of 
the uncertain structural parameters, locally optimal struc-
tural parameters, locally optimal function values and the 
time taken are shown in Table 3.

Combination Figure 8 and Table 3 it can be seen that 
at the first interval sampling, the second set of samples 

corresponds to the smallest objective function value 
of 1.23. The corresponding local optimal structure 
parameters at this time are 1.8 mm, 1.5 mm, and 10°, 
respectively. Since the maximum optimization interval 
is set, the local optimal structural parameters are not 
expanded outside the boundary when they are at the 
boundary, but the interval is contracted with a single 
boundary. In the second iteration of the interval, it can 
be seen that the smallest value of the objective function 

Table 2 Material parameters

Species E (GPa) υ ρ (kg/m3) h (mm)

Al-6061 69 0.33 2700 10.15

Al-7075 71 0.33 2810 10.5

Initialize uncertain variable

Experiment echo 

signal

Set the large ranges of uncertain 

variable

Set the small ranges of 

uncertain variable

Reached

stop.criterion ?

Uniform sampling

Calculate all sample points

Calculate objective function

The final optimal parameter
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Figure 7 Flowchart for progressive grid search to update FE model
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Figure 8 Objective function values for three iterations of interval 
sampling
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corresponding to the 14th sampling group is 0.77. The 
corresponding local optimal structural parameters at 
this time are 1.85 mm, 1.55 mm, and 10°, respectively. 
Then the boundary is contracted again for the third 
iteration, and the obtained local optimum value is 0.44 
less than the set optimization stopping criterion, at 
which point the structural parameters are the global 
optimum structural parameters. By using this optimi-
zation method, the optimal structural parameters can 
be obtained in parallel and quickly.

Comparison of the experimental signal waveform 
with the initial parameter simulation waveform and 
the optimal parameter simulation waveform after three 
iterations for two materials is shown in Figure 9. It can 
be seen that different materials, even the same category 
of alloys, have different mechanical properties, result 
in differences in the echo signals. Thus, the waveform 
signal can be used to invert the material parameters. 
Comparing the iterated echo signal with the respective 
initial echo signal, the iterated echo signal fits better 
with the experimental waveform.

In this study, the effort is concentrated on the intro-
duction of the currently proposed method, thus only 
the aluminum alloy materials, which do not exhibit 
strong anisotropic behavior and can well reflect the 
properties of the actual material, is chosen as the 
exemplification.

3.2  Identification of Characteristic Parameters via Echo 
Group of Ultrasound and ANN

After establishing a high-precision generic ultrasonic 
echo group numerical model based on the double crys-
tal probe, the ultrasonic echo signal corresponding to a 
specific feature parameter can be obtained by numerical 
simulations. This numerical model is used to generate 
a numerical data set, and the neural network is trained 
to obtain the inverse model of the characteristic param-
eters. Artificial neural networks compare with the tradi-
tional formulation inverse problem approach, the model 
of feature parameter identification based on neural net-
work can fit various nonlinear relationships without rely-
ing on the assumed form of the constitutive equation 
[48–50]. This inverse process can be represented by the 
following equation:

where Y (E, υ, ρ, h) is the combination of parameters 
of the material under test G(∙); is a nonlinear mapping 
between the echo time domain signal VR(t) and a set of 
corresponding parameter combinations Y (E, υ, ρ, h) 
fitted by the neural network. The mapping relation is 
obtained by training the neural network, and the net-
work training process corresponds to the learning 
process of the function G(∙). The training phase continu-
ously reverses the weights and biases of the connections 
between neurons by known inputs and outputs employ-
ing a training algorithm. The error between the predicted 
value and the actual value is minimized. Several meth-
ods are available to train the network, the most prevail-
ing training algorithm is back propagation. This process 
is also the learning process of the optimal values of the 
weights and deviations, aiming at an efficient approxima-
tion to the piezo/wave propagation behavior. After the 
training phase, the neural network should be tested with 
data independent from the training set to verify the gen-
eralization ability of the network.

In the network, there are usually several hidden lay-
ers with neurons in each layer. As seen in Figure 10b, 
each neuron has an activation function that increases 

(3)Y (E, υ, ρ, h) = G(VR(t)),

Table 3 Results of update FE model

No. Parameter interval [f L, f R]
h1, h2, θ

Local optimum point Current optimal function 
value

Cost time (h)

1 [1.80, 2.0],
[1.50, 1.70], [9.60,10.40]

1.80, 1.50, 10.0 1.23 203

2 [1.8, 1.9],
[1.5, 1.6], [9.80,10.20]

1.85, 1.55, 10.0 0.77 199

3 [1.80, 2.0],
[1.50, 1.70], [9.60,10.40]

1.80, 1.50, 10.0 1.23 203

Figure 9 Comparison of iterative results for aluminium alloy 
materials
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the nonlinear capability of the neural network. The 
output of the neuron of the previous layer is multi-
plied by the weights wi and then summed by a bias b . 
Using the Python language and based on the Tensor-
Flow framework, the neural network model as shown 
in Figure  10a is built. The input layer xM denotes the 
normalized voltage at each moment corresponding to 
the echo signal. The output layer yN  is the material 
parameters after dimensionless processing.

In addition, before the training process, the hyper-
parameters of the network should be modulated with 
regard to performance metrics, network structure 
(number of implied layers, number of nodes in each 
implied layer), activation function type, learning algo-
rithm, etc [51]. Through thorough debugging, it can be 
found that, for the mapping relationship between the 
echo signal and the model parameters in this study, the 
hyperbolic tangent Tanh function yields better results 
compared with other activation functions. The Adam 
optimizer algorithm is also employed as the optimal 
learning algorithm, which has the advantages of high 
computational efficiency and smooth descent gradi-
ent. The learning rate is set as a dynamic learning 
rate, which implies that the learning rate will gradually 
become smaller with the decreasing loss value. This 
ensures that the overall neural network can be trained 
efficiently. The loss function is set as

where yi is the ith actual feature parameter value cor-
responding to the structure, and yprei  is the ith feature 
parameter value obtained from the neural network pre-
diction. The variations in the data sets lead to differ-
ences in the network structure, thus it should be adjusted 
according to the actual situation. The network structure 
will be exposited in the following section.

(4)Loss =

N
∑

i

(

yi − y
pre
i

yi

)2

,

4  Numerical and Experimental Examples
In order to verify the viability and effectiveness of the 
currently proposed identification method, two numeri-
cal cases are designed, and aluminum alloy specimens are 
selected for experimental verification.

4.1  Numerical Case 1: Known Thickness
It is assumed that the thickness of the structure is known 
or measurable. Only three parameters of the specimen, 
i.e., Young’s modulus E, Poisson’s ratio υ, and density ρ, 
should be identified. To verify the effectiveness of the 
neural network for parameter identification at differ-
ent thicknesses, 300 data sets of 10.15 mm and 10.5 mm 
thickness are generated, respectively.

The aluminum alloy material parameters in Table  2 
are used as the reference for interval division, and the 
bounds of the intervals are ±10%. The interval of Young’s 
modulus is [63, 77] GPa; the interval of Poisson’s ratio is 
[0.3, 0.36]; the interval of density is [2500, 2900] kg/m3. 
The sample combinations are then extracted by adopting 
the optimized Latin hypercube algorithm for sampling 
(OLHS) in the intervals of these three material param-
eters. Employing the improved finite element model to 
calculate these sample combinations, the corresponding 
echo signal solutions can be obtained. The final data sets 
with input and output relations are acquired. Since there 
are scale difference between different material param-
eters, the parameters are normalized to be dimension-
less. It is implemented by dividing by the maximum value 
of the corresponding parameter. This normalizes the 
intervals of the three different parameter values to 1 and 
eliminates the influence of different magnitudes of the 
parameters.

Randomly selecting 20% of the data samples from the 
total data samples as the test set, and the remaining 80% 
as the training set, the batch sizes of both training and 
test sets are specified to be 16, and the group with the 
thickness of 10.15 mm converges to a loss of 1.3 ×   10−6 
after training 80000 epoch times. The group with the 
thickness of 10.5 mm converges to a loss of 2.3 ×   10−7 
after training 400000 epoch times. The results of veri-
fying the training effect with the test set are shown in 
Tables 4 and 5.

From the above two tables, the test results of these two 
data sets for different heights are satisfactory in view of 
the maximum recognition effect is below 1%. It demon-
strates that this network is feasible and effective to iden-
tify three unknown material parameters.

4.2  Numerical Case 2: Unknown Thickness
Assuming that numerical case 2 is an assembled 
unknown structure, the thickness and material 

Figure 10 Schematic of ANN: a Structural diagram of ANN 
for parameter identification, b Schematic diagram of single neuron
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parameters are not to be measured directly. Four model 
parameters of the metal structure, i.e., Young’s modulus 
E, Poisson’s ratio υ, density ρ, and thickness h are to be 
identified. Similarly, a data set is generated for verifica-
tion. The thickness interval is set into [9, 11] mm with 
a nominal thickness of 10 mm. Similar procedure as for 
the numerical case is again implement to sample data set, 
and normalize the parameters. Randomly selected 20% 
of the data set is applied as the test set, and the remain-
ing 80% is employed as the training set. The batch size is 
set to 16, and the test set loss converges to 9 ×  10−6 after 
300000 epoch times. The relative errors of the test set are 
shown in Table  6. It can be seen that the prediction of 
density is poor in the middle of the four parameters, and 
the maximum relative error is 1.4%.

By analyzing these two numerical cases, the recogni-
tion accuracy for the known height is higher than that of 
the unknown height. The main reason is that the number 
of unknown parameters determines the spatial dimension 
of the parameter distribution, and for each additional 

unknown parameter, the spatial size of the parameter 
to be sampled will increase exponentially. This will be 
more intricate for the neural network to learn. One of the 
most prevailing method to improve the learning ability 
of neural networks is to increase the amount of sample 
data. However, more data sets may not necessarily yield 
better result. The optimal number of data sets should be 
explored according to the specific training situation.

4.3  Experimental Example
To further verify the effectiveness of the currently pro-
posed method with structural insensitivity, experiment 
is performed for the above mentioned two numerical 
cases. Firstly, the identification effect of the experiments 
for numerical case 1 with known height is verified. Since 
the two data sets of numerical case 1 corresponding to 
the thicknesses of 10.15 mm and 10.5 mm, Al-6061 alu-
minum alloy plate with the thickness of 10.15 mm and 
Al-7075 aluminum alloy plate with the thickness of 10.5 
mm in Section  3 are selected. The echo waveform of 
these two aluminum alloy plates collected in Section  3 
are input into the corresponding trained neural network 
for recognition. The recognition accuracy is shown in 
Figure  12a. It can be seen that the experimental results 
exhibit larger error (maximum error is around 4%) com-
pared that by the numerical test. To verify the experi-
mental recognition effect of the unknown thickness of 
numerical case 2, three specimens are selected for exper-
imental tests. The shape and material parameters of these 
three specimens are shown in Figure 11 and Table 7. Two 
different aluminum alloy materials are selected for com-
parative analysis. the Top and bottom surfaces of both 
specimens (a) and (c) are machined. In order to check the 
effect of different shapes on the identification accuracy, 
only the lower surface of specimen (b) is machined.

The implementation steps for experiment approximate 
those as described in Section 3. Firstly, the surface of the 
specimen is smoothened with sandpaper. The coupling 
agent is then attached to the center of the specimen. The 
probe is pressed downward onto the specimen to record 

Table 4 Relative errors of three-parameter numerical test set for 
10.15 mm thickness

Note: ANN structure: 501-100-100-3; activation function Tanh; 240 training 
samples, 60 test samples; loss=1.3 ×  10−6

Relative error Parameter class

E υ ρ

Max (%) 0.55 0.097 0.96

Min (%) − 0.23 − 0.11 − 0.26

RMS (%) 0.114 0.0387 0.148

Table 5 Relative errors of three-parameter numerical test set for 
10.5 mm thickness

Note: ANN structure: 501-100-100-3; activation function Tanh; 240 training 
samples, 60 test samples; loss=2.3 ×  10−7)

Relative error Parameter class

E υ ρ

Max (%) 0.30 0.19 0.21

Min (%) −0.17 −0.14 −0.11

RMS (%) 0.058 0.033 0.044

Table 6 Relative error of four-parameter numerical test set

Note: ANN structure: 501-100-100-4; activation function Tanh; 240 training 
samples, 60 test samples; loss = 9 ×  10−6

Relative error Parameter class

E υ ρ h

Max (%) 1.17 0.54 1.40 0.44

Min (%) −1.12 −0.39 −1.11 −0.67

RMS (%) 0.362 0.158 0.458 0.176

Figure 11 Experiment with curved specimens
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the waveform. Repeat pressing the probe seven times. 
The acquired signals are processed to filter out the noise 
signals. It is worth noting that because of the curved bot-
tom, the center position should be specified precisely to 
extract the center thickness precisely.

Inputting the processed waveforms into the neural 
network trained in numerical case 2 for recognition, the 
recognition accuracy is then shown in Figure 12b. From 
the figure, it can be stated that the maximum error in the 
density reaches about 7%. Analyzing the numerical and 
experimental examples comprehensively, the prediction 
effect of density in the recognition process is the worst. 
This may be attributed to the low sensitivity of the den-
sity to the echo signal. Compared with the prediction 
results of the three parameters, the recognition accuracy 
for the four parameters is not as good either numerically 
or experimentally. However, four parameters indicate the 
identification for more complex situations that the cur-
rently proposed method can process. It is expected that 
expansion of the data set can further improve the identi-
fication accuracy.

5  Conclusions
In this paper, a parameter identification method via 
ultrasonic echo group and ANN is proposed. The 
method combines the advantages of both advanced 
numerical simulation techniques and ANNs. High-
fidelity numerical models instead of an experiments 
are established to produce datasets for training the 
neural network. The time domain voltage signal points 

of the first echo group are used as the input and the 
characteristic parameters of the structure are output 
through the ANN. The trained ANN is used to iden-
tify the characteristic parameters of the structure. The 
major conclusions of this study are as follows.

(1) Ultrasonic echoes are more straightforward to 
acquire than other mechanical responses and are 
insensitive to transverse boundaries. The ultra-
sonic double-crystal probe is selected to acquire the 
ultrasonic echo groups of the structure. A numeri-
cal model based on the double-crystal probe is 
established to compute the echo group signal of a 
structure.

(2) Uncertainties in the modeling process are mini-
mized. Considering the uncertainty of the double-
crystal probe, it can lead to the deviation of the 
numerical simulation results from the experimental 
results. To reduce this deviation, the finite element 
model is updated using a progressive mesh search 
optimization method to improve the accuracy 
of the numerical model of the echo group from a 
generic ultrasound based on a double crystal probe.

(3) The effectiveness and practicality of the proposed 
method are verified by numerical and experimen-
tal examples of aluminum alloy materials. The 
results show that the maximum error of numerical 
example is less than 2%, and the maximum error of 
experimental test is less than 7%. The similar proce-
dure can be extended for other types of materials

(4) Compared with currently prevailing methods and 
equipment, the proposed method identifies the 
density and thickness in addition to the elastic con-
stants. Moreover, the reliability and accuracy of 
inverse prediction are significantly improved.

(5) The proposed method can be used in for portable 
instruments for parameter identifiers for structures 
in service.

(6) The currently proposed method can have broad 
applications and enables real-time measurements.
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Table 7 Curved specimen material parameters

Materials E (GPa) υ ρ (kg/m3) l × w (mm×mm) h (mm)

a Al-6061 69 0.33 2700 100 × 100 10.65

b Al-7075 71 0.33 2810 100 × 100 10.37

c Al-7075 71 0.33 2810 100 × 100 10.70

Figure 12 Identification accuracy chart of experimental specimens: 
a Flat specimens, b Curved specimens
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